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The Keap1–Nrf2 [Kelch-like ECH-associated protein 1–nuclear factor (erythroid-derived 2)-
like 2] pathway plays a central role in the protection of cells against oxidative and xenobiotic
stresses. Nrf2 is a potent transcription activator that recognizes a unique DNA sequence
known as the antioxidant response element (ARE). Under normal conditions, Nrf2 binds
to Keap1 in the cytoplasm, resulting in proteasomal degradation. Following exposure to
electrophiles or reactive oxygen species, Nrf2 becomes stabilized, translocates into the
nucleus, and activates the transcription of various cytoprotective genes. Increasing atten-
tion has been paid to the role of Nrf2 in cancer cells because the constitutive stabilization
of Nrf2 has been observed in many human cancers with poor prognosis. Recent studies
have shown that the antioxidant and detoxification activities of Nrf2 confer chemo- and
radio-resistance to cancer cells. In this review, we provide an overview of the Keap1–Nrf2
system and discuss its role under physiological and pathological conditions, including can-
cers. We also introduce the results of our recent study describing Nrf2 function in the
metabolism of cancer cells. Nrf2 likely confers a growth advantage to cancer cells through
enhancing cytoprotection and anabolism. Finally, we discuss the possible impact of Nrf2
inhibitors on cancer therapy.
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INTRODUCTION
In our daily lives, we are constantly exposed to miscellaneous
chemical and physical insults, including environmental pollutants,
food additives, naturally occurring plant alkaloids, ultraviolet
and ionizing radiation. In addition to these external stresses,
there are many intrinsic toxicants produced during physiological
metabolism and pathological processes, including reactive oxy-
gen species (ROS) and proinflammatory cytokines. All aerobic
organisms are fundamentally dependent on oxygen, which enables
efficient energy production and provokes the oxidative damage of
cellular components. To contend with these insults, our bodies are
equipped with a cytoprotective mechanism for survival.

The Keap1–Nrf2 [Kelch-like ECH-associated protein 1–nuclear
factor (erythroid-derived 2)-like 2] system is one of the most crit-
ical cytoprotective mechanisms acquired in vertebrates over the
course of evolution (Morita and Motohashi, 2011). The transcrip-
tion factor Nrf2 is a potent transcriptional activator that plays
a central role in the inducible expression of many cytoprotective
genes in response to oxidative and electrophilic stresses (Itoh et al.,
1997; Ishii et al., 2000). Belonging to the Cap“n”collar (CNC) fam-
ily of transcription factors, Nrf2 possesses a well-conserved basic
region-leucine zipper (bZip) motif and binds to the antioxidant
response element (ARE), or electrophile response element (EpRE;
TGA(G/C)NNNGC), through heteromerizing with the small Maf
protein (Figure 1).

Keap1 is essential for the regulation of Nrf2 activity (Itoh et al.,
1999). Under normal conditions, Nrf2 is constantly ubiquitinated

through Keap1 in the cytoplasm and degraded in the proteasome.
Upon exposure to electrophiles or ROS, Keap1 is inactivated and
Nrf2 is stabilized. Consequently, Nrf2 translocates into the nucleus
and activates the transcription of many cytoprotective genes that
encode detoxifying enzymes and antioxidant proteins, including
NAD(P)H:quinone oxidoreductase 1, glutathione S-transferase,
and heme oxygenase-1. In general, the target genes of Nrf2 are
involved in glutathione synthesis, the elimination of ROS, xenobi-
otic metabolism, and drug transport. Nrf2 coordinately activates
these genes and exerts a protective function against xenobiotic
and oxidative stresses (Figure 1; Moinova and Mulcahy, 1999;
McMahon et al., 2001; Chanas et al., 2002; Solis et al., 2002; Thim-
mulappa et al., 2002; Bea et al., 2003; Sekhar et al., 2003; MacLeod
et al., 2009). Recent studies have shown that Nrf2 is a potent cell
survival factor and enhances proliferation of cancers.

NRF2 IS A CYTOPROTECTIVE FACTOR AND BENEFICIAL FOR
THE HEALTH
Important roles for Nrf2 in the protection from xenobiotic and
oxidative stresses have been shown in the analyses of Nrf2-
null mice. Nrf2-null mice suffer from acute hepatotoxicity after
acetaminophen exposure (Enomoto et al., 2001). The exposure
to diesel exhausts increases the formation of DNA adducts in
Nrf2-null mice (Aoki et al., 2001). Nrf2-null mice are more sus-
ceptible to cigarette smoke-induced emphysema (Rangasamy et al.,
2004), bleomycin-induced pulmonary fibrosis (Cho et al., 2004),
and hyperoxic lung injury (Cho et al., 2002b). A single-nucleotide
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FIGURE 1 |The Keap1–Nrf2 system. Under normal conditions, Nrf2 is constantly ubiquitinated through Keap1 and degraded in the proteasome. Following
exposure to electrophiles or oxidative stress, Keap1 is inactivated. Stabilized Nrf2 accumulates in the nucleus and activates many cytoprotective genes.
Ub, ubiquitin.

polymorphism (SNP) in the promoter region of the mouse Nrf2
gene has been linked to the reduced expression of Nrf2 and sub-
sequent lung damage caused by hyperoxia (Cho et al., 2002a). The
human NRF2 gene also harbors SNPs in the promoter region
(Yamamoto et al., 2004), which have been linked to the risk of acute
lung injury (Marzec et al., 2007). These data demonstrate that Nrf2
significantly contributes to the protection against extrinsic insults.

