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IntroductIon
Radiotherapy either alone or in combina-
tion with temozolomide is a key element 
for the treatment of high-grade brain 
tumors at primary diagnosis and even at 
recurrence of disease (Stupp et al., 2009; 
Niyazi et al., 2011b). Nevertheless the 
clinical course of primary malignant brain 
tumors remains dismal, since early local 
failure is common. At least in part local 
failure is related to a diffuse tumor growth 
and difficulties in visualizing the relevant 
borders of the tumor contaminated area. 
Advances in radiation therapy technique 
such as 3D-conformal radiation, stereo-
tactic radiotherapy (Combs et al., 2005), 
and intensity modulated radiotherapy 
(IMRT; Veldeman et al., 2008; Jin et al., 
2011) as well as improved image-guidance 
radiotherapy (IGRT; Minniti et al., 2010; 
Wilbert et al., 2010) provide the ability 
to deliver radiation dose with increasing 
precision. In order to take full advantage 
of these technological advances there is a 
need for precise tumor delineation and 
target definition.

This subsequently demands for precise 
imaging. Besides conventional radiotherapy 
planning being still based on computed 
tomography (CT) due to dose calculation 
algorithms additional magnetic resonance 
imaging (MRI) has become current stand-
ard-of-care with a high soft tissue contrast 
(for planning purposes and during follow-
up Gladwish et al., 2011). Current and 
future research in this field are focused on 
the meaning of special or new sequence 
techniques (Laprie, 2009; Stall et al., 2010). 
Positron emission tomography (PET) has 
become a further option in recent years 
(Grosu et al., 2005a).

AmIno AcId PEt ImAgIng
Concerning high-grade brain tumors 
standard imaging modalities such as CT or 
MRI are by far not tumor-specific. In addi-
tion they are only of limited value when a 
differentiation between viable tumor and 
treatment related changes such as edema, 
disturbance of the blood brain barrier, or 
necrosis is needed. In clinical reality, mor-
phological changes associated with clinical 
signs indicative of tumor progression may 
occur without real tumor growth as treat-
ment consequence (pseudo-progression). 
This phenomenon is seen in up to 30% of 
patients (Wen et al., 2010) and patients with 
pseudo-progression recover spontaneously 
without further treatment (Brandsma et al., 
2008). In this context, diagnosis of a true 
recurrence remains often challenging.

While conventional imaging modali-
ties provide only anatomical information 
on tumor size and localization, PET as a 
molecular imaging modality provides addi-
tional information on the metabolic activity 
of the tumor (Weber, 2006).

Several radio-labeled PET tracer mole-
cules have been used for imaging of patients 
with brain tumors. These tracers are used to 
visualize glucose metabolism, proliferation, 
protein synthesis, hypoxia, and the expres-
sion of amino acid transporters (La Fougere 
et al., 2011). The most widely used PET 
tracer 18F-fluorodeoxyglucose ([18F]FDG) 
however is of limited use for brain tumor 
imaging due to the high physiological glu-
cose metabolism of the cerebral cortex.

Amino acid tracers have more favorable 
imaging characteristics for malignant dis-
ease of the brain due to a low background 
uptake in normal brain tissue. In addition, 
the uptake of amino acids is  frequently 

up-regulated in high-grade gliomas 
(Kobayashi et al., 2008). Therefore amino 
acid PET produces images with a high 
tumor-to-background contrast in patients 
with high and also with low grade brain 
tumors (Fueger et al., 2010).

Several amino acid tracers have been 
clinically applied for imaging of patients 
suffering from gliomas in both at primary 
diagnosis as well as recurrent disease. A 
couple of studies report the assessment of 
treatment response with amino acid imag-
ing and an impact on the management of 
these patients could be shown (Walter et al., 
2012). Among these tracers 11C-methionine 
([11C]MET), 3,4-dihydroxy-6-18F-fluoro-
l-phenylalanine ([18F]DOPA), and 
18F-fluoroethyl-l-tyrosine ([18F]FET) are 
the most widely used tracers. Available data 
suggest that different amino acid tracers 
have comparable imaging characteristics 
in brain tumors (Becherer et al., 2003). In 
clinical practice however, 18F-labeled PET 
molecules are advantageous to those that 
are 11C-labeled due to the longer physical 
half-life of 110 min vs. 20 min which averts 
the need of an on-site cyclotron.

