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Class IA PI3Ks consists of three isoforms of the p110 catalytic subunit designated p110α,
p110β, and p110δ which are encoded by three separate genes. Gain-of-function mutations
on PIK3CA gene encoding for p110α isoform have been detected in a wide variety of
human cancers whereas no somatic mutations of genes encoding for p110β or p110δ have
been reported. Unlike p110α and p110β which are ubiquitously expressed, p110δ is highly
enriched in leukocytes and thus the p110δ PI3K pathway has attracted more attention
for its involvement in immune disorders. However, findings have been accumulated
showing that the p110δ PI3K plays a seminal role in the development and progression of
some hematologic malignancies. A wealth of knowledge has come from studies showing
the central role of p110δ PI3K in B-cell functions and B-cell malignancies. Further data
have documented that wild-type p110δ becomes oncogenic when overexpressed in cell
culture models and that p110δ is the predominant isoform expressed in some human
solid tumor cells playing a prominent role in these cells. Genetic inactivation of p110δ

in mice models and highly-selective inhibitors of p110δ have demonstrated an important
role of this isoform in differentiation, growth, survival, motility, and morphology with the
inositol phosphatase PTEN to play a critical role in p110δ signaling. In this review, we
summarize our understanding of the p110δ PI3K signaling pathway in hematopoietic cells
and malignancies, we highlight the evidence showing the oncogenic potential of p110δ in
cells of non-hematopoietic origin and we discuss perspectives for potential novel roles of
p110δ PI3K in cancer.
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GENERAL ASPECTS OF THE CLASS IA PI3Ks SIGNALING
PATHWAY
Class I phosphoinositide-3 kinases (PI3Ks) consist of a group
of enzymes that transmit signals inside cells by the produc-
tion of intracellular second messenger lipid signals. PI3Ks
phosphorylate inositol lipids at the 3-position of the inos-
itol ring, generating phosphatidylinositol (PI)-3-phosphate
(PI3P), phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] and
phosphatidyl-inositol-3,4,5-trisphosphate [PI(3,4,5)P3]. These
lipids trigger signal transduction cascades that control cell
division, survival, metabolism, intracellular trafficking, differ-
entiation, re-organization of the actin cytoskeleton, and cell
migration under the control of PI3Ks (Vanhaesebroeck et al.,
2001; Hawkins et al., 2006; Low et al., 2010; Zwaenepoel et al.,
2012). The PI3K isoforms that are activated by tyrosine kinases
and G-protein coupled receptors (GPCRs) are known as class
IA and IB PI3Ks, respectively (Figure 1). Class IA PI3Ks are
constitutive heterodimers of a 110 kDa catalytic subunit (p110)
with one of the five regulatory adaptor proteins (p85α, p55α,
p50α, p85β, or p55γ, collectively called “p85s”) that recruits
the p110 to intracellular locations of tyrosine kinase activation
(Vanhaesebroeck et al., 1997a, 2010) (Figure 1). Mammals have
genes for 3 class IA catalytic subunits designated p110α, p110β,
and p110δ (Vanhaesebroeck et al., 2010) (Figure 1). p110γ is the
only class IB PI3K. This kinase occurs in complex with the p101
(Stephens et al., 1997; Krugmann et al., 1999) or p84 (Suire et al.,

2005; Voigt et al., 2006) adaptor protein and is activated by the
Gβγ subunits of heterotrimeric G-proteins (Figure 1). However,
several studies have linked the p110β and p110δ isoforms of class
IA to GPCRs and the class IB p110γ to tyrosine kinases, the
mechanisms though are not yet clear (Sadhu et al., 2003; Reif
et al., 2004; Condliffe et al., 2005; Guillermet-Guibert et al., 2008;
Durand et al., 2009; Hoellenriegel et al., 2011; Schmid et al., 2011)
(Figure 1). All catalytic subunits of the class I PI3Ks contain bind-
ing domains for Ras GTPases (Figure 1) and their binding to
certain Ras proteins contributes to activation (Rodriguez-Viciana
et al., 1994; Jimenez et al., 2002).

