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Targeting apoptosis signaling pathways for anticancer therapy
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Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, 
primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death 
pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can 
result in resistance of cancers to current treatment protocols. Therefore, in order to overcome 
treatment resistance a better understanding of the underlying mechanisms that regulate cell 
death and survival pathways in cancers and in response to cancer therapy is necessary to develop 
molecular-targeted therapies. This strategy should lead to more effective and individualized 
treatment strategies that selectively target deregulated signaling pathways in a tumor type- 
and patient-specific manner.
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In the extrinsic pathway, the ligation of death receptors by their 
ligands including tumor necrosis factor (TNF) receptor, CD95 
(APO-1/Fas), or TNF-related apoptosis-inducing ligand (TRAIL) 
receptors, initiates the formation of a multimeric protein complex 
called the death-inducing signaling complex (DISC) that drives 
activation of caspase-8 (Ashkenazi, 2008b). Caspase-8 can transmit 
the apoptosis signal directly by cleaving other caspases such as 
caspase-3 (Ashkenazi, 2008b). Alternatively, caspase-8 indirectly 
transfers the signal to apoptosis via mediators, for example Bid, a 
proapoptotic, BH3-only domain containing protein of the Bcl-2 
family (Adams and Cory, 2007). Once Bid is cleaved by caspase-8, 
the resulting cleaved form tBid translocates to mitochondrial mem-
branes to engage mitochondrial outer membrane permeabilization 
(Adams and Cory, 2007).

In the mitochondrial pathway, the release of apoptogenic fac-
tors such as cytochrome c or second mitochondrial activator of 
caspases (Smac) from the mitochondrial intermembrane space 
constitutes a key event that controls the activation of downstream 
apoptosis pathways (Fulda et al., 2010). To this end, mitochondrial 
proteins that are released from the mitochondrial intermembrane 
space in the course of mitochondrial outer membrane permeabi-
lization are critical mediators (Kroemer et al., 2007). For example, 
cytochrome c initiates caspase-3 activation via the cytochrome 
c/Apaf-1/caspase-9-containing apoptosome complex following 
its release into the cytosol (Kroemer et al., 2007). Smac, another 
mitochondrial intermembrane space protein, antagonizes “inhibi-
tor of apoptosis” (IAP) proteins via binding to these proteins, 
thereby releasing their inhibitory effect on caspases (Fulda et al., 
2010).

Apoptosis pathways are tightly regulated by antiapoptotic fac-
tors to prevent their accidental activation. The same mechanisms 
that dampen the inappropriate initiation of cell death can also 
confer resistance in cancer cells, for example in the context of drug 

IntroductIon
Tissue homeostasis is the result of a delicate balance of proliferation 
on one side and cell death on the other side (Evan and Vousden, 
2001). Tipping this balance can contribute to either tumor forma-
tion or inappropriate tissue loss via too little or too much apoptosis 
(Fulda, 2009b). Apoptosis (also called programmed cell death) is 
a cellular death program that is inherent to all mammalian cells 
and plays an important role in the regulation of various physi-
ological and pathological conditions (Taylor et al., 2008). For 
example, deregulation of apoptosis programs can lead to resist-
ance of cancers to current treatment strategies, since the ability to 
activate cell death programs in cancer cells critically determines 
the efficacy of current cancer therapies (Makin and Dive, 2001; 
Johnstone et al., 2002; Fulda and Debatin, 2006). Furthermore, 
apoptosis of circulating tumor cells can have an impact on the 
metastatic process (Larson et al., 2004; Fehm et al., 2006). This 
calls for a better understanding of the regulatory mechanisms that 
control cell death and survival pathways in human cancers, since 
this knowledge is expected to translate into the development of 
new approaches to rationally and selectively target deregulated 
signaling pathways in cancer cells. This strategy will likely pave the 
avenue to an innovative approach to bypass treatment resistance 
in various human cancers.

ApoptosIs pAthwAys
The central apoptotic machinery can be divided into two major 
signaling pathways, comprising the death receptor (extrinsic) and 
the mitochondrial (intrinsic) pathway (Fulda and Debatin, 2006). 
Both pathways eventually fuel into a common effector phase that 
is characterized by the activation of caspases (Fulda and Debatin, 
2006). Caspases are a family of proteases that act as common 
death effector molecules in various forms of cell death (Logue 
and Martin, 2008).
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CD95 could be restored upon treatment with histone deacetylase 
inhibitors, thereby enhancing NK cell-dependent cytotoxicity 
(Maecker et al., 2002).