tArgEt VolumE dElInEAtIon
The use of molecular imaging in treatment 
planning of brain tumor patients is focused 
on tumor volume delineation. There has 
been an increased use of PET imaging for 
radiotherapy treatment planning in other 
cancer types as several studies reported 
the benefit of [18F]FDG-PET imaging for 
target volume selection for radiotherapy 
(De Ruysscher and Kirsch, 2010). Most 
frequently PET information was used for 
staging and lymph node detection (Tsai 
et al., 2010).
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In this regard, dose painting by contours 
(DPBC) is a method of biological image-
guided radiotherapy that defines sub-vol-
umes of areas with high metabolic tumor 
activity inside a conventionally CT based 
target volume (Thorwarth et al., 2010). An 
escalation of radiation dose to these defined 
sub-volumes is applied. Using DPBC the 
radiation dose prescribed to the defined 
sub-volumes is homogeneously delivered 
and may e.g., be applied in prostate cancer 
(Niyazi et al., 2010; Wurschmidt et al., 2011; 
Chang et al., 2012), lung cancer (Meijer 
et al., 2011), and many other cancer types.

Another method of specific dose esca-
lation in a PET-derived area within the 
tumor is dose painting by numbers (DPBN; 
Bentzen, 2005; Thorwarth et al., 2007a). 
DPBN is designed to deliver the dose more 
effectively than an additional uniform boost 
to the PET-positive area. The intensity of 
tracer uptake is measured voxel-wise and an 
inhomogeneous radiation dose is delivered 
voxel-by-voxel. The theoretical feasibility of 
a [18F]FET-PET based DPBN approach in 
brain tumors was shown by Rickhey et al. 
(2008) and later applied on proton therapy 
(Rickhey et al., 2010).

A recent prospective study confirmed 
that dose escalation with [18F]FET-PET 
planning is feasible (Piroth et al., 2012). 
However, this study could not show a sur-
vival benefit for these patients.

It has to be elucidated whether dynamic 
analyses add substantial benefit to target 
volume definition as its role in defining 
more malignant parts of the tumor remains 
open (La Fougere et al., 2011).

One further DPBN model system is actu-
ally head-and-neck cancer where hypoxia 
was quantified with a simple imaging 
technique like [18F]-fluoromisonidazole 
(FMISO) PET. A tumor control probabil-
ity model was developed based on repeated 
FMISO PET scans during radiotherapy. The 
model combined the local perfusion effi-
ciency and the degree of hypoxia to esti-
mate reoxygenation time (Thorwarth et al., 
2007b).

Concerning glioblastoma, volume, and 
intensity of hypoxia before radiotherapy 
seem to be strongly associated with poorer 
time-to-progression and survival (Spence 
et al., 2008). It was shown that comple-
mentary use of 11C-methionine (MET) 
and FMISO to Gadolinium-enhanced MRI 
may improve the understanding of tumor 

Several approaches for PET-based target 
volume contouring are feasible and utilized 
in various studies. Visual interpretation of 
PET images side-by-side with conventional 
imaging is currently most commonly exe-
cuted. The GTV is defined by uptake clearly 
above the background activity. This method 
is relatively prone to inter-observer variation 
and standardization is not readily achievable. 
Therefore more objective methods of tumor 
volume contouring are under investigation.

The most widely used parameter for PET 
imaging quantification is the maximum 
standardized uptake value (SUV

max
). It is 

calculated for selected regions of interest 
(ROIs) and represents the voxel of maxi-
mum uptake within the ROI. However the 
reproducibility of the SUV

max
 in clinical 

practice is controversial (Guha et al., 2008) 
since it depends on several factors such as 
patient preparation, uptake-kinetics, imag-
ing time or imaging acquisition, and recon-
struction method as well as the size of the 
lesion due to partial volume effects. Several 
approaches of contouring based on SUVs 
have been applied. Segmentation methods 
using either absolute SUV

max
, fixed percent-

ages of the maximum uptake, or SUV
max

/
background ratio have been proposed 
(Schinagl et al., 2007). It has been suggested 
that the use of a SUV

max
/background ratio is 

less dependent on external factors as abso-
lute SUV

max
 (Pauleit et al., 2005). A thresh-

old of SUV
max

/background ratio in the range 
of 1.6–2.1 (Dunet et al., 2012; Piroth et al., 
2012) has been applied in several studies.

dosE EscAlAtIon by contours And 
numbErs
Malignant gliomas are relatively radio-
resistant tumors. Therefore high radiation 
dose is needed for sufficient control of this 
disease. However, the application of radia-
tion dose is restricted by the neighboring 
organs at risk (OAR). The introduction of 
IMRT allows for heterogeneous delivery of 
radiation dose (Ling et al., 2000) while spar-
ing of normal tissue becomes easier.

