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Cell fate regulation is a function of diverse cell signaling pathways that promote cell sur-
vival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in
maintaining a tight balance between cell death and cell proliferation has been extensively
studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect
on mitochondrial permeabilization and apoptosis amplification. However, recent evidence
provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular
redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a
pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced
death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small
GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype
in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2
and Rac1. Similar functional associations have been described between the Bcl-2 family
and other members of the Ras superfamily. These interactions at the mitochondria provide
novel opportunities for strategic therapeutic targeting of drug-resistant cancers.
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INTRODUCTION
Despite the complexity of the various commands and control path-
ways implicated in oncogenic transformation of cells of different
origins, the common denominator in all forms of neoplasia is
the dysregulated or defective ratio between cell proliferation and
cell death (Hanahan and Weinberg, 2011). Any disturbance of
this ratio due to either enhanced proliferation signals or defec-
tive death circuits would result in an abnormal accumulation
of cells, thereby leading to carcinogenesis. To that end, there
is strong evidence that an altered cellular metabolism fuels the
process of transformation by creating an intracellular milieu con-
ducive for cell survival and growth. Indeed, recent observations
have underscored the critical role that cells’ metabolic processes
play in oncogene-driven carcinogenesis, such as Ras, phospho-
inositide 3-kinase (PI3K)/Akt, myc, and others (Shields et al.,
2011; Herranz et al., 2012; Ho et al., 2012; Murugan et al., 2012;
Zubova et al., 2012). These studies highlight the differences in the
metabolic demands and bio-energetic wiring of cancer cells and
non-cancerous cells. There is indeed a shift in the steady-state
cellular and mitochondrial redox milieu of cancer cells toward a
slight pro-oxidant state that promotes cell survival by enhancing
proliferative signals and cell cycle progression, but at the same time
inhibiting death execution. In this sense, an altered redox status
has been implicated in the transformation caused by the Ras onco-
gene activation following an increase in Nox activity mediated by
Rac (Irani et al., 1997; Irani and Goldschmidt-Clermont, 1998)
as well as in the regulation of apoptosis by the anti-apoptotic
protein Bcl-2, the prototypic member of the Bcl-2 family. Not
only do members belonging to these two families of proteins

(Ras and Bcl-2) elicit similar functional outcomes, there is also
evidence for a direct and/or indirect crosstalk between specific
proteins from these families. In this regard, there are reports of
protein–protein interactions as well as co-localization of mem-
ber proteins. Here we attempt to present a brief review of the
crosstalk between the Bcl-2 family members and the small guano-
sine triphosphatases (GTPases) of the Ras superfamily, which
also modulate the pro- and anti-apoptotic properties of Bcl-2
members.

PRO- AND ANTI-APOPTOTIC Bcl-2 FAMILY MEMBERS
The Bcl-2 family of proteins is made of three subgroups accord-
ing to the Bcl-2 homology (BH) domains they contain and their
pro- or anti-apoptotic activities. Members that contain all four BH
domains (BH1, BH2, BH3, and BH4), which include Bcl-2, Bcl-
xL, Bcl-w, Mcl-1, and A1, are classified under the anti-apoptotic or
pro-survival category (Low et al., 2011). Overexpression of any of
these members blocks apoptosis execution; while genetic knock-
down reveals their essential roles in cell survival. Members that
contain BH1, BH2, and BH3 domains but not BH4 domain such
as Bax, Bak, and Bok are classified under pro-apoptotic category.
Bax and Bak are ubiquitously expressed in various tissues while
Bok is mainly present in the reproductive organs. There is a third
divergent class of pro-apoptotic members that only share sequence
homology in the BH3 domain. These proteins are called BH3-only
proteins and consist of Bad, Bid, Bim, Bmf, BNIP3, Hrk, Noxa,
and PUMA (Strasser, 2005; Youle and Strasser, 2008).

