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MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as
being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an
increased tumoral phenotype with enhanced proliferative capabilities both in the presence
or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migra-
tion. MAP17-expressing clones also grow better in nude mice. The increased malignant
cell behavior induced by MAP17 is associated with an increase in reactive oxygen species
(ROS) production, and the treatment of MAP17-expressing cells with antioxidants results
in a reduction in the tumorigenic properties of these cells.The MAP17-dependent increase
in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this
sequence by point mutations abolishes the ability of MAP17 to enhance ROS production
and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, includ-
ing breast tumors. Immunohistochemical analysis of MAP17 during cancer progression
demonstrates that overexpression of the protein strongly correlates with tumoral progres-
sion. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can
be a good marker for tumorigenesis and, especially, for malignant progression.
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The complex physiology of vertebrates requires the continuous
renewal of most tissues, which may become damaged either
by external agents or by the toxic byproducts of their own
metabolism, to maintain homeostasis. Cancer arises as a conse-
quence of genetic changes that deregulate the mechanisms that
control the renewal process, either by activation of the pathways
that promote survival and proliferation, or through inactivation
of growth suppression pathways. In order for cancer cells to grow
and metastasize, they must overcome additional barriers to their
expansion by promoting angiogenesis, acquiring characteristics
that allow them to survive in organs different from their origin
or by evading immune surveillance mechanisms (Hanahan and
Weinberg, 2000, 2011).

Tumorigenesis occurs when the mechanisms involved in the
control of tissue homeostasis are disrupted and cells stop respond-
ing to physiological signals. Therefore, genes capable of desensi-
tizing tumoral cells to physiological signals may provide a selective
advantage within the tumoral mass and influence the outcome of
the disease. We undertook a large-scale genetic screen to iden-
tify genes capable of altering the cellular response to physiological
signals that resulted in a selective advantage during tumorigene-
sis (Hannon et al., 1999; Carnero et al., 2000; Vergel and Carnero,
2010). A genome-wide retroviral cDNA screen to search for genes
that confer a selective advantage to cancer cells during tumorigen-
esis allowed us to identify MAP17 (Guijarro et al., 2007a). MAP17
is a small non-glycosylated membrane-associated 17 kDa protein
that localizes to the plasma membrane and the Golgi appara-
tus (Blasco et al., 2003). The MAP17 protein sequence contains
two transmembrane regions and a hydrophobic amino-terminus
encoding a PDZ-binding domain (Jaeger et al., 2000; Figure 1).
MAP17 overexpression in carcinomas was first described by

using the technique of differential display (Kocher et al., 1995).
MAP17 binds several PDZ domain-containing proteins, includ-
ing NHeRF proteins, NaPi-IIa, and NHe3. Overexpression of
MAP17 in opossum kidney cells participates in NaPi-IIa inter-
nalization to the trans-Golgi network (Lanaspa et al., 2007). In a
transgenic mouse model, MAP17 hepatic overexpression resulted
in PDZK1 (NHeRF3) liver deficiency, suggesting that MAP17 is
an endogenous regulator of PDZK1 turnover (Silver et al., 2003).
MAP17 acts as an atypical anchoring site for PDZK1 and inter-
acts with the NaPi-IIa/PDZK1 protein complex in renal proximal
tubular cells (Pribanic et al., 2003). The physiological role of
MAP17 in proximal tubules is not known, but it does stim-
ulate specific Na-dependent transport of mannose and glucose
in Xenopus oocytes (Blasco et al., 2003) and some human cells
(Guijarro et al., 2007a). The MAP17 gene does share regulatory
elements with the stem cell leukemic gene (SCL, TAL-1), which
encodes a basic Helix-Loop-Helix protein essential in the forma-
tion of the hematopoietic lineages (Gottgens et al., 2002; Delabesse
et al., 2005). However, both genes show independent regulation
(Guijarro et al., 2007c).

Multiple oncogenes that activate signaling pathways directly
involved in cell survival or proliferation have been discovered in
previous decades. Other genes may provide an advantage to the
tumoral cells, making them insensitive to physiological signals or
altering their normal physiology. Although activated macrophages
destroy cancer cells more effectively than normal cells, the abil-
ity to escape activated macrophages is a characteristic of tumor
cells. One of the mechanisms responsible for the specific killing
of tumor cells by macrophages is the production of the cytokine
tumor necrosis factor-alpha (TNF-α). Therefore, resistance to
TNF may provide cancer cells with a selective advantage against
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FIGURE 1 | (A) Schematic representation of MAP17 protein domains. (B)

Schematic representation of MAP17 disposition in the membrane.

host elimination. Ectopic expression of MAP17 in tumor cells
prevents TNF-induced G1 arrest by impairing p21waf1 induction.
However, expression of MAP17 does not inhibit TNF-induced
apoptosis in Me180-sensitive tumor cells. The inhibition of TNF
is specific because MAP17 does not alter the response to other
cytokines such as IFN-α. As described in the Xenopus oocyte sys-
tem, MAP17 increases the uptake of glucose in some cells, but this
effect is not responsible for TNF bypass.