Activation of tyrosine kinase receptors by growth factors
recruits class IA PI3 kinases to the cell membrane. Activated
growth factor receptors possess phosphorylated Tyr-X-X-Met
motifs in which bind with high affinity the regulatory sub-
units of class IA PI3Ks by their SH2 domains (Figure 1). In
cells, activated class IA PI3Ks phosphorylate primarily the phos-
phatidylinositol (PI)-4,5-bisphosphate [PI(4,5)P2] yielding the
product PI(3,4,5)P3 (Vanhaesebroeck et al., 2001) (Figure 2). The
generation of PI(3,4,5)P3 leads to the recruitment of adaptor
and effector proteins containing pleckstrin-homology (PH)-
domains, including regulators of small GTPases [such as guano-
sine nucleotide exchange factors (GEFs) and GTPase-activating
proteins (GAPs)] and Ser/Thr kinases (such as PDK1 and
Akt/PKB), which thus become located at the plasma membrane
(Klarlund et al., 1997; Krugmann et al., 2002; Welch et al., 2002;

www.frontiersin.org March 2013 | Volume 3 | Article 40 | 1

http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/10.3389/fonc.2013.00040/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NikiTzenaki&UID=66218
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Evangelia_(Litsa)Papakonstanti&UID=63880
mailto:epapak@med.uoc.gr
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Tzenaki and Papakonstanti p110δ PI3 kinase in cancer

FIGURE 1 | Simplified scheme showing the differential activation of

class IA and class IB PI3K isoforms. Class IA PI3Ks are heterodimers
consisting of a 110 kDa catalytic subunit (p110α, p110β, and p110δ) in
complex with a p85 regulatory subunit, of which five isoforms exist. Class
IA PI3Ks are activated by growth factor and cytokine receptors or adaptor
proteins (e.g., CD19/BCAP in B cells). Binding of the ligand to its receptor
leads to receptor dimerization and auto-phosphorylation of tyrosines (Y)
which are located in pYxxM motifs. The p85 regulatory subunits have
Src-homology 2 (SH2) domains which bind to phosphorylated tyrosines in

YxxM motifs recruiting thus the class IA PI3Ks to the plasma membrane
where their lipid substrates are located. Class IB PI3K consists of the
p110γ isoform which binds to p101 or p84 regulatory subunits. Class IB
PI3K is activated by G protein-coupled receptors (GPCRs). Binding of the
ligand (e.g., a chemokine) to its cognate GPCR induces the dissociation of
heterotrimeric G-proteins and the Gβγ subunits interact with the class IB
PI3K. Arrows with dashed lines represent activation of p110β and p110δ

downstream of GPCRs and activation of p110γ downstream of tyrosine
kinases by currently unknown mechanisms.

Marone et al., 2008). Small GTPases are activated (become GTP-
bound) by GEFs whereas the return from their active state to
an inactive state (GDP-bound) is catalyzed by GAPs (Figure 2).
Cyclic activation-inactivation of the small GTPases is required for
cell body to move properly (Ridley et al., 2003). PDK1, which is in
an active state under basal conditions, becomes additionally acti-
vated on cell stimulation (Alessi et al., 1997a; Pullen et al., 1998;
Currie et al., 1999) and phosphorylates Akt on Thr308 (Alessi
et al., 1997a,b; Stokoe et al., 1997; Stephens et al., 1998). Akt is
also phosphorylated on Ser473 (Alessi et al., 1996) by mTORC2
(mTOR complexed with the Rictor protein) (Sarbassov et al.,
2005) (Figure 2). Full activation of Akt kinase activity requires the
phosphorylation of both kinase domains of Akt (Bellacosa et al.,
1998).

