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Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and miti-
gators (delivered after irradiation, but before the appearance of symptoms associated with
radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radi-
ation protection during fractionated radiotherapy, and (2) radiation terrorism counter mea-
sures. Several categories of such molecules have been discovered: nitroxide-linked hybrid
molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4
inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase
pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radi-
ation dose modifying molecules to protect normal tissue includes: clonogenic radiation
survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of
antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-
induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate
rational means by which to move candidate small molecule drugs along the drug discovery
pipeline into clinical development.
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INTRODUCTION
Drug discovery in the areas of radiation protectors and mitigators
focus on the goal of developing small molecules that are easily
administered, rapidly deliverable, and well tolerated by recipients
in two primary scenarios: (1) clinical radiation therapy (where
fractionated irradiation is delivered to specific target volumes),and
(2) systemic administration as part of the Radiation Counter Mea-
sures Program of the National Institute of Allergies and Infectious
Disease at the National Institute of Health (Stone et al., 2004). One
approach toward drug discovery in the area of radiation protectors
and mitigators is to follow-up on previous studies in radiopro-
tective gene therapy for clinical radiotherapy (Greenberger et al.,
2003; Tarhini et al., 2011).

Manganese superoxide dismutase–plasmid liposomes (MnSOD–
PL) were developed as a clinical therapeutic for administration
to the esophagus by swallowed plasmid liposomes (Stickle et al.,
1999; Epperly et al., 2000a, 2001a, 2004c, 2005a,b; Niu et al., 2008;
Rajagopalan et al., 2010). This method delivers a plasmid contain-
ing the transgene (Epperly et al., 2001a) and was motivated by
extensive animal studies in the mouse model in which radiation
esophagitis from single fraction (Stickle et al., 1999) or fraction-
ated irradiation (Epperly et al., 2001c) of the thoracic cavity (head
and neck and abdomen shielded) showed that irradiation damage
could be significantly ameliorated by esophageal administration
of MnSOD–PL.

The concept of using MnSOD transgene expression for radi-
ation protection followed upon studies in which MnSOD was
demonstrated to be one of the rapid upregulated cellular response
products to ionizing irradiation in tissues (Epperly et al., 1998,
1999a,b; Greenberger, 2008, 2009; Belikova et al., 2009b). The con-
cept of developing MnSOD–PL was based on radiobiology studies
demonstrating that the MnSOD transgene product was uniquely
mitochondrially localized (SOD2) compared to the cytoplasmic
superoxide dismutase (SOD1) or extracellular SOD3 (Epperly
et al., 2003e). When the specific mitochondrial targeting sequence
on SOD2 was inserted on to SOD1, the transgene product localized
to the mitochondria and produced a CU/ZnSOD metalloenzyme
that was also radioprotective for 32D cl3 cells in vitro (Epperly
et al., 2002b, 2003e). In contrast, deleting the mitochondrial tar-
geting sequence of SOD2 resulted in a cytoplasmic manganese
metalloenzyme with little radioprotective capacity (Epperly et al.,
2003e). MnSOD transgene delivery to animals was optimized
using plasmid liposomes (Epperly et al., 2005b; Zhang et al.,
2008b), adenovirus (Zwacka et al., 1998), and other transgene
delivery systems (Greenberger et al., 2003). Plasmid liposomes
were considered to be the safest delivery system (Greenberger
et al., 2003). Elimination of potential immunologic responses
to viral sequences using virus vectors and careful optimization
of liposome delivery vehicles with cationic properties lead to
design of a MnSOD–PL construct suitable for delivery in animal
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model systems by either intra-oral/oropharyngeal administration
(Epperly et al., 1999a; Guo et al., 2003a,b,c), intra-esophageal
delivery (Stickle et al., 1999), or delivery into the lungs by either
intra-tracheal injection or inhalation using a nebulizer system
(Epperly et al., 1998; Carpenter et al., 2005; Bernard et al., in
press). In all of these systems, a significant radiation protection
of specific organs was documented by the physiological, patho-
physiological, and histopathological evidence of decreasing both
acute and chronic radiation side effects (Epperly et al., 1999b). Of
particular interest, was the demonstration that prevention of early
radiation esophagitis using MnSOD–PL swallow also decreased
the severity and incidence of late esophageal stricture (Epperly
et al., 2001a). That MnSOD–PL was working by quenching super-
oxide was documented in an in vitro assay system using ascorbate
to measure antioxidant capacity and in other studies by document-
ing that MnSOD overexpression resulted in decreased depletion of
antioxidant stores within cells and tissues, principally glutathione
(Epperly et al., 2004a). Small molecule drugs designed next fol-
lowed at first the principle of duplicating or mimicking the action
of MnSOD transgene product.

This review describes efforts in several areas of post-MnSOD–
PL drug discovery. A pathway from cell culture experiments, to

animal models, to efficiency in human cells, and then to the point
of establishing parameters for drug development, is being pursued
(Table 1).

MATERIALS AND METHODS
The methods for production and synthesis of GS-nitroxides,
GS-nitric oxide synthase inhibitors (NOS-I), p53/mdm2/mdm4
inhibitors, have been published previously (Rwigema et al., 2011).