Nrf2 also plays an important role in the response to intrinsic
oxidative stress. Cellular capacities for ROS elimination are limited
in Nrf2-null mice (Hirayama et al., 2003). Accordingly, Nrf2-null
mice tend to spontaneously develop various inflammatory disor-
ders, including glomerulonephritis, immune-mediated hemolytic
anemia, and multi-organ autoimmune inflammation (Yoh et al.,
2001; Lee et al., 2004; Ma et al., 2006). The chronic accumulation
of intracellular ROS seems to underlie the pathogenesis of these
disorders. Thus, Nrf2 also critically contributes to the protection
from intrinsic insults.

One of the most important characteristics of Nrf2-mediated
transcription is the inducibility in response to xenobiotic and
oxidative stresses. Under normal conditions, the activity of the
Nrf2-mediated transcription is low, as most of Nrf2 protein is
degraded in the proteasome (Itoh et al., 2003). When cells are
exposed to electrophiles or ROS, Nrf2 is stabilized and accumulates
in the nucleus, which results in the robust activation of Nrf2 target

genes. Thus, the mechanism underlying Nrf2 degradation under
normal conditions and the stabilization of Nrf2 following expo-
sure to stress are critical clues to the revelation of the molecular
basis of our defense system.

REGULATORY MECHANISMS OF NRF2 ACTIVITY
Keap1 was identified as a cytoplasmic Nrf2-interacting protein
that negatively regulates Nrf2 activity (Itoh et al., 1999). In the
absence of Keap1, Nrf2 is constitutively stabilized, and the expres-
sion of Nrf2 target genes is maintained at high levels (Wakabayashi
et al., 2003). Possessing a BTB domain at the N-terminal region,
Keap1 serves as an adaptor for the Cullin 3-based ubiquitin E3
ligase for Nrf2 (Cullinan et al., 2004; Kobayashi et al., 2004; Zhang
et al., 2004; Furukawa and Xiong, 2005). Keap1 is a thiol-rich
protein that possesses multiple highly reactive cysteine residues
(Figure 2). Electrophiles directly modify the cysteine residues,
leading to Keap1 inactivation, Nrf2 stabilization, and the induction
of many cytoprotective genes (Dinkova-Kostova et al., 2002; Levo-
nen et al., 2004; Sakurai et al., 2006; Rachakonda et al., 2008; Fujii
et al., 2010). High concentrations of electrophiles or highly potent
electrophiles covalently modify not only Keap1 but also various
cellular components, such as nucleic acids, proteins, and lipids,
which adversely affects the cellular function. Because of the ultra-
sensitive nature of Keap1 cysteine residues, the Keap1–Nrf2 system
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FIGURE 2 | Keap1 is a thiol-rich protein that is sensitive to electrophilic covalent modification. Domain structure of Keap1 is shown, and reactive cysteine
residues are indicated with brown circles. Direct modification of cysteine residues was demonstrated using various electrophiles. Each electrophile attacks a
unique set of cysteines.

responds to low levels of electrophiles or less potent electrophiles
and induces the cytoprotective machineries for the prevention of
cellular damages.

The results of biochemical and structural analyses revealed the
overall structure of Keap1–Nrf2 complex under the normal con-
dition. Two molecules of Keap1 form a homodimer through the
N-terminal BTB domain, and the C-terminal globular domains,
called the DC domains, are positioned apart from each other
(Ogura et al., 2010; Figures 3A and 4A). Two DC domains of
the Keap1 homodimer associate with one molecule of Nrf2 (Tong
et al., 2006). The N-terminal region of Nrf2, called the Neh2
domain, bridges the two DC domains at two separate binding
sites, namely the ETGE and DLG motifs (Figure 4B). The lysine
residues serve as ubiquitination target sites and are clustered in the
Neh2 domain between the ETGE and DLG motifs. The two-site
binding between Keap1 and Nrf2 appears to be favorable for the
efficient ubiquitination of Nrf2.

Interestingly, the affinity between the ETGE motif and the
Keap1 DC domain is much higher than that between the DLG
motif and the Keap1 DC domain (Tong et al., 2006). The Keap1
cysteine residue-mutant and electrophile-modified Keap1, both of
which have lost the ability to ubiquitinate Nrf2, often retain the
capacity to bind with Nrf2. A unique model emerging from these
observations is the “hinge and latch” model (Tong et al., 2007;
Figure 3B). The cysteine modification is expected to trigger a
conformational change of the Keap1 homodimer, which could

dissociate the weak binding site, the DLG motif (latch), from the
Keap1 DC domain, while the strong binding site, the ETGE motif
(hinge), remains attached to the other Keap1 DC domain. The
hinge and latch model is one of the attractive hypotheses for the
sensing mechanism of the Keap1–Nrf2 system.