As regulators of apoptosis, the Bcl-2 proteins will dictate
whether the cell lives or dies, depending upon the proportion
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of pro- and anti-apoptotic components. In response to stress
signals, such as exposure to radiation, hypoxia, deprivation of
nutrients, heat shock, viral infection, and DNA damage, the pro-
apoptotic members are activated, resulting in their translocation
to and oligomerization at the mitochondria. Such oligomeriza-
tion results in mitochondrial outer membrane permeabilization
(MOMP), thereby facilitating the release of apoptogenic factors
such as cytochrome C, Smac/DIABLO, and apoptosis-inducing
factor (AIF) from the mitochondria. This is the classical type II or
the intrinsic pathway of apoptosis, a genetically programmed pro-
cess with an orchestrated series of events leading to the death of a
cell. However, in the event of overexpression of the anti-apoptotic
proteins, which is invariably observed in drug-resistant cancers,
the pro-apoptotic activity of Bax, Bak, or Bok is neutralized by the
formation of homo- and heterodimers that prevent oligomeriza-
tion of the pro-apoptotic members (Johnstone et al., 2002). The
BH3-only proteins, on the other hand, can act as either antagonists
of anti-apoptotic members or direct activators of pro-apoptotic
members.

The elucidation of the 3-D structure of human Bcl-xL revealed
a pore-forming protein (Muchmore et al., 1996), and subse-
quently other members such as Bcl-2 and Bax were shown to
be capable of forming pores in artificial membranes (Antons-
son et al., 1997; Minn et al., 1997; Schendel et al., 1997). It was
not until 2001 that the 3D structure of Bcl-2 was resolved with
its unstructured loop region being replaced by that of Bcl-xL.
Although both proteins share a similar overall helical fold and
function, they differ in the highly flexible unstructured loop
region, which contributes to their different solubilities (Petros
et al., 2001). Another key structural difference lies in the amino
acid residues and the size of the hydrophobic groove formed
by the BH1, BH2, and BH3 domains, which is the important
interaction site with pro-apoptotic members such as Bax and
Bak (Sattler et al., 1997) and this probably explains the differ-
ent binding affinities of Bcl-2 and Bcl-xL toward them. The BH3
domain is critical in the functions of the Bcl-2 family proteins,
because not only is this domain of Bcl-2 responsible for interacting
with and antagonizing the pro-apoptotic members but also is the
domain used by the pro-apoptotic Bax and Bak to antagonize Bcl-
2-mediated protection against apoptosis. Deletion of this domain
from Bax and Bak results in impairment of the pro-apoptotic
activity and binding toward Bcl-2 and Bcl-xL, while transfection
of this domain alone can lead to apoptosis, similar to BH3-only
proteins.

NETWORKS OF Bcl-2 FAMILY PROTEINS WITH
NON-HOMOLOGOUS PARTNERS FOR APOPTOSIS
MODULATION: A FOCUS ON SMALL GTPases OF THE Ras
FAMILY
As mentioned above, the homologous interaction within the Bcl-
2 family are responsible for the functional outcomes in terms of
apoptosis induction and its regulation. However, many other non-
homologous proteins directly or indirectly associate with Bcl-2
family members, thereby modulating their pro- or anti-apoptotic
properties. Thus, the Ras and Rac small GTPases modulate cell
fate decisions by interacting with Bcl-2, as will be discussed in this
review.

Ras SUPERFAMILY OF SMALL GTPases: STRUCTURES AND
FUNCTIONS
The Ras superfamily of small GTPases are monomeric G pro-
teins with molecular mass ranging from 20 to 30 kDa. To date,
more than 100 proteins have been included in this superfamily,
which is further subdivided into eight groups based on amino
acid sequence, protein structure and function similarities: Ras,
Rad, Rab, Rap, Ran, Rho, Rheb, Rit, and Arf (Wennerberg et al.,
2005). These small GTPases function as binary molecular switches,
whose activity is regulated through the binding, hydrolysis, and
release of GTP. The GTP/GDP cycling is in turn mediated by the
joint activities of a series of guanine nucleotide exchange fac-
tors (GEFs) and GTPase-activating proteins (GAPs). A set of G
box GDP/GTP-binding motif elements make up the G domain,
which is conserved both structurally and functionally across all
Ras superfamily members as well as other GTPases.