The construction of p53-upregulated modulators of apoptosis
(PUMA) inhibitors has been described in previous publications
(Qiu et al., 2008; Mustata et al., 2011).

Methods for constructing MnSOD–PL, and delivery systems
have been described (Tarhini et al., 2011).

Drug formulation/delivery systems for constructing three
emulsions for organ specific delivery of small molecules have been
described previously (Epperly et al., 2010d; Kim et al., 2011b).

DRUG DISCOVERY BY siRNA LIBRARY SCREENING
The high-throughput methodologies for utilizing human cells
in culture transfected with siRNA library targeting the drug-
gable genome have been described previously and the para-
digm for screening radiation protectors (siRNA delivered before

Table 1 | Drug discovery pathways for small molecule radiation protector/mitigator agents.

Basic science observations Unbiased siRNA screen

↓ ↓

Target validation

↓
Chemical synthesis (rational drug design principles)

↓
Radiation survival curves 32D cl3 mouse IL-3 dependent hematopoietic progenitor cell line

↓
Assays for biological screening of method of action: Apotag, H2AX, ATM phosphorylation

↓
Comparison of several categories of drugs within each chemical synthesis group (GS-nitroxides – JP4-039, XJB-5-131, XJB-5-175)

↓
Radiation survival curves with human cell lines (KM101 human bone marrow stromal cell line, IB-3 human bronchoepithelial cell line, fresh human umbilical

cord blood in CFU-GEMM assay)

In vivo assays, total body irradiation of C57BL/6HNsd mice to LD 50/30 irradiation dose of 9.5 Gy

↓
Three experiments on three successive dates demonstrating statistical significance at 30 days with respect to survival. Holding mice for 60 days to look

for late deaths and evidence of true bone marrow stem cell recovery (60 vs. 30 days)

↓
Experiments to optimize protection and mitigation paradigm

Protection: drug given before total body irradiation compared to 1, 24 h prior to TBI

Mitigation: drug given immediately after irradiation, 1, 4, 24, 48, and 72 h after irradiation

↓
Pathway toward drug development

↓
Elaboration of the potential mechanism of protection or mitigation (amelioration of irradiation effects on DNA repair, mitochondrial mediated apoptosis,

inflammatory cytokines, and/or other mechanism)

↓
Path to licensing

↓
Preparation for translation to the clinic: FDA “animal rule” two species assays
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irradiation) and radiation mitigators (siRNA delivered after irra-
diation of cells in culture; Jiang et al., 2009a; Zellefrow et al., in
press) have been described.

Methods for construction and design of phenylphosphonium
conjugated imidazole–fatty acids and TTP conjugated nitroxides
have been described previously (Stoyanovsky et al., 2009; Atkinson
et al., in press).

The synthesis and description of metalloporphyrin based
superoxide dismutase mimics have been described previously
(Stoyanovsky et al., 2011).

ANIMALS AND IRRADIATION
C57BL/6/HNsd female mice 30–33 g were irradiated to organ spe-
cific sites including head and neck, thoracic cavity according to
published methods (Epperly et al., 1998, 1999b; Stickle et al.,
1999). These animal studies were carried out using a linear accel-
erator with blocking specific sites in anesthetized mice irradiated
to several protocols to treat the head and neck region, the thoracic
cavity (Epperly et al., 1998; Stickle et al., 1999) with head and neck
(Epperly et al., 2007a) and abdomen shielded, or specific bones in
the setting of studies for unicortical bone wound healing (Gokhale
et al., 2010) experiments.

Total body irradiation (TBI) was delivered by a Gamma Cell
Cesium Irradiator dose rate 70 cGy/min using a Lucite tray
immobilization device with non-anesthetized mice, according to
published methods (Rwigema et al., 2011).

CLINICAL RETROSPECTIVE STUDY OF POSSIBLE CLINICALLY AVAILABLE
RADIOPROTECTORS BASED ON RADIOBIOLOGY EXPERIMENTS
The University of Pittsburgh Institutional Review Board reviewed
and approved a pilot project that analyzed the complications
of patients taking glyburide (Jiang et al., 2009a) and/or carba-
mazepine (Kim et al., 2011a) while receiving definitive radiother-
apy (IRB no. PR011030146). Between January, 2006 and January,
2011, patients receiving definitive radiotherapy which was defined
as those receiving greater than 25 fractions for non-small cell lung
carcinoma or head and neck squamous cell carcinoma were iden-
tified. The IRB approved a waiver of informed consent/HIPAA
authorization to access, record, and use protected patient health
information/patient medical record information. A subsequent
mining of the electronic medical record identified 20 patients that
were concurrently prescribed either carbamazepine and/or gly-
buride. The radiation oncology treatment record and follow-up
information were reviewed to determine treatment parameters
and presence or absence of early and/or late toxicities. Local con-
trol was assessed by reviewing the follow-up history and physicals,
while also accessing available imaging and reports. Date of death
was determined by either reports in the electronic medical record
or by information available in the social security death index.