Akt activates or inhibits a broad range of proteins including
mTORC1 (mTOR in complex with Raptor), BAD, FOXO, GSK-
3β, and p27, which are involved in the control of cell growth,
metabolism, survival, cell cycle, and migration (Manning and
Cantley, 2007) (Figure 2). Akt phosphorylates and inactivates the
tuberous sclerosis complex 1/2 (TSC1/2) which acts as a GAP pro-
tein on Ras homologue enriched in brain (RHEB), a guanosine
triphosphate (GTP)-binding protein (Garami et al., 2003; Li et al.,
2004). The role of GTP-bound RHEB is to activate mTORC1

and consequently its downstream effector proteins (Inoki et al.,
2003). Thus, increased Akt activity promotes the activation of
mTORC1 because Akt inactivates TSC1/2 (Figure 2). The multi-
ple roles of mTORC1 and especially those correlated with mRNA
translation and cell cycle has made the PI3K/Akt/mTORC1 axis
an attractive target for the development of dual PI3K/mTOR
inhibitors, mTOR-selective inhibitors and Akt inhibitors as anti-
cancer drugs (Marinov et al., 2007; Sabbah et al., 2011; Castillo
et al., 2012; Sheppard et al., 2012; Weigelt and Downward, 2012;
Willems et al., 2012).

Akt also phosphorylates the death promoter BAD leading to
the release of the anti-apoptotic proteins Bcl-2 and Bcl-XL (Datta
et al., 1997; Peso et al., 1997). GSK-3 which regulates glucose
metabolism and apoptosis is also controlled by Akt (Jope and
Johnson, 2004). Phosphorylation of GSK-3β by Akt prevents its
activity leading to the accumulation of cyclin D1 and the con-
sequent transition of cells from G1 to the S phase of the cell
cycle (Liang and Slingerland, 2003). Other substrates of Akt are
the class O of transcription factors (FOXOs) that are known
regulators of the cell cycle. Phosphorylated FOXOs bind to the
14-3-3 proteins resulting in the exclusion of FOXOs of the nucleus
which leads to the increased transcription of cyclin D1 and to the
reduced transcription of the p27 CDK inhibitor (CKI) (Alvarez
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FIGURE 2 | Simplified scheme showing the critical role of Class IA

PI3Ks in multiple cellular functions. Upon PI3Ks activation, PI(3,4,5)P3 is
produced and recruits Akt at the cell membrane where it becomes
phosphorylated at The308 by PDK1 and at Ser473 by mTORC2. Fully
activated Akt phosphorylates a variety of effector molecules including the
TSC1/2, BAD, FOXO, GSK-3β, and p27 which then control cell growth,

metabolism, survival, cell cycle, or migration. PI(3,4,5)P3 also activates
GEFs or GAPs which then regulate the activity of small GTPases
controlling cell motility. The PI(3,4,5)P3 levels produced by PI3Ks are
regulated by the PTEN phosphatase which counteracts the PI3K reaction
by dephosphorylating the 3-position of the inositol ring of PI(3,4,5)P3

yielding back PI(4,5)P2.

et al., 2001; Burgering and Medema, 2003). Upon cytosolic local-
ization of FOXOs also the transcription of FasL is prevented
leading to the blockage of apoptosis. Akt also regulates post-
translationally the p21 and p27 CKIs by phosphorylating them
resulting in their exclusion of the nucleus (Zhou et al., 2001;
Fujita et al., 2002; Liang et al., 2002) which consequently leads to
increased cell proliferation due to decreased inhibition of cyclins.
p27 acts as an oncoprotein in the cytoplasm where it binds to and
inhibits RhoA thus promoting cell migration (Besson et al., 2004).
The cytoplasmic localization of p21 and p27 is associated with
high tumor grade, tumor cell invasiveness and metastasis (Sáez
et al., 1999; Slingerland, 2000; Philipp-Staheli et al., 2001).

The PI3K/Akt signaling pathway is regulated by phosphatases
with the phosphatase and tensin homologue deleted on chromo-
some 10 (PTEN) lipid phosphatase being the most extensively
investigated. The PTEN tumor suppressor protein antagonizes the
PI3K activity by dephosphorylating the 3-position of the inosi-
tol ring of PI(3,4,5)P3 (Maehama and Dixon, 1998) (Figure 2)
thus controlling cell survival (Stambolic et al., 1998; Leslie and
Downes, 2002; Sulis and Parsons, 2003). Reduced or lost activity

of PTEN creates a state in which PI(3,4,5)P3 production is mis-
regulated contributing to the constitutive activation of the PI3K
pathway (Leslie and Downes, 2004; Parsons, 2004; Sansal and
Sellers, 2004; Cully et al., 2006) and to abnormal cell growth (Ali
et al., 1999; Vivanco and Sawyers, 2002; Luo et al., 2003).