Upon triggered by various signals captured by surface recep-
tors (Etienne-Manneville and Hall, 2002; Welch et al., 2003), GEFs
promote the activation of small GTPases (Schmidt and Hall, 2002;
Rossman et al., 2005). The interaction of GEFs with the small
GTPases destabilizes binding of the nucleotide and results in the
formation of a nucleotide free intermediate. GTP is more concen-
trated intracellularly than GDP, and thus saturates small GTPases
more readily. The change in bound nucleotide from GDP to GTP
alters the conformation in the Switch 1 and Switch 2 regions allow-
ing the small GTPases to bind downstream effector proteins, e.g.,
scaffold proteins (such as p67phox and IQGAPs), serine/threonine
kinases [such as mitogen-activated protein kinase kinase kinase
(MEKKs) and p21-activated kinases (PAKs)], lipid kinases (such
as PI3K) and lipases [such as phospholipase D (PLD), and PLC-
β2], etc., (Bishop and Hall, 2000). Following transient activation
of downstream pathways, GTP is hydrolyzed to by GAPs which
complement the slow intrinsic activity of small GTPases (Bishop
and Hall, 2000). The signaling specificity (i.e., activation of spe-
cific small GTPase pathway) is governed in part by GEFs since
the specificity of GEFs toward the GTPases varies. For example in
the Rho subfamily, Tiam1 is a specific activator of Rac1 (Hordijk
et al., 1997) while Vav promiscuously bind RhoA, RhoG, Rac1, and
Cdc42 (Han et al., 1997). A third class of proteins named guanine
nucleotide dissociation inhibitors (GDIs) regulate the activities of
Rho and Rab subfamilies. GDIs mask the C-terminal lipid moi-
eties and sequester Rho and Rab GTPases in a soluble state in the
cytosol (Konstantinopoulos et al., 2007).

The post-translational addition of the lipid moiety is called
prenylation, which is important for membrane associations and
subcellular targeting. The majority of Ras and Rho subfamily
members contain a CAAX tetrapeptide motif (where C denotes
cysteine, A represents any prenylated amino acid and X may be any
amino acid) at the C-terminal which could be either farnesylated
(covalent addition of farnesyl pyrophosphate) as in the case of Ras
or geranylgeranylated (addition of geranylgeranyl pyrophosphate)
as for the RhoA, Rac1 and Cdc42 GTPases. K-Ras and N-Ras iso-
forms could undergo alternative geranylgeranylation as well when
the farnesylation process is inhibited (Berndt et al., 2011). Apart
from prenylation, certain small GTPases such as Rac1 and Ras
could also undergo palmitoylation where the cysteine residues
immediately upstream of the CAAX motif are reversibly modified
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by the fatty acid palmitate (Laude and Prior, 2008; Navarro-Lerida
et al., 2012). Yet other small GTPases like some members of the Arf
subfamily are modified by myristoylation at the N-terminal. All
these modifications, together with the conserved polybasic region
(comprised of multiple lysines or arginines) at the C-terminal,
facilitate association of the small GTPases with various membrane
compartments to exert distinct biological functions (Wennerberg
et al., 2005).

IMPACT OF Ras SUPERFAMILY OF SMALL GTPases ON APOPTOTIC
SIGNALING
Ras superfamily of small GTPases are involved in a plethora of
intracellular functions including cytoskeleton organization, gene
transcription, reactive oxygen species (ROS) production, cell cycle
progression, apoptotic regulation, differentiation, to name just a
few. Here we present a brief overview of the role that Ras and the
Rho subfamily member Rac play in the regulation of apoptotic cell
death, and interestingly the crosstalk between these proteins and
the Bcl-2 family in determining the functional outcome.