RESULTS
GS-NITROXIDES
The first series of drugs developed for preferred delivery of nitrox-
ides to mitochondria were the Hemigramicidin Nitroxides (Wipf
et al., 2005; Fink et al., 2007a,b; Jiang et al., 2007; Jiang et al., 2008;
Rajagopalan et al., 2009). Nitroxides have previously been found
to be effective small molecule free radical scavengers (Kagan et al.,

2009a). Ionizing irradiation induces highly reactive free radicals,
including superoxide, nitric oxide, and hydroxyl radical. Superox-
ide in combination with nitric oxide forms peroxynitrite, a potent
oxidant with a propensity to oxidize lipids. Superoxide radical
anion and peroxynitrite produce significant oxidative stress at
the mitochondrial membrane, leading to membrane permeability,
cytochrome C leakage, and induction of apoptosis. The problem
with small molecule nitroxides such as 4-amino-tempo or tempol,
is the requirement for high concentrations of drug to deliver the
desired radioprotective or radiation mitigative effects (Zhang et al.,
2008a). Systemic administration is often associated with hypoten-
sion and renal pathology in the mouse model (Zhang et al., 2008a).
To improve the efficiency and feasibility of the use of nitroxides, a
method for mitochondrial targeting of these agents was developed.
Two orthogonal strategies for mitochondrial targeting included:
(1) attaching a peptide isostere sequence of the antibiotic, GS, to
the nitroxide, resulting in the GS-nitroxides (Wipf et al., 2005;
Fink et al., 2007a,b; Jiang et al., 2008), and (2) attaching triph-
enylphosphonium cations, a charge-driven mitochondrial target-
ing moiety (Jiang et al., 2009b; Stoyanovsky et al., 2009). Both
chemical synthesis strategies resulted in a highly efficient targeting
of nitroxides to the mitochondrial membrane, yielding a 33- to
600-fold concentration of drug in mitochondria as determined by
electron spin trap analysis (Kagan et al., 2009c) or visualization
of a fluorochrome-tagged GS-nitroxide (Bernard et al., 2011a).
In support of the crucial role of mitochondrial targeting, signifi-
cant radiation protection was achieved using GS-nitroxide at low
micromolar concentrations in cell culture compared to nitroxide
alone. Furthermore, concentrations of GS-nitroxide of 5 mg/kg
delivered to mice i.v. or i.p. resulted in considerable total body
radioprotection and organ specific radioprotection of the esoph-
agus during single fraction or fractionated irradiation (Epperly
et al., 2010d; Kim et al., 2011b). Recent data confirm and extend
published results and show mitigation out to 72 h after TBI at the
LD50/30 dose (Figure 1).

GS-NITRIC OXIDE SYNTHASE INHIBITORS
A source of reactive nitrogen species (RNS), such as peroxyni-
trite formation, nitric oxide, was targeted in radiation protection
and mitigation strategies by the preparation of mitochondrial tar-
geted GS-NOS-I. Several of these synthetic derivatives were shown
to target mitochondria with equal efficiency as GS-nitroxides

FIGURE 1 | Survival of groups of 15 C57BL/6NHsd mice given

20 mg/kg JP4-039 i.p. at varying times afterTBI.
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(Rwigema et al., 2011; Bernard et al., 2011b). While potent
in vitro with respect to the modulation of irradiation killing in
clonogenic survival curves, GS-NOS-I drugs were not as effec-
tive as GS-nitroxides in vivo for total body radioprotection, based
on the amount of drug required for significant protection at
30 days in the LD50/30 dose of TBI or by the more strict crite-
ria of efficiency at delivery 72 h after irradiation in the Radiation
Counter Measures Program. A combination of both GS-nitroxide
and GS-NOS-I in a single administration was not more effec-
tive than one drug alone (Rwigema et al., 2011). Because of
the superior dose response cures and effectiveness of admin-
istering GS-nitroxides as late as 48 h after TBI (Figure 1), we
focused on the development of more potent GS-nitroxide mol-
ecules as well as their formulation in further rounds of drug
discovery.

p53/mdm2/mdm4 INHIBITORS
A third category of mitochondrial targeted small molecules with
radioprotective and radiomitigative properties was represented
by p53/mdm2/mdm4 inhibitors. Rapidly after ionizing radiation
of cells, tissues, or organs, p53 is upregulated (Rwigema et al.,
2011). This critical molecule is involved in both modulation of
cell cycle progression and upregulation of cell cycle checkpoints,
and it is at the crossroads of determination of either cell recov-
ery or induction of apoptosis (Rwigema et al., 2011). In response
to p53, there is upregulation of mdm2 and mdm4, which coun-
teract and can neutralize p53 (Rwigema et al., 2011). Accordingly,
small molecule drugs developed to prevent mdm2 and mdm4 from
binding to p53, leaving p53 available (theoretically), and to regu-
late a greater degree of cell repair and influence less apoptosis in
the setting of modest DNA damage (Rwigema et al., 2011). Sev-
eral categories of p53/mdm2/mdm4 were tested and found to be
protective and mitigative of irradiated cells in culture (Rwigema
et al., 2011). However, as with the GS-NOS-I, drug dose response
curves required higher doses of drug for effectiveness, and drugs in
this category, notably BEB-55, were only effective when delivered
very rapidly after irradiation (Kim et al., 2011b; Rwigema et al.,
2011). The ineffectiveness at 24 h after irradiation made this drug
delivery system less attractive. Combining BEB-55 with either GS-
NOS-I, GS-nitroxides, or in combinations with both drugs (three
drug cocktail) was not more effective than one drug alone. These
studies demonstrated several principles of small molecule drug
discovery, namely the potential lack of additive or synergistic inter-
action between drugs which, while having different biochemical
properties, target the radiation damage response at the same site
(mitochondrial membrane). Also, they define the principle that
similar targets of action may not produce similar outcomes with
respect to dose response curves, timing of delivery, and efficiency
of response.