The tissue distribution and the regulation of class IA PI3Ks
expression have been determined using various approaches (Kok
et al., 2009a,b). Reporter mice with a β-Gal-LacZ reporter gene
inserted into endogenous p110 loci by homologous recombina-
tion were proven very useful in determining the distribution of
p110α (Foukas et al., 2006) and p110δ (Okkenhaug et al., 2002;
Eickholt et al., 2007). Whereas p110α and p110β were found to be
globally expressed (Hu et al., 1993; Bi et al., 1999, 2002; Geering
et al., 2007), p110δ is predominantly expressed in white blood
cells (Chantry et al., 1997; Vanhaesebroeck et al., 1997b). p110δ is
also expressed at high levels in some cancer cell lines and human
tissues of non-leukocyte origin such as breast cancer cells (Sawyer
et al., 2003; Tzenaki et al., 2012) and at moderate levels in neurons
(Eickholt et al., 2007). The mechanism by which the expression
of p110δ PI3K is regulated has recently been explored (Edwards
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et al., 2009; Kok et al., 2009b; Calvanese et al., 2012; Whitehead
et al., 2012). A highly conserved transcription factor binding
cluster in the PI3KD gene was identified and found to display
higher promoter activity in leukocyte compared to non-leukocyte
cells providing an explanation for the highly enriched p110δ lev-
els in leukocytes (Kok et al., 2009b; Whitehead et al., 2012).
Transcriptional regulation of PIK3CD by RUNX1 (Edwards et al.,
2009) and leukocyte-dependent promoter DNA hypomethylation
(Calvanese et al., 2012) were also proposed to be involved in high
p110δ expression. It is possible that p110δ expression is transcrip-
tionally regulated also in non-leukocyte cells that express high
levels of p110δ, such as breast cancer cells, by leukocyte-related
transcription factors which have been found to be activated in
breast cancers (Teschendorff et al., 2007).

The three isoforms of class IA PI3K have identical enzy-
matic activities but they have non-redundant functions in
cell signaling, metabolism, and tumorigenesis (Roche et al.,
1994, 1998; Vanhaesebroeck and Waterfield, 1999; Hill et al.,
2000; Hooshmand-Rad et al., 2000; Leverrier et al., 2003;
Vanhaesebroeck et al., 2005; Foukas et al., 2006; Ali et al., 2008;
Graupera et al., 2008; Papakonstanti et al., 2008). Since cancer-
specific gain-of-function mutations were reported in PIK3CA
gene (Campbell et al., 2004; Samuels and Velculescu, 2004), which
encodes the p110α PI3K, this isoform has been placed in the
center of cancer research. In contrast, no somatic mutations of
genes encoding p110β or p110δ have been reported (Samuels
and Velculescu, 2004; Thomas et al., 2007; Wood et al., 2007;
Parsons et al., 2008; TGCA, 2008). Gene targeting and pharma-
cological studies have revealed a key role of p110β in platelet
biology and thrombosis (Jackson et al., 2005) whereas recent
studies have also shown a role of p110β in certain cancers and
especially in tumor cells lacking PTEN (Ciraolo et al., 2008; Jia
et al., 2008; Torbett et al., 2008; Wee et al., 2008; Zhu et al.,
2008). Given that p110δ is preferentially expressed in leukocytes,
the functional role of p110δ has been studied in immune system
(Clayton et al., 2002; Jou et al., 2002; Okkenhaug et al., 2002; Ali
et al., 2004; Aksoy et al., 2012) and this isoform has been more
considered as target in immunity and inflammation (Rommel
et al., 2007; Rommel, 2010; Soond et al., 2010). However, find-
ings have been accumulated showing a seminal role of p110δ