Ras
Activating mutations in the Ras oncoproteins is encountered in
about 30% of human malignancies (McCubrey et al., 2012b; Sacco
et al., 2012). The transforming ability of Ras proteins suggests
that Ras-regulated pathways could either promote cell prolifera-
tion and/or inhibit cell death, particularly apoptotic execution.
Although considerable evidence has supported this, there are also
many other reports that demonstrate the opposite where Ras can
inhibit proliferation and lead to apoptosis, indicating a strong
dependency on cell type and cellular context.

The best characterized Ras effectors are the Raf fam-
ily of serine/threonine kinases which include A-Raf, B-Raf,
and Raf-1. Upon interaction with the effectors, downstream
mitogen-activated protein (MAP) kinase kinases (MEKs) are
activated, which in turn activate the MAP kinases extracellular
signal-regulated kinases (ERKs) leading to phosphorylation of
downstream targets that either positively or negatively influence
apoptosis. Regulation of the Raf/MEK/ERK pathways in apoptosis
is partly due to the post-translational phosphorylation of Bcl-2
family members including Bad, Bim, Mcl-1, and more controver-
sially Bcl-2 (McCubrey et al., 2007). For example, Bad is known
to be phosphorylated on Ser112, leading to its inactivation and
subsequent sequestration by 14-3-3 proteins. This releases Bcl-2
and Bcl-xL to carry out their anti-apoptotic function (Zha et al.,
1996). Similarly, phosphorylation of Bim displaces it from Bcl-2,
Bcl-xL, and Mcl-1 followed by its ubiquitination and proteosomal
degradation (Ley et al., 2003; Luciano et al., 2003; Weston et al.,
2003; Harada et al., 2004). In this same pathway, Bcl-2 was also
reported to be phosphorylated on critical residues within the flex-
ible loop, resulting in enhanced anti-apoptotic activity (Deng et al.,
2000, 2001). In breast cancer cells, ectopic expression of Raf could
increase the protein levels of Bcl-2, which is likely to be due to
the enhanced phosphorylation of downstream transcription fac-
tors that bind to the promoter region of Bcl-2 upon activation
of the pathway (Weinstein-Oppenheimer et al., 2001; Davis et al.,
2003). Moreover, apart from activating downstream MEK/ERK,
Raf-1 was also shown to regulate apoptosis at the mitochondrial

membrane by phosphorylating Bad resulting in its release into
the cytosol (Wang et al., 1996; Salomoni et al., 1998; Neshat et al.,
2000; Hindley and Kolch, 2002).

In addition to Raf kinases, PI3K is another Ras effector,
the activation of which results in stimulation of the activity
of the serine/threonine kinase Akt, an event usually associated
with apoptotic evasion (Markman et al., 2012). Similarly to the
Raf/MEK/ERK pathway, Akt can also phosphorylate Bim at Ser87
promoting its sequestration by 14-3-3 proteins (Qi et al., 2006).
In addition, Akt phosphorylation of the transcription factor
Foxo3A would suppress its ability to induce the transcription of
the BH3-only protein Puma, which induces apoptosis through
interactions with Bax/Bak and Mcl-1 (McCubrey et al., 2007).
However, crosstalks between these two pathways complicate the
whole picture. While Raf/MEK/ERK pathway is usually associated
with proliferation and drug resistance in cells of hematopoi-
etic lineage, mutations in the phosphatase and tensin homolog
(PTEN) that result in hyper-activated Akt in certain prostate
cancer cell lines would lead to suppression of this pathway.
Actually, evidence has accumulated over the past two decade
pointing to the paradoxical role of Ras in inducing apoptosis in
situations where cancer cells are subjected to adverse environ-
mental conditions or apoptotic stimuli or in the case of ectopic
expression of constitutively active Ras. One contributing fac-
tor is the association of Ras with Bcl-2 family. Ras was indeed
clearly shown to up-regulate a pro-apoptotic Bcl-2 family mem-
ber, BNIP3. Nitric oxide exposure in a mouse leukemia cell line
with macrophage characteristics triggers activation of the tran-
scription factor, hypoxia-inducible factor 1 (HIF-1) mediated
through ERK, which then binds to the BNIP3 promoter, lead-
ing to apoptosis (An et al., 2006). A direct association of Ras
with Bcl-2 (Chen and Faller, 1996; Denis et al., 2003) or Bcl-xL
(Bivona et al., 2006) has also been demonstrated. Another argu-
ment in favor of Ras-mediated apoptosis is that its downstream
small GTPase Rac could associate with Ras through its associated
GEF Tiam1, thereby linking the activation of Rac with that of Ras.
The detailed mechanisms of these pathways are discussed in the
following sections.