PUMA INHIBITORS
Another strategy for developing radiation mitigators and protec-
tors was based on a second known pathway of p53 interaction
with small molecules to the mitochondrial membrane (Mustata
et al., 2011). PUMA drugs were discovered in studies looking at
downstream events following p53 upregulation during irradia-
tion. PUMA homozygous recombinant deletion mice, PUMA−/−

mice were shown to be radioresistant, particularly to abdominal
irradiation, which caused less death of intestinal crypt cells (Qiu
et al., 2008). Small molecule PUMA inhibitors were developed
to counteract PUMA interaction with p53 in a strategy simi-
lar to that for p53/mdm2/mdm4 inhibitors, but with knowledge
that activated p53 might be more stable in the setting of PUMA
inhibitors. These experiments showed significant radiation protec-
tion and mitigation in vitro and in vivo. Chemical library screening
for drugs with capacity to block PUMA binding to p53 but also
to dislodge the binding once achieved, made this class of mole-
cules quite attractive for further drug discovery (Mustata et al.,
2011).

siRNA LIBRARY SCREENING FOR RADIATION MITIGATORS
Following on a siRNA library assay, that discovered glyburide as
a radiation protector (Jiang et al., 2009a), we developed a strategy
to discover radiation mitigators. The NCCIT human pluripotent
embryonic carcinoma cell line was chosen for these experiments
(Zellefrow et al., in press), because of its suitability for the 384
well plate format used with the siRNA library screening and
also because of its radiobiology being similar to that for human
hematopoietic stem cell known to be critical targets for the human
hematopoietic syndrome that follows TBI (Zellefrow et al., in
press). siRNA library screening revealed several small molecules
that regulate mitochondrial functionality including PI-3 kinase
inhibitors (Zellefrow et al., in press).

TTP CONJUGATED IMIDAZOLE–FATTY ACIDS
The mechanism of irradiation-induced apoptosis has been a focus
of intense investigation by many laboratories (Bayir et al., 2006;
Kagan et al., 2006; Tyurin et al., 2008; Tyurina et al., 2008; Kagan
et al., 2009a; Tyurin et al., 2009, 2010, 2011). One recent finding
has been the importance of cardiolipin binding to cytochrome
C, to keep the latter molecule within the mitochondrial mem-
brane, and prevent its separation and leakage into the cytoplasm
where it activates the caspase system and initiates apoptosis (Kagan
et al., 2009b). Separation of cardiolipin from cytochrome C was
shown to be influenced by the phospholipid synthesis required
for mitochondrial lipid construction. Two mitochondrial lipids
shown to be specifically oxidized following irradiation were cardi-
olipin and phosphatidylserine. Cardiolipin, because of its impor-
tance in immobilizing and stabilizing cytochrome C, was found
to convert into a peroxidase rapidly after irradiation if mito-
chondrial generated free radicals were not neutralized (Belikova
et al., 2007; Atkinson et al., in press). Separation of cardiolipin
from cytochrome C was felt to be a critical event, which, when
inhibited, might result in stabilization of the mitochondria and
decrease events leading to apoptosis. Accordingly, this class of
molecules turned imidazole–fatty acids into constructive targets
of the mitochondrial membrane using the triphenylphosphonium
cation, charge-mediated mitochondrial targeting mechanism ref-
erenced above for nitroxides. TTP–Imidazole–Fatty Acids were
demonstrated to rapidly accumulate in the mitochondria and by
blocking critical steps in the biochemistry of cardiolipin separa-
tion from cytochrome C, acted as potent radiation protectors and
mitigators (Atkinson et al., in press).
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METALLOPORPHYRIN SUPEROXIDE DISMUTASE MIMICS
Previous studies by many laboratories have stressed the impor-
tance of duplicating the original MnSOD–PL gene therapy radia-
tion protection and mitigation experiments by constructing small
molecule SOD mimics and targeting these to the mitochondria
(58). The first SOD mimics were highly effective against cells
in culture and in the C. elegans experiments shown to have sig-
nificant antioxidant properties. As with the original experiments
with Tempol, gaining sufficient concentration of SOD mimics in
the mitochondria were shown to be a potentially limiting step
(Kagan et al., 2009c; Stoyanovsky et al., 2009, 2011). Toxicity of
many of the effective molecules in vitro was observed when the
drugs were given in vivo. Based on the studies with mitochondrial
targeting of other small molecules, TTP was attached to metallo-
porphyrin molecules and initial constructed drugs were shown to
be highly effective and as with other mitochondrial targeted small
molecules much more effective in dose response administration,
timing experiments, and in multiple administration paradigms.