Besides the cysteine modification of Keap1, phosphorylation of
Nrf2 regulates the activation of Nrf2. Protein kinase C phospho-
rylates Ser40 of Nrf2, resulting in the activation of Nrf2 (Huang
et al., 2002). Nrf2 is also activated by PERK-dependent phospho-
rylation and promotes cell survival under endoplasmic reticulum
stress (Cullinan et al., 2003). In contrast, Nrf2 phosphorylation by
GSK-3β at serine residues of Neh6 domain (Figure 4B) inhibits its
activity by promoting β-TrCP-mediated ubiquitination and degra-
dation of Nrf2 (Rada et al., 2012). This is a second degradation
pathway of Nrf2, which seems to be independent of Keap1.

NRF2 INDUCERS ARE EFFECTIVE FOR CANCER
CHEMOPREVENTION
Because Nrf2 activates many genes encoding detoxification
enzymes, Nrf2 deficiency exacerbates the formation of DNA
adducts, which increases the risk of carcinogenesis. Conversely,
the increased activity of Nrf2 is effective for the prevention
of chemical carcinogenesis. Oltipraz (4-methyl-5-[2-pyrazinyl]-
1,2-dithiole-3-thione) is an Nrf2 inducer that suppresses the
benzo[a]pyrene-induced gastric cancer formation, which is not
observed in Nrf2-null mice (Ramos-Gomez et al., 2001). Thus,
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FIGURE 3 | Molecular mechanism of stress sensing in the Keap1–Nrf2

system. (A) The Keap1 homodimer binds one molecule of Nrf2. The ETGE
and DLG motifs of Nrf2 represent high and low affinity binding sites,
respectively. The lysine residues (K) are clustered between the two motifs

and represent ubiquitination targets. (B) The modification of cysteine
residues in Keap1 with electrophiles is expected to modify the overall
conformation of the Keap1 homodimer, resulting in the termination of Nrf2
ubiquitination.

FIGURE 4 | Domain structures of Keap1 (A) and Nrf2 (B). (A) The
N-terminal region of Keap1 mediates homodimerization and association
with Cul3, and the C-terminal region of Keap1 mediates binding with Nrf2.
(B) The N-terminal region of Nrf2 is designated Neh2 domain, which
contains two motifs, DLG and ETGE, responsible for the interaction with

Keap1. Neh4, Neh5, and Neh3 domains are important for the transactivation
activity of Nrf2 (Katoh et al., 2001; Nioi et al., 2005). Neh6 domain contains
the phosphodegron that is recognized by β-TrCP. Neh1 domain is a
basic-region leucine zipper motif for DNA binding and dimerization with
small Maf.

the antitumor effect of oltipraz requires Nrf2 function. N-
nitrosobutyl (4-hydroxybutyl) amine (BBN) causes urinary blad-
der carcinogenesis, and this effect was also suppressed through
oltipraz in an Nrf2-dependent manner (Iida et al., 2004). The
results of a field study in China showed that the Nrf2 inducer, sul-
foraphane, which is contained in broccoli sprouts, is potentially

effective for cancer chemoprevention (Wang et al., 1999; Kensler
et al., 2005).

Recent studies revealed that Wilms tumor gene on the X
chromosome (WTX) and PALB2, a major BRCA2 binding part-
ner known as FANCN, have been shown to interact with the
DC domain of KEAP1, inhibit the ubiquitination of Nrf2 and
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promote NRF2-dependent transcription (Camp et al., 2012; Ma
et al., 2012). Functional defects of these gene products enhance the
ubiquitination of Nrf2, resulting in the decreased activity of Nrf2.
WTX and PALB2 are both considered as tumor suppressor genes
since their mutations are often found in kidney tumor (Wilms
tumor) and breast and pancreatic cancers, respectively. WTX and
PALB2 may suppress carcinogenesis partly through maintaining
the Nrf2 activity for cytoprotection.

CANCER CELLS OFTEN HIJACK THE KEAP1–NRF2 SYSTEM
Intriguingly, various human cancers frequently exhibit increased
levels of NRF2 (Singh et al., 2006; Shibata et al., 2008a,b; Wang
et al., 2008a; Kim et al., 2010; Solis et al., 2010; Zhang et al., 2010;
Taguchi et al., 2011). Highly activated NRF2 target genes, encoding
detoxification and antioxidant enzymes, confer a great advantage
to cancer cells for survival against anti-cancer drugs and irradi-
ation (Wang et al., 2008b; Singh et al., 2010; Zhang et al., 2010).
Constitutively stabilized NRF2 also promotes cell proliferation, as
NRF2 knockdown inhibits the proliferation of human lung cancer
cell lines (Singh et al., 2008). Cancer cells hijack the KEAP1–NRF2
system, acquiring malignant properties. Indeed, the prognoses
of patients carrying NRF2-positve cancers are significantly poor
(Shibata et al., 2008b; Solis et al., 2010; Inoue et al., 2012).