Generally speaking, the decision to turn on either pro-survival
or pro-death pathways upon Ras activation depends very much
on the environmental cues (e.g., growth factors and extracellu-
lar matrix interactions), predominant isoform(s) of Ras expressed
in a particular cell type (Choi et al., 2004; Ninomiya et al., 2004),
variations in the expression levels of Ras effectors as well as the
differential subcellular localizations of Ras resulting from distinct
post-translational modifications (Overmeyer and Maltese, 2011).
For example, treating N-Ras or K-Ras expressing cells with a far-
nesyltransferase inhibitor could turn off the pro-survival pathway
and switch on the pro-apoptotic one which is probably an effect of
alternative geranylgeranylation on the subcellular compartmen-
talization and/or effector interactions of Ras (Geryk-Hall et al.,
2010). Apart from prenylation, it is reported that phosphorylation
on Ser181 of Ras in the polybasic region by protein kinase C (PKC)
would stimulate apoptosis possibly due to the shuttling of Ras
from plasma membrane to intracellular compartments such as the
mitochondria where it could interact with Bcl-2 family members
as mentioned earlier (Bivona et al., 2006).
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Rac
Ras-related C3 botulinum toxin substrates, or commonly known
as Rac, belongs to the Rho (Ras homologs) subfamily. Rac1,
was first identified together with Rac2 in 1989, which bears 58%
homology to Rho proteins and 20–30% homology to Ras proteins
(Didsbury et al., 1989). Subsequently, other forms of Rac proteins,
namely Rac3 and Rac1b were discovered. The tissue distribution
varies among different forms, with Rac1 ubiquitously expressed
in most tissues, Rac2 mainly in hematopoietic cells, Rac3 highly
enriched in the brain but expressed in other tissues as well at lower
levels and the splice variant Rac1b minimally expressed in normal
cells but highly enriched in cancers such as breast and colorectal
cancers (Haataja et al., 1997; Jordan et al., 1999; Schnelzer et al.,
2000; Chan et al., 2005).

The regulatory role of Rac in apoptosis is also somewhat contro-
versial and could be due to the distinct effectors in different cellular
contexts. For example, Rac1 could induce mitogenic signals via
activation of ERK1/2, JNK, PI3K, and Akt (Aznar and Lacal, 2001;
Kwei et al., 2006). In contrast to ERK and Akt activation, JNK acti-
vation could result in phosphorylation of Bim at Ser65 leading
to apoptotic induction by promoting Bax homodimerization (Lei
and Davis, 2003; Putcha et al., 2003). JNK could also phosphory-
late 14-3-3 proteins allowing translocation of Bax from the cytosol
to the mitochondria membrane to promote apoptosis (Okuno
et al., 2004).