THE IMPORTANCE OF FORMULATION CHEMISTRY FOR A SUITABLE
DRUG DELIVERY SYSTEM
Rational drug development involves animal testing to ensure safety
and efficacy in humans. In many cases, in vitro radiation survival
curves and biochemistry assays utilize solvent for newly discov-
ered drugs, which are easily adapted to tissue culture. For example,
dimethylsulfoxide (DMSO) is a valuable solvent for testing many
categories of drugs, as is ethanol. The radiation studies can often be
carried out using tissue culture cell lines for clonogenic survival
curves or apoptosis assays and the solvents themselves generally
produce no effect on the radiobiology or the parameters being
studied. However, once a drug is delivered to an animal, the inves-
tigator often finds that the solvent being used is itself a radiation
protector or mitigator (as in the case of DMSO) or it can be toxic
to the experimental animal of choice (as is the case in ethanol
treatment of mice; Rwigema et al., 2011).

For this reason, formulation chemistry has been critical to the
process of drug discovery in the areas of radiation protection and
mitigation. We have developed novel formulations/emulsions for
topical delivery of radiation protective agents to the skin and also
for systemic administration. The F14 emulsion, which is described
in detail in a recent publication (Goff et al., 2011) was developed
in the University of Pittsburgh School of Pharmacy with specific
attention to preserving the functionality of drug (GS-nitroxide or
GS-NOS-I) capacity for entry of cells, and transcellular migra-
tion to the mitochondrial membrane, with the importance of
preserving systemic distribution. The F14 emulsion combines the
properties of liposomal, lamellar combining of drugs between lay-
ers of lipid, and the critical particle size, which allows uptake in
cells within the smallest capillaries and transcapillary spaces vs.
systemic distribution. In contrast, a F15 emulsion was developed
for delivery of the same drug, but with attention to the concept
of local concentration of the drug in the esophagus. This F15
emulsion, which includes the detergent agent, Tween, is similarly
constructed of lamellar liposomes, and facilitates the maintenance
of the drug locally in the esophagus for prolonged and more effi-
cient uptake and decreased penetration through the tissue into the
circulation (Epperly et al., 2010d; Kim et al., 2011b).

Many studies in the drug development of small molecule
radioprotectors and mitigators failed during the translation of
the research from tissue culture to animal model systems. This
often can be the result of unanticipated toxicities, rapid metabo-
lism, extensive plasma protein binding, poor pharmacokinetics, or
invalid molecular targeting leading to a lack of intrinsic efficacy.
The importance of formulation chemistry is a process that should
not be underestimated in the frequent failures.

PRELIMINARY RESULTS OF A CLINICAL RETROSPECTIVE STUDY
We sought to determine whether two newly identified radiation
protectors in the clinical pharmacopeia were radiation protectors
for normal tissue in patients. Such a discovery would be a valu-
able and cost effective result. A retrospective analysis of patients
treated with definitive radiotherapy for non-small cell lung carci-
noma or head and neck squamous cell carcinoma between January,
2006 and January, 2011 was carried out and identified 20 patients
that were prescribed either carbamazepine (Kim et al., 2011a)
and/or glyburide (Jiang et al., 2009a). We searched for competing
comorbidities during their course of radiation therapy. Treatment
parameters including the prescribed dose, fractionation schedule,
and elapsed days of treatment as well as the acute and late toxic-
ity profile for each patient were examined. A relationship between
patients receiving either carbamazepine and/or glyburide and a
reduction in morbidity was measured as the grade of toxicity and
whether it mirrored that expected for these treatment populations.
These medications were also evaluated for any reduction in sus-
pected local control probability. These preliminary results were
designed to question whether further investigation into the use of
either of these medications as radiation protectors or mitigators
would be worthwhile.

DISCUSSION
There is a compelling need for new radiation protectors and radi-
ation damage mitigators that improve clinical outcomes in two
scenarios: clinical radiotherapy and radiation countermeasures.
Clinical radiotherapy is dependent upon the therapeutic ratio:
tumor cell kill relative to normal tissue damage. Improvements
in radiation beam collimation through the use of multi-leaf col-
limators, Intensity Modulated Radiotherapy, and, most recently,
Stereotactic Radiosurgery Imaged Guided Radiotherapy, greatly
improve the ability of radiation oncologists and physicists to tar-
get tumor volumes and minimize dose to the transit volume of
normal tissue (Epperly et al., 1998; Stickle et al., 1999). How-
ever, as radiation dose escalation protocols increase dose, and
as more toxic chemotherapy drugs are using combined modal-
ity protocols, the issue of normal tissue damage during clinical
radiotherapy is critical. Available radiation protectors for normal
tissue have necessitated systemic delivery in most cases. The free
radical scavenger WR2721 (amifostine; Movsas et al., 2005), which
has provided some therapeutic benefit in protecting the salivary
glands in head and neck cancer patients, but has been disappoint-
ing in other applications. For normal tissue protectors and damage
mitigators, this principle is also important in brachytherapy, par-
ticularly interstitial therapy. The radiation source is implanted
or transiently placed within tumor volumes to provide a high
dose delivery to the target volume; however, surrounding tissues
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are also at risk for both acute and late radiation side effects
(Epperly et al., 1998; Stickle et al., 1999). This is particularly
prominent in brachytherapy seed implant for prostate cancer, and
for endometrial and cervix cancer, as well as for recurrent pelvic
tumors.