MAP17 IN HUMAN TUMORS
MAP17 overexpression in carcinomas occurs mostly through
mRNA amplification, but promoter activation has also been
observed by some oncogenes (Kocher et al., 1995; Guijarro et al.,
2007c). Immunohistochemical analysis of MAP17 during can-
cer progression shows that overexpression of the protein strongly
correlates with tumoral progression. Generalized MAP17 over-
expression in human carcinomas indicates that MAP17 can be
a good marker for tumorigenesis and especially for malignant
progression.

MAP17 is highly expressed in renal proximal tubular cells
and has been previously described to be associated with carcino-
mas (Kocher et al., 1995, 1996). We have performed an in-depth
analysis of MAP17 overexpression in carcinomas by immunohis-
tochemistry and mRNA expression (Figure 2). We have found
that the MAP17 protein is overexpressed in a large percentage
of the tumors analyzed and is significantly correlated with the
tumor grade in ovarian, breast, and prostate carcinomas (Gui-
jarro et al., 2007c, 2012). The analysis of mRNA levels by Q-PCR
or by hybridization comparing tumoral vs. non-tumoral tissues
of the same patient, demonstrate an even higher percentage of
tumor samples with MAP17 overexpression. In tumors such as
ovary, colon, stomach, cervix, and thyroid gland, the percentage
of overexpression in tumor samples is higher than 70%, while in
lung, uterus, and rectum it is approximately 50%. Although more

FIGURE 2 | (A) Representative picture of human breast tumors
overexpressing MAP17. (B) Same tumor sample showing activated AKT
(phosphorylated at S473). (C) Correlation between MAP17 expression and
AKT activation in breast tumor samples analyzed.

samples need to be analyzed to confirm these high rates, the data
suggest that MAP17 overexpression is the most common marker
of tumorigenesis in carcinomas. The relevance of MAP17 as a gen-
eral marker for the malignant stages of human tumors still needs
to be confirmed in additional tumor types and larger cohorts.
However, all tissues explored thus far have shown similar patterns
of MAP17 expression. Furthermore, MAP17 expression seems to
correlate with AKT phosphorylation at Ser473 (Figure 2). These
expression patterns provide a mechanistic insight and a possible
target for future therapies (AKT inhibition).

ONCOGENIC ACTIVITY OF MAP17
Tumor cells that overexpress MAP17 show an increased tumoral
phenotype with enhanced proliferative capabilities both in the
presence or absence of contact inhibition, decreased apoptotic
sensitivity, and increased migration. MAP17-expressing clones
also grow better in nude mice. The increased malignant cell
behavior induced by MAP17 is associated with an increase in
reactive oxygen species (ROS) production, and the treatment of
MAP17-expressing cells with antioxidants results in a reduction
in the tumorigenic properties of these cells. Treatment of breast
cells with inhibitors of Na+-coupled co-transporters leads to an
inhibition of a ROS increase and a decrease in the malignant
cell behavior in MAP17-expressing clones (Guijarro et al., 2012).
Finally, MAP17-dependent increase in ROS and tumorigenesis
are dependent on its PDZ-binding domain because disruption of
this sequence by point mutations abolishes the ability of MAP17
to enhance ROS production and tumorigenesis (Guijarro et al.,
2007b). Furthermore, expression of a MAP17 specific shRNA in
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protein-expressing tumor cells reduced their tumorigenic capa-
bilities (Guijarro et al., 2012), which suggests that this effect is
dependent upon MAP17 protein expression.

MAP17 significantly decreases the c-Myc induced caspase-
3-like activity in Rat1 fibroblasts under low serum conditions.
This decrease is in keeping with the concept of MAP17-induced
PI3K/AKT signaling, in which MAP17 is able to interfere with
Bax translocation to the mitochondria (Guijarro et al., 2007d). At
the molecular level we have found that MAP17 protects Rat1a
fibroblasts from Myc-induced apoptosis through, ROS-mediated
activation of the PI3K/AKT signaling pathway (Guijarro et al.,
2007d). A fraction of PTEN protein undergoes oxidation in
MAP17-overexpressing cells. Furthermore, activation of AKT by
MAP17 as measured by Thr308 phosphorylation was independent
of PI3K activity (Figure 3). Importantly, modulation of ROS by
antioxidant treatment prevented activation of AKT, thus, restor-
ing the level of apoptosis in serum starved Rat1/c-Myc fibroblasts
(Guijarro et al., 2007d). MAP17-mediated survival was associated
with an absence of Bax translocation to the mitochondria and
reduced caspase-3 activation. Finally, overexpression of a domi-
nant negative mutant of AKT in MAP17-expressing clones makes
them sensitive to serum depletion (Guijarro et al., 2007d). The
data indicates that MAP17 protein activates AKT through ROS,

and this activation is a determinant in conferring resistance to
Myc-induced apoptosis in the absence of serum. These results
might provide the mechanistic insight to explain the correlation
between MAP17 levels and AKT phosphorylation found in tumor
samples. Like ways, AKT activation has been described as respon-
sible for TNF resistance in some tumor cell lines (Sudheerkumar
et al., 2008; Xu et al., 2012).