The ROS producing ability of Rac through Nox and the con-
troversial impact of ROS on apoptotic signaling depending on the
amount and specific species produced, could also explain why Rac
activation results in either pro-survival or pro-apoptotic cell fate.
One of the first identified effector proteins of Rac was p67phox, a
subunit of the NADPH oxidase complex (Diekmann et al., 1994).
Active GTP-bound Rac binds to cytosolic p67phox (associated
with p47phox and p40phox) and then recruits the protein com-
plex to the membranes where they bind to the integral membrane
components gp91phox (Nox2) and p22phox for the assembly and
activation of the multimolecular NADPH oxidase to produce O−

2
(Babior, 1999; Dinauer, 2003; Groemping and Rittinger, 2005).
In addition to the binding of Rac and gp91phox at the mem-
branes has also been demonstrated to be essential in activation
of electron transport through the heterodimeric flavocytochrome
b558 consisting of gp91phox and p22phox (Nisimoto et al., 1999).
Based on site-directed/deletional mutagenesis and peptide walk-
ing studies, regions in Rac critical for NADPH oxidase activation
lie in the Switch 1 effector loop, the insert domain as well as the
C-terminal basic motif (Kwong et al., 1993; Diekmann et al., 1994;
Joseph and Pick, 1995; Freeman et al., 1996; Hirshberg et al., 1997).
Although this activation model was first described for phagocytic
isoform Nox2-based NADPH oxidase, Rac has been shown to acti-
vate Nox1- and Nox3-based complexes in non-phagocytic cells as
well (Sundaresan et al., 1996; Ueyama et al., 2006) and the mod-
ulatory activity is achieved through Rac-binding proteins Noxa1
(homolog of p67phox) and Noxo1 (homolog of p47phox; Bokoch
and Diebold, 2002; Cheng and Lambeth, 2004). A few reports have
linked ROS production mediated by Rac activation to apoptosis
(Overmeyer and Maltese, 2011), while other work supports the
opposite view whereby Rac1 activation is pro-survival by virtue
of the resultant “pro-oxidant” intracellular milieu. The mitogenic

activity of a mild but chronic elevation could alter the activities of
a plethora of intracellular signaling targets: activation of transcrip-
tion factors, oxidative inhibition of phosphatases and modulation
of protein kinases (Sauer et al., 2001), which in turn switch on the
downstream mediators of proliferation. Indeed, as a downstream
target for Ras, Rac1 activation and ROS production were shown
to contribute to Ras-induced mitogenic signaling in fibroblasts
(Irani et al., 1997). The oncogenic potential of Rac1, mediated
through ROS production, was highlighted in an earlier report
where we showed that a constitutively active mutant of Rac1,
namely V12, increased intracellular O−

2 production in human
melanoma M14 cells leading to chemoresistance, while transient
introduction of the dominant negative mutant N17 decreased O−

2
levels and enhanced apoptosis sensitivity. In addition, inhibition
of Rac1 in T24 bladder carcinoma cells expressing mutant Ras also
significantly decreased O−

2 levels and increased their sensitivity to
both receptor- and drug-induced apoptosis. On the contrary, the
effect could be reversed with inhibition of the cytosolic O−

2 scav-
enger Cu/ZnSOD, thus indicating that the apoptotic resistance of
oncogenic Ras-expressing cancer cells could be associated with an
increase in steady-state intracellular O−

2 mediated through Rac1
activation (Pervaiz et al., 2001).

INTERACTIONS OF Ras, Raf-1, AND Rac1 WITH Bcl-2 OR Bcl-xL TO
MODULATE THEIR ANTI-APOPTOTIC PROPERTIES
Ras
In lymphocytes, activated H-Ras can trigger Fas-mediated apop-
tosis which is inhibited through increased interaction of the BH4
domain of Bcl-2 with mitochondrial Ras. To that end, the CAAX
motif of Ras required for farnesylation is demonstrated to be
essential for its apoptotic signaling and Bcl-2 association. In addi-
tion, increased phosphorylation of Bcl-2 is observed with H-Ras
activation. Prevention of the phosphorylation and decreasing Bcl-
2’s association with Ras could sensitize cells to apoptosis (Denis
et al., 2003). In another study, a somewhat different picture is pre-
sented where the isoform K-Ras is found to associate with Bcl-xL
at the mitochondria. Phosphorylation of K-RasB at the polybasic
region reduces the net positive charge and weakens its association
with the plasma membrane. The electrostatic switch of K-RasB
thus results in its mitochondrial translocation neutralizing the
anti-apoptotic function of Bcl-xL (Bivona et al., 2006).