One approach toward altering the therapeutic ratio has been
to sensitize tumors to irradiation (Hall and Giaccia, 2006). This
approach has been exciting and potentially valuable; however, uni-
formity of distribution of radiosensitizing agents within the tumor
has been problematic. Delivery systems that restrict radiosensitizer
to tumor have led to complications in which normal surround-
ing tissues also become sensitized. The same problems become
apparent in radiation protection and radiation mitigation. Nor-
mal tissue delivery often results in insufficient distribution of
the agent to the tumor and the therapeutic effect is lost. Uni-
form distribution of a radioprotector/mitigator within normal
tissues can also be problematic, and if greater than 50% of cells
within a tissue must be affected directly by the radioprotector
drug, there will be incomplete treatment. MnSOD–PL gene ther-
apy for radiation protection went through a successful Phase I
clinical trial for protection of the esophagus during 7.5 weeks
of chemoradiotherapy of non-small cell lung cancer, and this
therapy has now progressed to a Phase II trial (Tarhini et al.,
2011). However, gene therapy remains controversial both for its
concept as well as its general acceptance. The expense of pro-
ducing any plasmid is a continuing concern as is the potential
for long-term transgene expression and there are further con-
cerns about transmission of transgene to other tissues or the germ
line. These issues limit the role of gene therapy as a potentially
valuable technology. However, the lessons learned from MnSOD–
PL gene therapy have been important for small molecule drug
design.

The principles developed in MnSOD–PL normal tissue radio-
protection for clinical radiotherapy have helped guide targeted
approaches for the protection and mitigation of normal tis-
sue (Epperly et al., 1999c, 2000b,c, 2001b, 2002a,c, 2003a,b,c,d,
2004b,d,e, 2006a,b, 2007b,c,d, 2009, 2010a,b,e; Kanai et al., 2002;
Niu et al., 2010). Measuring levels of normal tissue antioxi-
dants and radiation protective physiologic responses has been a
valuable concept. Utilizing MnSOD–PL transgene to lower the
irradiation-induced production of TGFβ, IL-1, TNFα, and other
inflammatory cytokines, has been helpful in reducing radiation
side effects in animal models (Epperly et al., 1999b; Lechpam-
mer et al., 2005; Greenberger and Epperly, 2009; Rajagopalan
et al., 2010). The indirect effects of irradiation, coupled with the
direct effects (consumption of antioxidant stores, mitochondr-
ial membrane disruption, and activation of apoptosis) provide
an attractive strategy for targeted normal tissue radioprotection.
Furthermore, in a setting of fractionated radiotherapy, multiple
local, tissue specific administrations of a radioprotective gene
therapy approach also show that the drug is functioning in mitiga-
tion. Protection from the next fraction of irradiation is combined
with mitigation of the effects of the previous fraction. While
MnSOD–PL normal tissue radioprotective gene therapy contin-
ues as a realistic modality for therapeutic development, advances
in development of small molecule radiation mitigators for the
NIAID/NIH Radiation Countermeasures Program, have led to

attractive new drug leads for clinical application in fractionated
radiotherapy.

Small molecule radiation protectors and mitigators were devel-
oped for the radiation terrorism countermeasures program. Sev-
eral basic principles were required for a successful application of
delivery of a small molecule for use as a radiation countermeasure.

Most importantly, the drug must be a mitigator, delivered after
radiation exposure. Realistically, this agent must be effective 24 h
or later after irradiation (Rwigema et al., 2011). Such a delay from
the time of irradiation exposure to the administration of the coun-
termeasure is realistic in the scenario of a dirty bomb, radiological
isotope dispersal, or direct irradiation exposure from a fission
bomb. In fact, the NIAID/NIH has urged investigators in this area
to provide information on administration of a radiation coun-
termeasure 48 or 72 h after radiation exposure. Because radiation
engages an array of signaling responses effecting cell survival and
death, it is perhaps not surprising that many radiation protective
agents fail when tested as radiation mitigators (Koide et al., 2011;
Rwigema et al., 2011).

The discovery of radiation mitigators for the Center for Med-
ical Counter Measures Against Radiation (CMCR) Program has
followed several pathways based on the understanding of cellular
and tissue responses to radiation from a molecular, biologic, and
cell physiologic perspectives. These discoveries led to identification
of several pathways of irradiation response, which could logically
be modulated by small molecules, antibodies, cytokine receptor
antagonists, or induction of other cell and tissue responses. Many
new agents have been tested and shown to be promising (Table 2).
A key variable in all of these experiments has been the requirement
for delivery of the radiation mitigator 24 h or later after irradiation.