Several mechanisms have been reported for the increased activ-
ity of NRF2 in cancers (Figure 5): (1) somatic mutations in KEAP1
or NRF2, (2) DNA hypermethylation at the promoter region of
KEAP1, (3) the aberrant accumulation of proteins that disrupt
the KEAP1–NRF2 interaction, (4) transcriptional up-regulation
of NRF2 gene through oncogene-dependent signaling, and (5)
the modification of KEAP1 protein through oncometabolites. A
detailed description of each mechanism is provided below.

SOMATIC MUTATIONS IN KEAP1 OR NRF2
Missense mutations in the KEAP1 gene have been identified in
several human cancers, particularly in solid tumors in the lung,
gallbladder and liver (Padmanabhan et al., 2006; Singh et al., 2006;
Nioi and Nguyen, 2007; Ohta et al., 2008; Shibata et al., 2008a;
Takahashi et al., 2010; Li et al., 2011). Somatic mutations cause
amino acid substitutions; thus, the resultant KEAP1 mutant pro-
teins are not able to fulfill the adaptor function of the E3 ubiquitin
ligase for NRF2. More than half of the KEAP1 mutations that
have been reported so far are distributed in the DC domain,
which is essential for association with NRF2 (Taguchi et al., 2011;
Figure 6A). Interestingly, heterozygous KEAP1 mutations fre-
quently occur in lung cancers (Padmanabhan et al., 2006; Singh
et al., 2006; Ohta et al., 2008; Shibata et al., 2008a). An elegant
mouse model demonstrated that a heterozygous mutation in the
KEAP1 gene is sufficient to reduce KEAP1 activity and conse-
quently stabilize NRF2 (Suzuki et al., 2011; Figure 7). Based on the
observation that Keap1 functions as a homodimer, the heterozy-
gous missense mutation generates three types of Keap1 dimers,
i.e., wild-type homodimer, wild-type-mutant heterodimer, and
mutant homodimer at a ratio of 1:2:1. Because the hinge and latch
hypothesis predicts that the wild-type-mutant heterodimer does
not support Nrf2 ubiquitination, a heterozygous missense muta-
tion would result in the 75% reduction of Keap1 activity. The
results of a study concerning the graded expression of the Keap1

gene in mice demonstrated that a 50% reduction of Keap1 activity
does not induce Nrf2 accumulation, whereas a 75% reduction is
enough to elicit this effect (Taguchi et al., 2010). Thus, the het-
erozygous KEAP1 mutation conferring the growth advantage on
cancers is consistent with the two-site binding model and hinge
and latch model of the Keap1–Nrf2 system.

Mutations in NRF2 gene were also identified in several cancers,
including lung, head and neck, and esophageal cancers (Shibata
et al., 2008b, 2011; Kim et al., 2010). Notably, all the mutations
in the NRF2 gene are clustered within the DLG (43%) and ETGE
(57%) motifs (Figure 6B), which are critical sites for the bind-
ing of Nrf2 to the Keap1 DC domain. Mutations in the ETGE
motif disrupt the high-affinity binding of Keap1 with Nrf2; thus,
ETGE mutant proteins are not ubiquitinated and accumulate in
the nucleus (Shibata et al., 2008b). Mutations in the DLG motif
disrupt the low-affinity binding of Keap1 with Nrf2, resulting
in the stabilization of Nrf2, although the association between
Keap1 and Nrf2 through the high-affinity binding site, ETGE, is
retained.

DNA HYPERMETHYLATION AT THE PROMOTER REGION
OF KEAP1 GENE
Epigenetic alterations also facilitate NRF2 stabilization. The hyper-
methylation of the promoter region of KEAP1 gene has been
identified in cancer cells generated in lung (Wang et al., 2008a;
Muscarella et al., 2011b), prostate (Zhang et al., 2010), malignant
glioma (Muscarella et al., 2011a), and colorectal cancers (Hanada
et al., 2012). The inhibition of KEAP1 gene expression results in
NRF2 accumulation, conferring a survival and growth advantage
to cancer cells. The epigenetic abnormalities in the KEAP1 gene
in lung cancers and malignant gliomas are indeed associated with
poor clinical outcomes (Muscarella et al., 2011a,b).