MAP17 IS A ROS-DEPENDENT ONCOGENE
The increased tumorigenic properties induced by MAP17 are
associated with an increase in ROS because MAP17 increases
endogenous ROS and the antioxidant treatment of MAP17-
expressing cells entails a reduction in the tumorigenic properties
of these cells. Two explanations can be offered for the mechanism
by which ROS induce the transformed phenotype. First, reactive
oxygen generated in the presence of MAP17 may be mutagenic,
causing the transformed phenotype through the induction of
mutations in oncogenes or tumor suppressor genes. Alternatively,
ROS generated in a MAP17-dependent manner might function
as an intracellular signal, inducing a growth-related genetic pro-
gram. We have found that ROS removal by antioxidant treatments
decrease the malignant cell behavior induced by MAP17; thus, the
second hypothesis is favored. Accumulating evidence implicates

FIGURE 3 | Schematic representation of the intracellular pathways activated by MAP17 through ROS. The AKT pathway is represented in more detail.
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ROS in signaling cascades related to cell proliferation and transfor-
mation (Sundaresan et al., 1995; Burdon, 1996; Irani et al., 1997).
Ras-transformed fibroblasts overproduce ROS, and this overpro-
duction is correlated with the activation of mitogenic signaling
pathways (Irani et al., 1997). Loss of superoxide dismutase (SOD;
which should elevate ROS levels) has also been correlated with
a tumoral phenotype, and overexpression of SOD leads to the
reversion of the transformed phenotype (Fernandez-Pol et al.,
1982; Church et al., 1993; Yan et al., 1996). On the other hand,
H2O2 is generated in response to the growth factors EGF and
PDGF and is linked to growth-related signaling (Sundaresan et al.,
1995; Bae et al., 1999). When overexpressed in NIH3T3 mouse
fibroblasts, Nox1, a NADPH oxidase catalytic subunit, induces
excessive production of ROS and a transformed phenotype with
increased mitotic rates and aggressive tumor formation in athymic
mice (Arnold et al., 2001). The phenotype of Nox1-transfected
cells can be reversed by ROS reduction through stable expres-
sion of catalase, thereby implicating ROS as a signaling molecule
(Arnold et al., 2001).

The cellular targets responsible for growth and transformation
affected by ROS signaling are not fully known. DNA microar-
ray experiments (Arnold et al., 2001) indicate that up to 2% of
the genes are regulated by ROS. Furthermore, we have found
that a ROS increase activates the PI3K pathway, which may be by
direct oxidation and inactivation of PTEN and other AKT phos-
phatases, thus maintaining AKT activation even in the absence
of a PI3K signal (Guijarro et al., 2007d). AKT pathway activa-
tion induced by MAP17 expression might explain some of the
properties described here. However, we hypothesize that other
pathways must coexist that are induced by MAP17 at the tran-
scriptional level, as described in other systems (Klaunig et al.,
1998; Droge, 2002). The p42/p44 mitogen-activated protein kinase
(MAPK), p38 MAPK, p70S6k, AKT, and STAT, signaling path-
ways are all activated by ROS (Natarajan et al., 1993; Finkel, 1998;
Bae et al., 1999; Allen and Tresini, 2000; Ray et al., 2012; Vuru-
saner et al., 2012). A variety of other targets can also be affected
by ROS, including transcription factors such as NF-kB (Schmidt
et al., 1995), AP1 (Wenk et al., 1999), and p53 (Hainaut and Mil-
ner, 1993). In most cases the activation is indirect (Min et al.,
1998; Abe et al., 2000). However, a direct effect has been shown
on protein tyrosine phosphatase-1B (PTP-1B), which is inhib-
ited by oxidation of a thiol in the active site (Lee et al., 1998;
Barrett et al., 1999), leading to increased phosphotyrosines on
many cell proteins. ROS can directly modify signaling proteins
through different modifications such as nitrosylation, carbonyla-
tion, disulfide bond formation, and glutathionylation (England
and Cotter, 2005). Whatever the proximal target(s), ROS repro-
gram the expression of enzymes and other proteins in the cell
(Klaunig et al., 1998; Droge, 2002).