PI3K in lymphoid and myeloid malignancies. Furthermore,

p110δ-selective inhibitors have entered clinical studies showing
effective clinical outcomes in some hematologic malignancies
(Fruman and Rommel, 2011; Castillo et al., 2012). Further data
have also suggested a promising role of p110δ PI3K in onco-
genesis and cancers of non-hematopoietic origin (Knobbe and
Reifenberger, 2003; Mizoguchi et al., 2004; Boller et al., 2008;
Zhao and Vogt, 2008a; Jia et al., 2009; Vogt et al., 2009; Jiang et al.,
2010; Tzenaki et al., 2012). The malignancies with aberrant p110δ

signaling that will be discussed below are summarized in Table 1.
In this review, we go over the main points of the evidence

showing the critical role of p110δ PI3K in hematopoietic cells
and malignancies, we highlight findings suggesting an emerg-
ing role of p110δ in non-hematologic cancers and discuss how
a better understanding of p110δ regulation and function might
reveal cancer contexts in which p110δ-selective inhibitors alone
or in combination with inhibitors of other components of PI3K
pathway could be beneficial.

ROLE OF p110δ PI3K IN B CELLS AND B-CELL
MALIGNANCIES
B cells express all isoforms of the class I PI3K catalytic subunit
(Bilancio et al., 2006), however, the p110δ PI3K was found to play
a predominant role in most of the functions of B cells. The role
of p110δ in B-cell development has been demonstrated by studies
in p110δ knock-out (KO) and p110δ knock-in (KI) mice (Clayton
et al., 2002; Jou et al., 2002; Okkenhaug et al., 2002; Beer-Hammer
et al., 2010; Ramadani et al., 2010). These mice comprise signif-
icantly reduced numbers of mature circulating B cells because
of delayed B cell maturation at the pro-B cell stage within the
bone marrow whereas in B cells that eventually become mature
the chemokine-induced migration, B-cell receptor (BCR) signal-
ing, and BCR-induced proliferation were found to be impaired
(Clayton et al., 2002; Jou et al., 2002; Okkenhaug et al., 2002; Reif
et al., 2004). Although, the class IB p110γ PI3K is not essential for
B-cell development (Sasaki et al., 2000), combined inactivation of
both p110γ and p110δ led to greater reduction of peripheral B-cell
numbers than p110δ inactivation alone, suggesting that p110γ

and p110δ may have overlapping functions in B-cell development
(Beer-Hammer et al., 2010). Studies using mice with p110α defi-
ciency in lymphocytes showed that p110α is not essential for B
cell development and BCR signaling, however, deletion of both

Table 1 | Malignancies with aberrant p110δ signaling highlighted in this review.

Malignancy p110δPI3K aberration

Hematological malignancies

Chronic lymphocytic leukemia (CLL)

Over-activation of p110δ signaling

Multiple myeloma (MM)

Diffuse large B-cell lymphoma (DLBCL)

Hodgkin’s lymphoma (HL)

Acute myeloid leukemia (AML)

Acute promyelocytic leukemia (APL)

Solid non-hematologic tumors

Glioblastoma Overexpression of p110δ mRNA, increased copy number of PIK3CD

Prostate carcinoma Overexpression of p110δ mRNA

Neuroblastoma
Overexpression of p110δ protein

Breast carcinoma
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p110α and p110δ isoforms blocked B cell development suggesting
that only p110δ is required for antigen-dependent B-cell activa-
tion triggered by the BCR whereas p110α contributes to antigen
independent tonic pre-BCR and BCR signaling (Ramadani et al.,
2010). Lymphocyte-specific inactivation of p110β or combined
inactivation of p110β and p110δ did not affect B cell development
and activation (Ramadani et al., 2010).