ABERRANT ACCUMULATION OF PROTEINS THAT DISRUPT THE
KEAP1–NRF2 INTERACTION
Several non-electrophilic inducers of Nrf2 originating from
endogenous stress have been identified. For instance, the cyclin-
dependent kinase inhibitor p21, which is a p53-regulated gene
product with pro-survival properties, has been shown to associate
with the DLG motif of Nrf2 (Chen et al., 2009). Consequently,
the two-site binding between Keap1 and Nrf2 is disrupted, and
the E3 ligase activity of the Keap1-Cul3 complex is inacti-
vated. Indeed, the activation of cytoprotective genes through
Nrf2 is more augmented in the presence than in the absence of
p21. As a downstream effector of p53 that mediates cell cycle
arrest and apoptosis (Gartel and Tyner, 2002), p21 also pro-
motes cell survival in response to oxidative stress (O’Reilly, 2005).
Thus, the cytoprotective function of p21 may be dependent on
Nrf2.

Another example of a disruptor protein is SQSTSM1/p62,
which is a polyubiquitin binding protein and targets various sub-
strates for autophagy (Komatsu and Ichimura, 2010). The STGE
motif within p62 binds to Keap1 DC pockets with a similar affin-
ity as that of the DLG motif of Nrf2 (Komatsu et al., 2010; Lau
et al., 2010). When autophagy is impaired, increased p62 competes
with the DLG motif for binding to the Keap1 DC pocket and
inhibits the ubiquitination of Nrf2, causing Nrf2 stabilization and
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FIGURE 5 | Increased activity of NRF2 in cancer cells. The degradation of NRF2 is inhibited in some cases, and the production of NRF2 is increased in other
cases.

FIGURE 6 | Somatic mutations in KEAP1 and NRF2 genes identified in human cancers. (A) More than half of the KEAP1 gene mutations were identified
in the DC domain. (B) All NRF2 gene mutations were restricted to the DLG and ETGE motifs.

the increased expression of cytoprotective genes. Importantly, the
abnormal accumulation of p62 is often observed in certain can-
cers, such as hepatocellular carcinoma (Lu et al., 2001; Strnad et al.,
2008; Inami et al., 2011), which suggests that the increased activity
of NRF2 might contribute to the malignant progression of these
cancers.

TRANSCRIPTIONAL UP-REGULATION OF NRF2 GENE BY
ONCOGENE-DEPENDENT SIGNALING
Because the degradation process primarily regulates the level of
Nrf2 protein, there have been a few studies concerning the tran-
scriptional control of the Nrf2 gene. The results of a recent
insightful study implicate the transcriptional control of the Nrf2
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FIGURE 7 | Dominant negative effect of the Keap1 gene mutation.

The intact Keap1 homodimer ubiquitinates Nrf2, while the Keap1 dimer,
containing one or two mutant Keap1 proteins, cannot ubiquitinate Nrf2. A
single allele mutation in the Keap1 gene results in the production of an equal

molar ratio of the wild-type Keap1 (W) to the mutant Keap1 (M). Keap1
dimerization generates three kinds of dimers, W–W, W–M, and M–M, by 1:2:1
ratio. Since W–M and M–M dimers are incapable of ubiquitinating Nrf2, the
overall Keap1 activity is reduced by 75%, and consequently, Nrf2 is stabilized.

gene as a determinant of Nrf2 activity (DeNicola et al., 2011). The
oncogene K-Ras activates Nrf2 transcription through the Mek-
Erk-Jun signaling pathway and reduces the ROS levels in primary
fibroblasts. The transcriptional activation of Nrf2 is also suggested
as a part of the tumorigenic activity of other oncogene products,
such as Braf and c-Myc. Thus, oncogene activation is likely to
increase the expression of NRF2, negating the need for mutations
in NRF2 or KEAP1. A larger spectrum of cancers might utilize this
non-mutational pathway to create a reducing environment that
enables tumor promotion.

MODIFICATION OF KEAP1 PROTEIN THROUGH ONCOMETABOLITES
While unique metabolic activities in cancers, such as aerobic gly-
colysis, have long been recognized (Koppenol et al., 2011), recent
technical advances have accelerated the progress in the field of
cancer metabolism. The identification of 2-hydroxyglutarate as an
aberrant metabolite produced by mutant IDH1 or IDH2 enzymes
in glioma and acute myeloid leukemia established a new con-
cept of oncometabolites (Dang et al., 2009; Ward et al., 2010).
Oncometabolites are unique metabolites in cancer cells that are
involved in the initiation and/or progression of cancers.

Fumarate, one of the intermediates of the TCA cycle, is con-
sidered to be an oncometabolite that promotes cancer based
on the human cases carrying heterozygous germline mutations
in the fumarate hydratase (FH) gene. These patients exhibit
elevated levels of fumarate and develop hereditary leiomy-
omatosis and renal cell cancer (HLRCC), a syndrome char-
acterized by smooth muscle tumors and papillary renal cell
carcinoma type 2 (pRCC-2; Tomlinson et al., 2002). Interestingly,

the Nrf2-mediated antioxidant response pathway is highly acti-
vated in FH-mutant cells (Adam et al., 2011; Ooi et al., 2011). It was
revealed that fumarate, possessing a weak electrophilic property,
modifies KEAP1 cysteine residues, resulting in the stabilization of
NRF2. Heme oxygenase 1 (HO-1) is an NRF2 target gene that pre-
vents FH deficiency-mediated succinate stagnation through the
heme synthesis and degradation pathway (Frezza et al., 2011). The
inhibition of HO-1 is effective for the suppression of FH-deficient
cancers. The contribution of other NRF2 target gene products to
the properties of FH-deficient cancers would be studied in more
detail.