The time course of cellular, tissue, organ, and total body
response to irradiation has been partially elucidated. In individual
cells, initial DNA double strand breaks trigger a repair mechanism
involving ATM kinase phosphorylation, proteins in the Fancone
response pathway, and numerous other DNA repair processes
(Bernard et al., 2011a). Initiation of this process, which is often
complete within 45 min after irradiation exposure (Bernard et al.,
2011a), leads to communication from the nucleus to the cytosol of
numerous messengers in p53, stress activated protein kinases, and
pro-apoptotic proteins,which act at the mitochondrial membrane.
There is an increasing appreciation of the role of mitochondr-
ial mechanisms of cellular apoptosis in the ionizing irradiation
response (Pearce et al., 2001; Belikova et al., 2009a). This p53
pathway is in response to ionizing irradiation, other mechanisms

Table 2 | Categories of radioprotective and radiation mitigating agents

currently under study.

RADIATION PROTECTION

MnSOD–PL

(GS-nitroxide) JP4-039

RADIATION MITIGATION

GS-nitroxide (JP4-039), XJB-5-131

TTP–imidazole–fatty acids

PI-3 kinase inhibitors

TTP-targeted metalloporphyrins (SOD mimic)
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of cell damage, including ischemia reperfusion, hypoxia, hyper-
oxia, traumatic injury, burn, and cytotoxic chemical exposure has
identified critical pathways in potentially increasing cellular sur-
vival. The effects of p53 in regulating cell cycle check point, cell
cycle arrests, anti- or pro-apoptotic signaling, and detecting cellu-
lar quiescence are a prominent focus. However, redundant systems
in cells including p53-independent mechanisms of apoptosis and
compensatory regulatory systems have led investigators in other
directions. One common mechanism of irradiation-induced cell
death involves oxidative stress (Greenberger et al., 2001; Epperly
et al., 2004a; Zhou et al., 2008). Depletion of intracellular antioxi-
dant stores, principally glutathione, decrease the capacity of cells to
resist ionizing irradiation damage. These facts are demonstrated in
the apoptosis assay of the first cell division and in clonogenic sur-
vival curve assays requiring several cell divisions for a colony scored
as surviving (Greenberger et al., 2001; Epperly et al., 2004a). Many
research programs have focused on these elements in developing
small molecule antioxidants.

A major triumph in this area was the investigation of the nitrox-
ide, Tempol, as a radiation protector/mitigator. Pioneering studies
by Mitchell and colleagues (Zhang et al., 2008a) laid the ground for
the clinical application of Tempol in reducing radiation dermati-
tis. A major problem with Tempol is the requirement for high
systemic concentrations to provide acceptable levels at appro-
priate intracellular targets to produce radiation damage protec-
tion or mitigation. Furthermore, systemic doses of mitochondrial
targeted MnSOD–PL were radioprotective, and radiation mitiga-
tive while comparable molar concentrations of Tempol were not
(Zhang et al., 2008a,b). Understanding the role of MnSOD as a
mitochondrial targeted antioxidant helped to rationalize the ben-
efits of the mitochondrial targeting of nitroxides. Two strategies
employed were the use of a GS-nitroxide hybrid molecule derived
from the antibiotic gramicidin S (GS),and the attachment of triph-
enylphosphonium cation to the nitroxide to take advantage of a
charge-driven delivery to mitochondria. These approaches pro-
vided agents with enrichment factors of 33- to 600-fold in the
mitochondrial membrane over the cytosol as well as significant
relative radioprotection (Wipf et al., 2005; Fink et al., 2007b; Jiang
et al., 2008). The successful use of GS-nitroxide suggest a further
investigation into other mitochondrial targeted molecules.

Other studies led to development of p53 stabilizing homol-
ogous mdm2/mdm4 inhibitors, PUMA inhibitors, inhibitors of
mitochondrial nitric oxide synthase and multiple approaches
toward mitochondrial targeted superoxide dismutase mimics
(Kanai et al., 2004; Stoyanovsky et al., 2009, 2011). Identifica-
tion of multiple targets of small molecule antioxidant effects at
the mitochondrial membrane, led to basic molecular studies of
the critical interaction between cardiolipin and cytochrome c in
the mitochondrial membrane. Oxidative stress in the mitochon-
dria produces cytochrome c leakage. Small molecules that could
stabilize the attachment of cytochrome c to cardiolipin might be
effective radiation mitigators (Tyurin et al., 2008; Tyurina et al.,
2008; Kagan et al., 2009a). These studies led to the identification
of a TTP-mitochondrial targeted imidazole–fatty acid to prevent
conversion of cytochrome c into a peroxidase and its secondary
damage by oxidative damage to cardiolipin (Stoyanovsky et al.,
2009, 2011). Clearly, many more small molecule radioprotectors

and radiation mitigators will be developed in future years based
on the concept of mitochondrial targeted antioxidative targets and
the identification of the secondary effects of oxidative stress within
the mitochondria. It remains to be seen whether distal steps fol-
lowing cytochrome c leakage from the mitochondria can also be
interrupted with radiation mitigation. One report has suggested
that cytochrome c leakage from the mitochondria is the “point of
no return” and cell death then is inevitable, because the caspase
pathway cannot be reversed at such a late step (Tyurin et al., 2008;
Kagan et al., 2009a). This hypothesis also awaits further investi-
gations. Initially, cells undergo apoptosis following irradiation, a
cascade of secondary tertiary and further steps of cell destruc-
tion follows the oxidative stress microenvironment in dying tis-
sues, and also through elaboration of inflammatory cytokines,
which induce oxidative stress at distant sites (Greenberger and
Epperly, 2007; Epperly et al., 2008, 2011). Each of these tissue
and organ pathophysiologic actions of irradiation suggest that an
appropriate radiation mitigation cocktail of drugs might include
anti-inflammatory agents potentially so that it can counteract the
cytotoxic effects of inflammatory cytokines.