As the addition of biological imaging 
such as [18F]FET uptake in brain tumors 
displays the metabolic activity within the 
tumor volume this three dimensional 
information can be used to modify the 
dose distribution within the target volume 
to accomplish a higher radiation dose to 
intra-tumoral regions of relatively higher 
radio-resistance (Madani et al., 2007).

The accurate tumor volume definition is 
crucial to prevent geographical misses and 
to minimize toxicity to normal brain tissue. 
Gadolinium enhanced MRI T

1
-weighted is 

the standard imaging technique for gross 
tumor volume (GTV) definition in patients 
with malignant brain tumors. Reported 
data however suggest that a biological tar-
get volume (BTV) defined by amino acid 
PET in resected patients with brain tumors 
differs from GTV defined by MRI (Grosu 
et al., 2005c).

Both imaging techniques must be 
regarded as complementary (Weber et al., 
2009). Biologically image-guided tar-
get volume delineation of clinical target 
volume (CTV) therefore includes GTV 
definition with anatomical imaging and 
BTV definition based on molecular imag-
ing. Available data suggest that the use of 
additional [18F]FET-PET information to 
conventional imaging for radiation treat-
ment planning might improve tumor 
volume delineation in patients with mac-
roscopic tumor (Niyazi et al., 2011a). It was 
shown that the GTV based on Gadolinium 
enhancement and a BTV defined by [18F]
FET uptake differed significantly in size 
and geometrical extension in a majority 
of patients (Weber et al., 2008; Niyazi et al., 
2011a).

contourIng AlgorIthms
The direct use of PET data for contouring 
purposes is currently under investigation. 
At present there are no established objec-
tive tools for this purpose. A considerable 
limitation of PET imaging compared to 
conventional imaging techniques is the 
limited spatial resolution of about 5 mm 
which does not allow for exact definition 
of tumor borders (Piroth et al., 2009). Thus 
contouring of the tumor volume needs 
to be performed using conventional and 
metabolic imaging side-by-side. Despite all 
given problems it has been shown clearly 
that the use of PET scans for tumor vol-
ume contouring in lung cancer patients 
significantly reduced inter-observer vari-
ability due to the high tumor-to-back-
ground contrast (De Ruysscher et al., 2012). 
Comparable data are to our knowledge not 
available for [18F]FET and brain tumors at 
present – Weber et al. (2008) solely com-
pared the interrater reliability for BTV 
delineation which was excellent due to the 
use of [18F]FET.
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 biology and lead to more efficient deline-
ation of tumor volume and an improved 
treatment strategy (Kawai et al., 2010) but 
further studies are lacking up to now.

FuturE PErsPEctIVEs
The role of amino acid PET for imaging 
of brain tumors is well established and the 
applicability of molecular imaging for radi-
otherapy planning has been shown. There 
is a growing body of knowledge on the use 
of molecular imaging with [18F]FET-PET 
in radiotherapy planning of brain tumor 
patients. Available data suggest that [18F]
FET-PET imaging can contribute valuable 
information for tumor volume delinea-
tion. At present the development of semi-
automated tumor delineation tools using 
segmentation methods based on PET imag-
ing are under investigation (Cheebsumon 
et al., 2011) and it has been shown that dose 
escalation based on PET imaging is feasible 
(Piroth et al., 2012).

In a single-center study on 44 patients 
with recurrent glioma it could be shown 
that patients planned with amino acid 
PET had a significantly longer survival 
than those with conventional imaging for 
radiation treatment planning only (Grosu 
et al., 2005b) reinforcing the potential of 
[18F]FET-PET imaging for radiation therapy 
planning.

However, there is a need for stand-
ardization of the [18F]FET-PET scanning 
technique to allow for inter-institutional 
comparability. Further research preferen-
tially based on randomized prospective 
trials is needed to examine the relevance of 
dynamic [18F]FET-PET analysis (La Fougere 
et al., 2011).
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