Raf-1
Raf-1, a signal transducing serine/threonine kinase in the Ras
pathway has also been shown to interact with Bcl-2 and inhibit
apoptosis (Wang et al., 1996). Upon phosphorylation by PAK1,
Raf-1 is targeted to the mitochondria through its interaction with
the BH4 domain of Bcl-2. Mitochondrial Raf-1 then phosphory-
lates Bad and releases Bcl-2 from Bad–Bcl-2 complex, promoting
cell survival (Jin et al., 2005).

Rac1
Similarly to Ras and Raf-1, we recently reported that Rac1 may
also be found at the mitochondrial membrane where it interacts
with Bcl-2. The BH3 domain and the adjacent flexible loop region
of Bcl-2 are involved in this interaction (Velaithan et al., 2011).
It is proposed that this interaction stabilizes Bcl-2’s anti-apoptotic
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activity through promotion of the pro-oxidant intracellular milieu
since transient transfection of the dominant negative mutant
Rac1N17 resulted in a decrease in O−

2 levels and an increase in
the sensitivity of Bcl-2-overexpressing chronic myeloid leukemia
(CEM) cells to receptor or drug-induced apoptosis (Clement et al.,
2003). Similar findings are observed with synthetic Bcl-2 BH3
domain peptides that disrupt the interaction or siRNA-mediated
silencing of Rac1 expression or a pharmacological inhibitor of
Rac1 (Velaithan et al., 2011). Interestingly, Rac2 instead of Rac1,
is implicated in the survival pathway of Bcl-xL by increasing the
expression levels of Bcl-xL and decreasing the expression levels
of Bad (Yang et al., 2000). In addition, overexpression of Bcl-xL
could rescue the effects seen with Rac2 deficiency (Mizukawa et al.,
2011). However, the existence of a physical interaction between
Rac2 and Bcl-xL is yet to be explored.

SIGNIFICANCE OF THE Bcl-2–RAS FAMILY CROSSTALKS IN
DRUG-RESISTANT CANCERS
One of the main challenges for cancer therapeutic manage-
ment is drug resistance, which could be contributed by several
mechanisms including target modification, drug inactivation,
drug extrusion, and apoptotic execution inhibition. Studies to
understand the molecular mechanisms governing chemothera-
peutic drug resistance show that both the Bcl-2 and Ras family
members are implicated either because of overexpression (as for
anti-apoptotic Bcl-2 family members; Reed, 1995; Nuessler et al.,
1999; Thomas et al., 2013; Zhang et al., 2012) or of ectopic muta-
tional activation (as for Ras, Raf; Weinstein-Oppenheimer et al.,
2001; McCubrey et al., 2012a). Table 1 lists some of the examples
of drug-resistant cancers or immortalized cells due to abnor-
mally regulated Bcl-2 and Ras pathways that act in concert. In
MCF-7 breast cancer cells, overexpression of the constitutively
active Raf-1 resulted in resistance toward doxorubicin. Induction