For both clinical use in fractionated radiotherapy and for use as
a radiation mitigator against radiation terrorism, small molecule
drugs must be both effective and safe. Once drug discovery has met
the criteria of effective radiation protection and/or mitigation, the
issues of safety become paramount. A radiation countermeasure
systemically applied to hundreds or thousands of potential radia-
tion casualties must be easily administered. For this reason, drug
development strategies have included plans for topical administra-
tion through a skin patch, done to avoid the cumbersome and often
impractical cutaneous, intra-muscular, or intravenous routes. Fur-
thermore, since nausea and vomiting after radiation exposure may
preclude oral administration, the topical approach seems the most
practical as well as feasible. It is desirable that a radiation mitigator
be safe for administration to pregnant females and non-toxic and
non-teratogenic for the developing fetus. Obviously, we would like
the agents to be safe in children and in the elderly and not show
significant deleterious interaction with common pharmaceutical
medications in the general population. The side effects of admin-
istration must be appropriate for the care of radiation terrorism
victims with combined injuries.

The process of drug discovery and drug development
is complex, requiring significant empirical experimentation,
safety/toxicology studies in multiple species, and clinical trials.
Attempting to determine the safety and efficacy of drug that will
be used before or especially after a nuclear exposure is particularly
challenging from a practical and ethical perspective. Data from
outcomes in clinical radiotherapy patients given a candidate pro-
tector or mitigator drug may often not be helpful. Clinical settings
in which radiotherapy patients receive continuous low dose rate
radiation administration for whole body or partial body single
fraction irradiation as would be the case in inhalation or ingestion
of radio-isotopes from a terrorist event are rare. Some informa-
tion can be obtained from the de-identified records of clinical
radiotherapy patients receiving fractionated irradiation in proto-
cols that are known to induce specific toxicities. This strategy is
being applied to identify radiation mitigators that may be currently
used in the clinic for other purposes. It has been known for decades
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that supportive care regimens including multiple systemic antibi-
otics and anti-fungal agents help to increase the survival from TBI
in both animal models and in clinical bone marrow transplant
patients. Only recently, has it been demonstrated that the doxycy-
cline family of antibiotics actually works as radiation mitigators
as well as anti-microbials (Epperly et al., 2010c). Would it not be
interesting if other commonly available pharmaceutical agents are
in fact radiation mitigators? This approach has been taken to ana-
lyze the actual radiation mitigating and/or protecting effects of
carbamazepine.

Based on the publications relating autophagy to apoptosis, and
the potential for counter balancing, effects of these processes in
cellular radiation response, we tested the radiation protection
and mitigation capacity of carbamazepine, recently shown to be
a pro-autophagy drug (Hidvegi et al., 2010; Kim et al., 2011a).
Studies in cell culture and in the mouse model demonstrated
significant radiation protection and mitigation in this capacity.
However, this drug was ineffective as a radiation protector or
mitigator for human cells in culture. In retrospective analysis
of patient records in clinical radiotherapy in two categories of
patients [Gamma Knife Radiosurgery (Flickinger et al., in press)
and external beam radiotherapy for head and neck cancer and
non-small cell lung cancer], there was no significant decrease
in side effects in patients, who were taking carbamazepine at
the time and during radiotherapy (Table 3). However, in clin-
ical studies, patients on carbamazepine for long duration prior
to radiotherapy, may have adapted alternative pathways to the
radiation response and would not have shown radiation pro-
tection or mitigation. Furthermore, the high fraction localized
radiation delivered in the clinical settings in which retrospective

studies were carried out may not be related to moderate irradia-
tion to LD30 or LD50/30 total body doses. If carbamazepine had
been shown to be an effective radiation mitigator for human cells
and in human retrospective studies of clinical radiotherapy and
if a prospective trial would have been considered, the problem
of known drug side effects would then have become paramount.
Carbamazepine is widely used in the treatment of seizure disor-
ders, manic depressive illness, and trigeminal neuralgia; however, it
has side effects (Flickinger et al., in press). In the setting of poten-
tial mass casualties in an irradiation counter terrorism event, a
concern for a small percentage of patients likely to develop neu-
tropenia leading to bone marrow failure might not be a major
problem; however, this complication of carbamazepine is an issue
with respect to distribution of the drug to the general popula-
tion. In the setting of radiation counter measures, the concern
for drug side effects might be different from that in the case
of multiple administrations for decreasing side effects of clinical
radiotherapy.

With the availability of siRNA and chemical library screening
techniques (Zellefrow et al., in press), automated chemical synthe-
sis, chemoinformatics, and structural biology, it is clear that new
valuable radiation damage mitigators and radiation protectors will
be reported with increasing frequency in coming years. These
discoveries should add to our understanding of the molecular
biology of radiation damage as well as in the relevant applica-
tions of improving the quality of life for radiotherapy patients and
in radiation countermeasures.
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