BEYOND REGULATING REDOX HOMEOSTASIS: NRF2
PROMOTES ANABOLIC PATHWAYS IN CANCERS
In addition to coordinately activating the genes encoding detoxi-
fying enzymes and antioxidant proteins, the constitutive accumu-
lation of Nrf2 confers chemo- and radio-resistance for cancer cell
survival. Then, what is the role of Nrf2 in promoting cell prolif-
eration in the absence of external insults? We recently found that
Nrf2 redirects glucose and glutamine into anabolic pathways and
promotes metabolic activities that are advantageous for prolifer-
ation (Mitsuishi et al., 2012). An attempt to identify Nrf2 target
genes in cancer cells revealed that Nrf2 directly activates the genes
whose products are involved in the pentose phosphate pathway and
nicotinamide adenine dinucleotide phosphate (NADPH) produc-
tion, such as glucose-6-phosphate dehydrogenase (G6PD), phos-
phogluconate dehydrogenase (PGD), transketolase (TKT) and
transaldolase 1 (TALDO1), and malic enzyme 1 (ME1; Figure 8).
The metabolite analysis demonstrated that Nrf2 strongly promotes
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purine nucleotide synthesis, resulting in the increased production
of purine nucleotides. Nrf2 also promotes glutamine consump-
tion through enhancing glutaminolysis and glutathione synthesis
(Figure 8). Importantly, the effects of Nrf2 on gene expression
and metabolic activities are obvious under the sustained activa-
tion of PI3K–Akt signaling pathway. The functional expansion
of Nrf2 in proliferating cells directs the enhancement of anabolic
metabolism, maintains redox homeostasis and further promotes
the activation of PI3K–Akt signaling, suggesting the presence of
positive feedback between Nrf2 and the PI3K–Akt pathway in
proliferating cells (Figure 9).

In good agreement with this observation, a simple accumula-
tion of Nrf2 is not sufficient for the development of spontaneous
cancers (Taguchi et al., 2010), although a large number of human
cancers depend on Nrf2 activity. In Keap1 knockdown (Keap1KD)
mice, the Keap1 mRNA level is reduced to approximately 5% of
that in wild-type mice, and constitutive Nrf2 activation is observed
in various tissues, such as liver, lung, and kidney. However,
Keap1KD mice did not develop any spontaneous cancers. Thus,
increased Nrf2 activity does not initiate cancer development but
confers advantages in terms of proliferation and stress resistance
once a cell acquires uncontrolled proliferative properties. Nrf2 is
a critical survival factor for cancer cells, which is best described as
a form of non-oncogene addiction.

The pentose phosphate pathway fulfills two important cel-
lular requirements. The first requirement is to generate ribose
5-phosphate for the synthesis of nucleotides, and the other is
to provide reducing power in the form of NADPH. Ribose 5-
phosphate is a nucleotide precursor, which is indispensable for
proliferating cells and generated through two distinct pathways,
the oxidative and non-oxidative arms of the pentose phosphate
pathway (Figure 8). The oxidative arm is an irreversible mecha-
nism associated with the production of NADPH. The activity of
G6PD, one of the enzymes of the oxidative pathway, was associated
with thymidine incorporation, indicating a critical role for G6PD
in cell growth (Tian et al., 1998). The balance between the need
for NADPH or ribose 5-phosphate determines the direction of the
non-oxidative arm (Wamelink et al., 2008). When the requirement
for NADPH production dominates, pentose phosphates produced
from the oxidative arm are recycled back to glycolytic interme-
diates. When a large quantity of nucleotides is required, such
as in cancer cells, both the oxidative and non-oxidative arms
are directed toward ribose 5-phosphate production (Boros et al.,
2000). The increased expression of one of the enzymes involved
in the non-oxidative pathway, TKTL1, was associated with the
poor prognosis of colon and urothelial cancers (Langbein et al.,
2006), suggesting that the non-oxidative arm is also critical for the
malignant growth of some cancers. The inhibition of the TKTL1
activity has been shown to repress the proliferation of hepatoma
cells (Zhang et al., 2007).

Nrf2 not only increases the enzyme levels of both the oxidative
and non-oxidative arms, but it also facilitates the utilization of
ribose 5-phosphate for the purine nucleotide synthesis (Mitsuishi
et al., 2012), which appears to maintain the ribose 5-phosphate
concentration at a low level and efficiently divert glucose flux
into purine nucleotide synthesis through both arms of the pentose
phosphate pathway. Although Nrf2 does not directly contribute to

aerobic glycolysis, glucose uptake and glycolytic activity are stim-
ulated under the sustained activation of the PI3K–Akt signaling
(Elstrom et al., 2004; Wieman et al., 2007), thereby increasing the
supply of glycolytic intermediates. Thus, Nrf2 accumulation and
activation of PI3K–Akt pathway achieve the efficient synthesis of
the purine nucleotides.