of Raf-1 activity led to increased Bcl-2 expression and a further
overexpression of Bcl-2 resulted in greater resistance (Davis et al.,
2003). In another study done in oncogene v-Ha-ras-transformed
NIH/3T3 cells, marked resistance toward alkylating agents such
as methylmethane sulfonate (MMS) was observed, which could
be partially explained by the constitutively elevated Bcl-2 pro-
tein levels in ras-transformed cells as compared to parental cells
(Kuo et al., 1997). Crosstalk between another isoform of Ras, c-K-
Ras and the pro-apoptotic Bcl-2 family member Bax is reported
as well where resistance to sulindac sulfide, a non-steroidal anti-
inflammatory drug from the arylalkanoic acid class, was observed
following ras-transformation which could probably be medi-
ated through specific down-regulation of Bax expression (Arber
et al., 1997). Furthermore, concurrent involvement of both Ras
and Bcl-2 pathways is observed in various other drug-resistant
cancer models, such as imatinib-resistant acute lymphoblas-
tic leukemia with Philadelphia chromosome (Ph+ ALL; Suzuki
et al., 2010), both cisplatin- and paclitaxel-resistant ovarian can-
cer (Wang et al., 2010) as well as VP-16- and cisplatin-resistant
prostate cancer (Sinha et al., 1995). However, the exact under-
lying molecular mechanisms of the crosstalks were not covered
in those studies. Further investigation on how the crosstalks
between the two families lead to drug resistance may lay a foun-
dation for designing adjuvant therapies aiming at improving
the success rate for many clinically available chemotherapeutic
drugs.

FUTURE PERSPECTIVES
Bcl-2 family proteins are well-known regulators of apoptosis
by virtue of their abilities to either promote (for pro-apoptotic
members) or prevent (for anti-apoptotic members) the outer
membrane permeabilization through homologous interactions
within the family. Recently, an alternative paradigm has surfaced

Table 1 | Bcl-2 and Ras family members’ crosstalks in drug-resistant cancers and immortalized cells.

Cancer types Resistant to Abnormal genetic/epigenetic events involved Reference

Breast cancer Doxorubicin;

paclitaxel

Ectopic activation of Raf-1 that led to increased Bcl-2 expression Davis et al. (2003)

v-Ha-ras-transformed

NIH/3T3 cells

Methylmethane

sulfonate (MMS)

Constitutively elevated Bcl-2 levels upon ras-transformation Kuo et al. (1997)

Immortalized rat enterocytes Sulindac Mutant K-Ras-mediated transformation led to resistance which might

result from specific down-regulation of Bax expression

Arber et al. (1997)

Philadelphia chromosome-

positive acute lymphoblastic

leukemia (Ph+ ALL)

Imatinib Concurrent increase in the activation of Ras, phosphorylation of MEK

and ERK, and expression of Bcl-2

Suzuki et al. (2010)

Ovarian cancer Cisplatin;

paclitaxel

Autocrine production of IL-6-mediated resistance is associated with

increased expression of Bcl-2 and Bcl-xL as well as activation of

Ras/MEK/ERK and PI3K/Akt pathways

Wang et al. (2010)

Prostate cancer VP-16; cisplatin Resistant cells harbor both Bcl-2 protein overexpression and H-Ras

mRNA overexpression

Sinha et al. (1995)

Non-small cell lung cancer

(NSCLC)

Gefitinib Combination treatment of gefitinib and lovastatin led to down-

regulation of Bcl-2 and up-regulation of Bax in cells with mutant K-Ras

Park et al. (2010)
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FIGURE 1 | Crosstalks between Ras and Bcl-2 family members.

where by overexpression of Bcl-2 confers survival advantage to
cancer cells by creating a pro-oxidant milieu. It should be stressed
that the Ras superfamily of small GTPases, comprising more than
100 members, is most diverse and versatile in signal transduc-
ing capabilities. The founding member Ras and Rac, a member
of the Rho subfamily, are implicated in anti-apoptotic signaling,
although controversial reports have demonstrated the paradoxical
role of both proteins in cell fate decision. The intriguing findings

on the associations between Ras GTPases or effectors in the path-
way like Raf-1 and Bcl-2 family members, be it direct physical
interaction or indirect correlation as summarized in Figure 1,
underscores the contrasting effects of Ras family members in pro-
moting cell survival or cell death. In addition, the converging role
of Rac1 and Bcl-2 in promoting the pro-oxidant state of cancer
cells through physical interaction opens up a new horizon for
future redox-based therapeutic designs.
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