  Next, death receptor signaling may be disturbed because of 
insufficient formation of the DISC that is critical to drive caspase-8 
activation. Overexpression of antiapoptotic molecules such as cFLIP 
or phosphoprotein enriched in diabetes/phosphoprotein enriched 
in astrocytes-15 kDa (PED/PEA-15) that block the recruitment of 
caspase-8 to the DISC (Hao et al., 2001; Krueger et al., 2001) fre-
quently occurs in tumors and has been correlated with resistance 
to death receptor- and also to chemotherapy-induced apoptosis 
(Fulda et al., 2000; Longley et al., 2006). Caspase-8 expression can 
also be impaired by epigenetic silencing as reported in a variety of 
cancers including Ewing tumor, neuroblastoma, medulloblastoma, 
retinoblastoma, rhabdomyosarcoma, or small lung cell carcinoma 
both in cell lines as well as in primary tumor specimens (Teitz et al., 
2000; Fulda et al., 2001; Harada et al., 2002; Hopkins-Donaldson 
et al., 2003; Pingoud-Meier et al., 2003).

Strategies to target the death receptor pathway
Since the TRAIL ligand/receptor system presents the most prom-
ising target for therapeutic intervention and clinical translation 
among the death receptors, the following paragraph will focus 
on the use of TRAIL receptor agonists for the treatment of can-
cer. Intravenous infusion of even high doses of TRAIL showed 
no toxicity in chimpanzees and cynomolgus monkeys that were 
used as non-human primates (Ashkenazi et al., 1999). Similarly, 
TRAIL exerted no detectable cytotoxic activity against various non-
malignant human cells of different lineages including fibroblasts, 
endothelial cells, smooth muscle cells, epithelial cells, or astrocytes 
(Lawrence et al., 2001). It is still not exactly known what determines 
the differential sensitivity of malignant versus normal cells toward 
TRAIL.

Recombinant soluble TRAIL proved to be a potent apoptosis-
inducer in a large panel of preclinical studies both in vitro as well as 
in vivo (Ashkenazi, 2008a). Similarly, monoclonal TRAIL receptor 
antibodies targeting the proapoptotic TRAIL receptors TRAIL-R1 
or -R2 resulted in suppression of tumor growth (Chuntharapai 
et al., 2001; Ichikawa et al., 2001). Of note, TRAIL-R2 antibody-
based therapy also stimulated tumor-specific T cell memory, lead-
ing to protection from tumor relapse (Takeda et al., 2004). Further, 
several gene therapy approaches have been developed to deliver 
TRAIL specifically to tumor cells. Adenovirally expressed TRAIL 
yielded high expression levels of TRAIL resulting in tumor-specific 
induction of apoptotic cell death with little transgene expression 
in non-malignant human primary mammary epithelial cells (Lin 
et al., 2002). Proof-of-concept studies were also performed using 
intralesional injection of adenoviral TRAIL, which led to growth 
inhibition of human breast cancer xenografts and tumor-free sur-
vival of mice (Lin et al., 2002).

Since TRAIL may not exert sufficient antitumor activity as 
monotherapy in most cancers for long-term suppression of tumor 
growth, various TRAIL-based combination therapies together with 
chemo-, radio-, or immunotherapy or targeted therapeutics have 
been developed. Cooperativity between TRAIL receptor agonists 
and DNA-damaging chemo- or radiotherapy occurred in a multi-
tude of solid cancers as well as leukemia in cell lines and in mouse 

 resistance. Therefore, these mechanisms of apoptosis resistance can 
be exploited as therapeutic targets to elicit cell death in cancer cells 
as discussed in more detail in the following chapters.

ExploItIng ApoptosIs pAthwAys for cAncEr thErApy
Since the escape of apoptosis presents a characteristic feature of a 
variety of human cancers that plays an important role in promoting 
tumor formation and progression, there has been much interest 
to design strategies to target the apoptotic machinery in cancer 
cells. In principle, cell death pathways can be activated by agents 
that directly trigger apoptosis pathways. Alternatively, apoptosis-
targeted therapies can be used to increase the responsiveness of 
human cancers toward classical treatment approaches that are cur-
rently used in clinical therapies, e.g., chemo-, radio-, or immuno-
therapy, as these therapies primarily exert their antitumor activity 
by inducing apoptosis in cancer cells.