The oncoprotein c-Myc regulates nucleotide metabolism
(Mannava et al., 2008). c-Myc directly activates the genes involved
in nucleotide synthesis, including thymidylate synthase for pyrim-
idine metabolism, inosine monophosphate dehydrogenase 1 and
2 for purine metabolism, and phosphoribosyl pyrophosphate
(PRPP) synthetase 2 for the production of PRPP, which is a com-
mon precursor for purine and pyrimidine nucleotides. While
purine nucleotide synthesis is selectively affected through Nrf2
activation, c-Myc is involved in the regulation of both purine and
pyrimidine nucleotide synthesis.

OTHER REGULATORS OF THE PENTOSE PHOSPHATE
PATHWAY
It has been shown that the activation of mammalian target of
rapamycin complex 1 (mTORC1) increases the metabolic flux
through both glycolysis and the oxidative arm of the pentose
phosphate pathway (Düvel et al., 2010). Sterol regulatory element-
binding proteins (SREBP1 and SREBP2) have been suggested
as one of the downstream effectors of mTORC1, which are
responsible for the regulation of the pentose phosphate pathway
enzymes. Nrf2 efficiently activates the pentose phosphate path-
way genes in the active PI3K–Akt pathway, where mTORC1 and
SREBP are also activated; therefore, Nrf2 and SREBP might syn-
ergistically facilitate the oxidative arm of the pentose phosphate
pathway.

In contrast, the non-oxidative arm of the pentose phos-
phate pathway is enhanced in the presence of oncogenic Kras
(KrasG12D) in pancreatic tumors (Ying et al., 2012). Myc was
suggested as a downstream effector of KrasG12D in this study.
Because the KrasG12D-Myc axis has been suggested to induce Nrf2
gene expression and increased the activity of Nrf2 in pancre-
atic cancers (DeNicola et al., 2011), the activation of the non-
oxidative arm of the pentose phosphate pathway might depend on
Nrf2.

Another unique regulator of the pentose phosphate pathway
is the tumor suppressor p53, which inhibits the pentose phos-
phate pathway through binding to G6PD and preventing the
formation of the active dimer (Jiang et al., 2011). Consequently,
wild-type p53 suppresses NADPH production, whereas tumor-
associated p53 mutants show almost no activity in inhibiting
G6PD, thereby maintaining a high level of NADPH production.
The Nrf2-mediated induction of the pentose phosphate pathway
at the transcription level would substantially increase the pathway
activity in p53-mutated cancers.

DETOXIFICATION OF ROS FOR CELL SURVIVAL AND PROLIFERATION
The glutathione synthesis pathway is another important anabolic
target of Nrf2 (MacLeod et al., 2009). Glutathione is a key molecule
for redox homeostasis, and the reduced form of glutathione is
essential for the detoxification of ROS and the reduction of oxi-
dized proteins. Considering that the frequently mutated tumor
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FIGURE 8 | Contribution of Nrf2 to cellular metabolism. The enzymes
regulated through Nrf2 are indicated with double-framed boxes (G6PD,
glucose-6-phosphate dehydrogenase; PGD, phosphogluconate
dehydrogenase; TKT, transketolase; TALDO1, transaldolase 1; PPAT,
phosphoribosyl pyrophosphate amidotransferase; MTHFD2,
methylenetetrahydrofolate dehydrogenase 2; ME1, malic enzyme 1;
γGCL, γ-glutamylcysteinyl ligase). Abbreviations of metabolites; 1,3-BPG,

1,3-bisphosphoglycerate; 2-PG, 2-phosphoglycerate; 3-PG,
3-phosphoglycerate; 6-PG, 6-phosphogluconate; 5-PRA,
β-5-phosphorybosylamine; F1,6P, fructose 1,6-bis-phosphate; F6P, fructose
6-phosphate; G6P, glucose 6-phosphate; GAP, glyceraldehyde 3-phosphate;
PEP, phosphoenolpyruvate; PRPP, phosphoribosyl phosphate; R5P, ribose
5-phosphate; Ru5P, ribulose 5-phosphate; S7P, sedoheptulose
7-phosphate.

suppressor and oncogenic pathways in cancers commonly lead to
the increased accumulation of ROS (Szatrowski and Nathan, 1991;
Lee et al., 1999; Vafa et al., 2002; Nogueira et al., 2008), the efficient
detoxification of ROS is a requisite for cell proliferation.