However, the increased tumoral properties of carcinoma
cells were not paralleled in immortal non-tumoral cells (Gui-
jarro et al., 2012), indicating that MAP17 provides a selective
advantage once tumorigenesis has begun. ROS act as a second
messenger that enhances tumoral properties, but only in those
cells where the senescence/apoptotic signal provided by ROS is
uncoupled. In primary cells, MAP17 triggers a ROS-dependent,
senescence-like response that is abolished in the absence of

p38a activation. Furthermore, in human breast tumors, MAP17
activation is correlated with a lack of phosphorylation of p38a.
Therefore, MAP17 is overexpressed in late-stage breast tumors,
in which oncogenic activity relies on p38 insensitivity to induced
intracellular ROS (Guijarro et al., 2012).

MAP17 AND NHeRFs
MAP17 has been found to bind NHeRF1 and NHeRF3 (PDZK1)
through its PDZ-binding motif (Pribanic et al., 2003; Silver et al.,
2003; Lanaspa et al.,2007). NHeRFs are scaffolding protein defined
by the presence of globular PDZ domains that assemble several
proteins into functional complexes (Shenolikar et al., 2004; Cun-
ningham et al., 2010; Claperon et al., 2011). The NHeRF proteins
regulate cell surface expression and functional activity of trans-
porters (Shenolikar et al., 2004; Lee et al., 2007). Most transporters
identified as binding partners belong to the ABC family (Weinman
et al., 2010). In addition to transporters, other proteins have been
shown to interact with NHeRF proteins, including signaling pro-
teins, hormone receptors, and cytoskeleton structural elements
(Theisen et al., 2007). Many proteins related to the G-protein sig-
naling pathways were found to interact with PDZK1, and they were
likely to be functionally associated with transporters (Cardone
et al., 2007; Theisen et al., 2007; Carnero, 2012). Furthermore, it
has been shown (Dai et al., 2004) that NHeRF1 binds to the breast
tumor suppressor SYK and MERLIN, the product of the tumor
suppressor NF2. NHeRF1 present also mutations at the PDZ
domains in breast tumors which abolishes binding to these sup-
pressor proteins. Primary breast tumors with LoH at the NHeRF1
locus show higher aggressiveness. However, the relation of these
mutations with MAP17 or other physiological alterations such as
ROS of glucose uptake is at present unknown.

FIGURE 4 | Possible mechanisms involved in MAP17-dependent

increase of ROS. (A) Direct pH alteration by membrane transports, (B)

increase in glucose metabolism through mitochondrial respiration, (C)

increase in aerobic glycolysis (Warburg’s effect) which is allowed by acidic
detoxification carried out by membrane transports bund to
MAP17–NHeRFs complexes.
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MAP17 form complexes with PDZK1 and NHe3 contribut-
ing to basal and calcium inhibition of NH3 activity (Cinar et al.,
2007). Recently, it has been shown that PDZK1 regulates PLC
β3 (Kim et al., 2012). PDZK1 also regulates the solute carriers
PEPT1 (oligopeptide transporter) and OCTN2 (carnitine/organic
cation transporter; Sugiura et al., 2008), the cystic fibrosis trans-
membrane conductance regulator (CFTR; Gentzsch et al., 2003),
canalicular multispecific organic anion transport (CMOAT; Inoue
et al., 2004), and the anion exchangers of the SLC26A family
(Hillesheim et al., 2007). PDZK1 has also been shown to interact
with AKAP10, FARP2, sodium–hydrogen antiporter 3 regulator 1,
SLC22A12, SLK, SLC22A4, and SLC34A3 (Counillon et al., 2000;
Gisler et al., 2003; Shenolikar et al., 2004; Ganapathy et al., 2008).
As has been suggested, it is possible that the role of MAP17 is
to enhance the endogenous uphill transport system (Blasco et al.,
2003; Cardone et al., 2005; Chiche et al., 2010; Parks et al., 2011;
Carnero, 2012).

On the other hand, MAP17 has been shown also to increase
glucose uptake (Blasco et al., 2003; Guijarro et al., 2007a) thus
enhancing glycolysis, contributing to Warburg’s effect and increas-
ing intracellular oxidative stress (Bar-Even et al., 2012; Carnero,

2012). Therefore, MAP17 increase in tumor cells could be a mech-
anistic advantage that will permit tumor cells increase the glucose
intake and in parallel decrease the intracellular pH and lactic acid
by the increase of membrane bound transports (Carnero, 2012;
Figure 4).

CONCLUDING REMARKS
In summary, MAP17 overexpression in human breast carcinomas
indicates that MAP17 can be a good marker for tumorigenesis and
for malignant progression. Our results indicate that this protein is
likely to play an important role in carcinogenesis.
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