ExploItIng thE dEAth rEcEptor (ExtrInsIc) pAthwAy
Alterations in the death receptor (extrinsic) pathway in human 
cancers
As far as the extrinsic pathway is concerned, alterations that inter-
fere with signal transduction to apoptosis have been identified at 
various levels within the pathway. For example, surface expres-
sion of death receptors may simply be reduced or even completely 
absent in apoptosis-resistant cancers. Accordingly, downregula-
tion of CD95 expression was detected in drug-resistant leukemia 
or neuroblastoma cells, linking CD95 signaling to drug sensitiv-
ity (Friesen et al., 1997; Fulda et al., 1998). Furthermore, the 
transport of death receptors, i.e., TRAIL receptors TRAIL-R1 
and -R2, from intracellular stores such as the endoplasmatic 
reticulum to the cell surface may be defective resulting in resist-
ance toward TRAIL as described in colon carcinoma (Jin et al., 
2004). Moreover, genetic alterations may disturb death receptor 
expression or function. For example, mutations of the CD95 
gene were reported in solid cancers and in hematological malig-
nancies (Fulda, 2009a). Also, the chromosomal location of the 
two agonistic TRAIL receptors on chromosome 8p is frequently 
altered in human cancers, e.g., by loss of heterozygosity (LOH; 
Ashkenazi, 2008a). Deletions or mutations resulting in loss of 
both copies of TRAIL-R1 or -R2 have been detected in several 
cancers, e.g., non-Hodgkin’s lymphoma, colorectal, breast, head 
and neck cancer, osteosarcoma, or lung carcinoma (Pai et al., 
1998; Dechant et al., 2004). Another mechanism of resistance is 
due to the expression of decoy receptors that interfere with death 
receptor signaling. To give one example, genetic amplification 
or overexpression of decoy receptor 3 (DcR3) has been reported 
as a resistance mechanism in CD95-triggered apoptosis in lung 
or colon carcinoma as well as glioblastoma, as DcR3 competes 
with CD95 for CD95 ligand binding (Pitti et al., 1998; Roth 
et al., 2001). As far as decoy receptors in the TRAIL system are 
concerned, TRAIL-R3 has been shown to be overexpressed in 
gastric carcinoma (Sheikh et al., 1999).

  In addition to genetic modifications, also epigenetic alterations 
can perturb death receptor signaling. Accordingly, hypermethyla-
tion of gene promoters of death receptors may impair their expres-
sion levels and may also contribute to immune escape (Van Noesel 
et al., 2002; Petak et al., 2003). Expression of epigenetically silenced 
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include increased mRNA or protein expression (Tamm et al., 2000), 
enhanced protein stability, e.g., due to phosphorylation by Akt (Dan 
et al., 2004) or chromosomal translocation, for the t(11;18; q21;q21) 
translocation that leads to aberrant cIAP2 gene expression that 
frequently occurs in mucosa-associated lymphoid tissue (MALT) 
lymphoma (Dierlamm et al., 1999). Alternatively, loss of endog-
enous antagonists such as XAF1 can result in unrestrained signaling 
of IAP proteins (Tamm et al., 2000; Chakravarti et al., 2002; Byun 
et al., 2003). Overexpression of survivin can antagonize apoptosis 
by binding to Smac, thereby releasing XIAP to block caspase activa-
tion (Song et al., 2003; Dohi et al., 2004).

Cancer therapeutics targeting Bcl-2 family proteins
A variety of approaches have been developed over the years to 
neutralize antiapoptotic Bcl-2 proteins. A prototype example is 
the design of small molecule inhibitors that interfere with the pro-
tein–protein interaction site of antiapoptotic Bcl-2 proteins (i.e., 
Bcl-2, Bcl-X