Nrf2 directly activates the essential genes for the glu-
tathione synthesis. The genes encoding the regulatory (GCLM)
and catalytic (GCLC) subunits of γ-glutamylcysteinyl ligase, a
rate-limiting enzyme for glutathione synthesis, are well known
targets of Nrf2 (Moinova and Mulcahy, 1999; Solis et al., 2002; Bea
et al., 2003; Sekhar et al., 2003). The gene encoding a subunit of the
cystine transporter SLC7A11 (xCT) is another Nrf2 target (Sasaki
et al., 2002), whose product increases the availability of cysteine
for glutathione synthesis. Nrf2 also activates the genes encoding
the four major NADPH producing enzymes, G6PD, PGD, ME1,
and IDH1, for reducing oxidized glutathione and other cellular
components. Thus, Nrf2 induces the production of glutathione
and NADPH, conferring a growth advantage to cancer cells.

A recent study has demonstrated that an acute increase in
the intracellular concentration of ROS inhibits the glycolytic
enzyme pyruvate kinase M2 (PKM2) through the oxidation of
Cys358 (Anastasiou et al., 2011). The inhibition of PKM2 redi-
rects glucose into the pentose phosphate pathway and thereby
generates NADPH for the detoxification of ROS. An increase in
ROS levels also induces Nrf2-dependent transcription, thus the
induction of the pentose phosphate pathway enzymes through
Nrf2 could contribute to the redirection of glucose and NADPH
production.

NRF2 INHIBITORS FOR ANTICANCER THERAPY
Due to the multifaceted roles of Nrf2 in cancers, Nrf2 inhibitors
could be effective for anticancer therapy. The suppression
of antioxidant proteins, glutathione synthesis enzymes, and
NADPH-producing enzymes would lead to ROS accumulation
in cancer cells and subsequent oxidative damage to various
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FIGURE 9 | Functional expansion of Nrf2 in proliferating cells. In
quiescent cells, Nrf2 is activated in response to oxidative stress and induces
the expression of cytoprotective genes encoding antioxidant proteins and
detoxification enzymes, which maintains the cellular redox homeostasis. In

proliferating cells, Nrf2 activity is augmented especially under the sustained
activation of PI3K–Akt pathway. Nrf2 activates metabolic genes in addition to
cytoprotective genes, resulting in the redirection of glucose and glutamine
into anabolic pathway, which is advantageous for cell proliferation.

intracellular components, thus compromising the cell viability.
The simultaneous inhibition of the oxidative and non-oxidative
arms of the pentose phosphate pathway is indeed effective for
repressing tumor cell growth (Boros et al., 1997; Ramos-Montoya
et al., 2006; Mitsuishi et al., 2012). Nrf2 inhibitors also sensitize
cancers to the effects of chemotherapeutic drugs through the
down-regulation of detoxification enzymes and drug excretion
transporters (Singh et al., 2008; Wang et al., 2008b). While a num-
ber of Nrf2 inducers have been developed and tested in clinical
trials (Pergola et al., 2011; Gold et al., 2012), few Nrf2 inhibitors
have been developed. Brusatol has been purified from a plant
extract of Brucea javanica (Simaroubaceae), which is an ever-
green shrub grown in Southeast Asia and Northern Australia,
and shown to inhibit ARE-luciferase activity and the protein
accumulation of Nrf2 (Ren et al., 2011). However, the detailed
mechanism by which brusatol enhances Nrf2 degradation and how
it selectively inhibits the Keap1–Nrf2 pathway warrants further
investigation.

Achieving specificity is the biggest challenge in the develop-
ment of Nrf2 inhibitors. Nrf2 belongs to the CNC protein family,
including NF-E2 p45, Nrf1, Nrf3, Bach1, and Bach2 (Motohashi
et al., 2002). All the members form heterodimers with small Maf
proteins through leucine zipper motifs and bind to the ARE con-
sensus sequence through basic regions, suggesting that the bZip
structure of Nrf2 shares many common properties with that of
other CNC members. Thus, one of the targets for Nrf2 inhibitors

would be the domain outside the bZip motif, and the other target
would be the leucine zipper, as there are substantial variations in
the leucine zipper compared with the basic regions in CNC family
members.

In addition, achieving delivery specificity is also an impor-
tant issue. The systemic inhibition of Nrf2 could exacerbate the
side effects of chemo- and radiotherapies. Moreover, a recent
study showed that Nrf2 deficiency in bone marrow cells aggra-
vates metastasis (Satoh et al., 2010). Thus, a drug delivery method
and protocol would need to be developed for the Nrf2 inhibitor to
preferentially target cancer cells.

The positive feedback between Nrf2 and active PI3K–Akt
signaling, which induces the malignant evolution of cancers,
presents another area of interest for therapeutic development.
An Nrf2 inhibitor would weaken the PI3K–Akt signaling activ-
ity in cancer cells, while inhibitors of PI3K–Akt signaling could
antagonize Nrf2 activity. Thus, the disruption of the feedback
activation represents an effective anti-cancer therapy. To decipher
the functional interactions between Keap1–Nrf2 system and other
oncogenic pathways is one of the most important assignments for
the conquest of Nrf2-dependent cancers.
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