L
, Bcl-w) and the multidomain proteins Bax or Bak 

(Oltersdorf et al., 2005). The first generation compound originat-
ing from this development program is ABT-737 (Oltersdorf et al., 
2005), which has been reported to either directly trigger apoptosis 
or enhance the sensitivity to apoptosis in combination treatments 
(Oltersdorf et al., 2005). To this end, ABT-737 acted together with 
various classical anticancer drugs to trigger apoptosis (Oltersdorf 
et al., 2005; Konopleva et al., 2006; Van Delft et al., 2006). High 
levels of Mcl-1 expression have been associated with resistance to 
ABT-737, as ABT-737 does not antagonize Mcl-1, another antia-
poptotic member of the Bcl-2 family (Konopleva et al., 2006; Van 
Delft et al., 2006). This Mcl-1-mediated resistance can be overcome 
by combination strategies, e.g., using proteasome inhibitors that 
trigger upregulation of Noxa, a BH3-only domain protein that spe-
cifically antagonizes Mcl-1, or alternatively CDK inhibitors (e.g., 
roscovitine, flavopiridol, seliciclib) or Raf/Mek inhibitors such as 
sorafenib, which all proved to augment the cytotoxicity following 
treatment with ABT-737 (Chen et al., 2001; Konopleva et al., 2006; 
Van Delft et al., 2006; Lin et al., 2007; Tahir et al., 2007).

Besides small molecule inhibitors, antisense strategies against 
antiapoptotic Bcl-2 proteins were developed (Tolcher et al., 2005). 
The most prominent example are Bcl-2 antisense oligonucleotides, 
which have been evaluated both as single agents as well as in com-
bination with chemotherapy (Tolcher et al., 2005). Furthermore, 
BH3 peptides mimicking BH3-only domain proteins have been 
designed to directly engage the multidomain proapoptotic Bax and 
Bak proteins (Letai et al., 2002). Together, these tools to neutralize 
antiapoptotic Bcl-2 proteins are considered as promising strategies 
to engage the mitochondrial pathway of apoptosis in cancer cells.

ExploItIng “InhIbItor of ApoptosIs” protEIns
“Inhibitor of apoptosis” proteins comprise a family of endogenous 
caspase inhibitors highly conserved in evolution (Lacasse et al., 
2008). The human analogs include eight members, i.e., neuronal 
apoptosis inhibitory protein (NAIP/BIRC1/NLRB) cellular IAP1 
(cIAP1)/human IAP2 (HIAP2)/BIRC2, cellular IAP2 (cIAP2)/
human IAP1 (HIAP1)/BIRC3, X-linked IAP (XIAP)/BIRC4, 
survivin/BIRC5, BIR-containing ubiquitin conjugating enzyme 
(BRUCE)/apollon/BIRC6, livin/melanoma-IAP (ML-IAP)/BIRC7/
KIAP, and testis-specific IAP (Ts-IAP)/hILP-2/BIRC8; Lacasse et al., 

cancer models (Gliniak and Le, 1999; Chinnaiyan et al., 2000; Keane 
et al., 2000; Nagane et al., 2000; Belka et al., 2001; Rohn et al., 
2001; Ray and Almasan, 2003; Singh et al., 2003). This synergism 
combining TRAIL and DNA-damaging insults may involve various 
mechanisms of action, e.g., transcriptional upregulation of the ago-
nistic TRAIL receptors TRAIL-R1 and -R2 upon DNA damage in a 
p53-dependent or -independent manner (Takimoto and El-Deiry, 
2000; Meng and El-Deiry, 2001) or increased formation of the CD95 
or TRAIL DISC (Lacour et al., 2003). Recombinant TRAIL and 
TRAIL receptor antibodies are evaluated in early clinical trials as 
mono- or combination therapy, for example with chemotherapeu-
tics (Younes and Aggarwall, 2003; Mom et al., 2005; Chow et al., 
2006; Herbst et al., 2006; Patnaik et al., 2006; Tolcher et al., 2007).

In addition to triggering apoptosis, TRAIL has also been reported 
to stimulate proliferation and survival, at least under certain con-
ditions. For example in TRAIL-resistant cancers, the addition of 
TRAIL was shown to result in proliferation in a NF-κB-dependent 
manner (Ehrhardt et al., 2003). Thus, TRAIL might not only be 
ineffective in resistant forms of cancers, but may paradoxically even 
enhance tumor growth.

ExploItIng thE mItochondrIAl (IntrInsIc) pAthwAy
Defects in the mitochondrial (intrinsic) pathway in human cancers
Apoptosis pathways can also be altered at the level of mitochondria 
in human cancers, leading to tumor formation and treatment resist-
ance. For example, overexpression of antiapoptotic proteins of the 
Bcl-2 family such as Bcl-2 frequently occurs in various tumors. In 
follicular lymphoma, Bcl-2 is expressed at high levels because of 
chromosomal translocation of the Bcl-2 oncogene into the immu-
noglobulin heavy chain gene locus (Tsujimoto et al., 1984). Besides 
genetic alterations, aberrant Bcl-2 expression may also be caused by 
oncogenic activation of survival pathways, e.g., PI3K/Akt signaling. 
Another possible cause for the disturbed balance between pro- and 
antiapoptotic Bcl-2 family proteins are somatic mutations of the 
bax gene, a proapoptotic protein of the Bcl-2 family that plays a 
key role in the regulation of mitochondrial cytochrome c release. 
Colon cancer or hematopoietic malignancies that are mismatch 
repair-deficient were reported to harbor frameshift mutations or 
single nucleotide substitution of the bax gene (Rampino et al., 
1997; Kitada et al., 2002). Furthermore, genetic alterations in BH3-
only proteins, which also belong to the Bcl-2 family and harbor a 
BH3 domain only, have been detected in malignant tumors, e.g., 
homozygous deletions of the bim gene in mantle cell lymphoma 
(Tagawa et al., 2005). The observation that bid-deficient mice spon-
taneously develop a myeloproliferative disease and subsequently 
a chronic myelomonocytic form of leukemia (Zinkel et al., 2003) 
further supports the notion that proapoptotic Bcl-2 proteins may 
exert tumor suppressive functions.

Moreover, the mitochondrial pathway of apoptosis can also 
be impaired in human cancers at the postmitochondrial level, for 
example by decreased or absent activity of Apaf-1 in melanoma 
and leukemia that contributes to caspase-3 activation via forma-
tion of the apoptosome complex (Soengas et al., 2001; Fu et al., 
2003). Abnormal expression of IAP proteins can impair effector 
caspase activation, thereby interfering with the common effector 
phase of both the death receptor and the mitochondrial pathway. 
Factors that can contribute to aberrant expression of IAP proteins 
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Furthermore, antisense oligonucleotides targeting XIAP demon-
strated antitumor activity in preclinical models both as monother-
apy as well as in combination with anticancer drugs (Lacasse et al., 
2005, 2006). Taken together, strategies to antagonize IAP proteins 
present promising novel approaches to induce apoptotic cell death in 
cancer cells or to lower the threshold for the induction of apoptosis.

conclusIon
Intact apoptosis programs are critically required for the antitumor 
activity of most current cancer therapies that are used in clinical 
oncology. However, apoptosis signaling pathways are frequently 
disturbed at various levels in human cancers. Further insights 
into the regulation of apoptosis signaling pathways in response to 
anticancer drug treatment will likely have important implications 
for the development of molecular targeted therapies. In addition, 
targeting apoptosis pathways in circulating tumor cells may present 
a means to interfere with metastasis. Several strategies to target 
elements of the apoptotic machinery in cancer cells have already 
progressed up to clinical evaluation. Such strategies may pave the 
avenue to more effective cancer treatments.
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domains include the really interesting new gene (RING) domain 
harboring E3 ubiquitin ligase activity and the caspase activating and 
recruitment domain (CARD) domain, a motif for protein–protein 
interaction (Lacasse et al., 2008).

cAncEr thErApEutIcs tArgEtIng “InhIbItor of ApoptosIs” 
protEIns
In order to design inhibitors that mimic the apoptosis-inducing 
properties of the endogenous IAP antagonist Smac, the groove of 
the BIR3 domain of XIAP has served as a scaffold that binds the 
native Smac protein upon its release into the cytosol (Shiozaki and 
Shi, 2004). For example, Smac peptides comprising the N-terminal 
amino acid stretch of Smac that is critical for its interaction with 
XIAP proved to trigger caspase activation and to prime cancer cells 
for apoptosis together with other cytotoxic stimuli (Fulda et al., 
2002). For enhanced intracellular uptake such Smac peptides were 
coupled to various forms of carrier proteins (Arnt et al., 2002; Fulda 
et al., 2002; Yang et al., 2003). Furthermore, the design of Smac pep-
tidomimetics binding to XIAP-BIR3, cIAP1-BIR3, cIAP2-BIR3, or 
livin-BIR domains resulted in potent apoptosis sensitizers in combi-
nation therapies, e.g., together with TRAIL, TNFα, or chemothera-
peutics (Li et al., 2004; Sun et al., 2004a,b, 2005, 2006; Bockbrader 
et al., 2005; Zobel et al., 2006). IAP antagonists also engage cell 
death pathways by initiating autoubiquitination of cIAPs leading to 
activation of non-canonical NF-κB and TNFα-mediated apoptosis 
(Petersen et al., 2007; Varfolomeev et al., 2007; Vince et al., 2007). 
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