In resting B cells, the TC21 GTPase was found to recruit the
p85α/p110δ PI3K to non-phosphorylated BCR immunoreceptor
tyrosine-based activation motifs (ITAMs) (Delgado et al., 2009).
Although this finding is not supported by the data suggesting a
role of p110α in antigen-independent pre-BCR and BCR survival
signals (Ramadani et al., 2010), it is possible that both p110α and
p110δ are recruited to the BCR by TC21, however, this remains
to be determined. Upon antigen binding to BCR, the ITAMs in
the cytoplasmic tails of Ig-α and Ig-β (Reth, 1992) are tyrosine
phosphorylated by Lyn leading to recruitment and activation of

Syk initiating thus the downstream signaling cascade (Kurosaki
et al., 1994; Beitz et al., 1999) (Figure 3). The tyrosine phos-
phorylation of the scaffolding proteins CD19 and B-cell adaptor
protein (BCAP) creates Src-homology 2 (SH2)-binding domains
which allow the binding of the SH2 domains of the p85 sub-
unit and the recruitment of the p85/p110 complex to the cell
membrane (Tuveson et al., 1993; Fujimoto et al., 2000; Okada
et al., 2000; Yamazaki et al., 2002; Aiba et al., 2008) (Figure 3).
Downstream of PI3K, the BCR signaling pathways include the
activation of Akt which then regulates the GSK-3, mTOR, and
NF-kB pathway as well as the activation of Bruton’s tyrosine
kinase (Btk), which then induces the activation of phospholy-
pase C-γ (Spaargaren et al., 2003; Fruman, 2004) (Figure 3).
PLCγ is an enzyme that catalyzes the hydrolysis of PI(4,5)P2
to generate the second messengers inositol 1,4,5-trisphosphate
[I(1,4,5)P3] and diacylglycerol (DAG) that regulate the reorgani-
zation of cytoskeleton and cell adhesion by inducing an increase

FIGURE 3 | p110δ PI3K pathway in B cells. Engagement of BCRs by
antigen induces the phosphorylation of ITAMs in the cytoplasmic tails
of Ig-α and Ig-β by Lyn leading to recruitment and activation of Syk via
ITAMs and to initiation of downstream signaling cascade. Tyrosine
phosphorylation of the co-receptor CD19 and BCAP recruits p110δ PI3K
through SH2 interactions leading to production of PI(3,4,5)P3 which
recruits PH-domain containing proteins such as Akt, Btk, and PLCγ2.
Akt controls the activity of multiple signaling molecules and pathways
such as the mTORC1, GSK-3, and the NF-kB pathway. Btk

phosphorylates and activates PLCγ2 which then catalyzes the hydrolysis
of PI(4,5)P2 yielding I(3,4,5)P3 and diacylglycerol (DAG). I(3,4,5)P3
initiates Ca2+ mobilization and DAG induces the activation of protein
kinase C (PKC) isoforms. The p110δ PI3K also functions downstream of
the cytokine receptors BAFFR and IL6R, which are activated by BAFF
and IL-6, respectively, derived from lymphoid stromal cells, and
downstream of the IL4R which is activated by IL-4 derived from T cells.
Chemokine receptors (CXCR5) and co-stimulatory receptors (CD40,
TLRs) also induce the activation of p110δ PI3K in B cells.
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in intracellular free-calcium levels and the activation of multi-
ple protein kinase C (PKC) isoforms (Figure 3) and downstream
signaling molecules (Papakonstanti et al., 2000; Fruman, 2004).
The p110δ PI3K signaling pathway is also activated by cytokines
like BAFF and IL6 (Patke et al., 2006; Henley et al., 2008) and
chemokines like CXCL13 (Reif et al., 2004) derived from lym-
phoid stromal cells, by cytokines like IL-4 derived from T cells
(Bilancio et al., 2006) and by co-stimulatory receptors such as
CD40 and Toll-like receptors (TLRs) (Arron et al., 2001; Ni et al.,
2012; So and Fruman, 2012; Troutman et al., 2012) (Figure 3).
The mechanism that links the activation of p110δ to G protein-
coupled chemokine receptors (such as the CXCR5) is not cur-
rently known. That p110δ PI3K mediates the effects of multiple
receptors on B cells is consistent with substantial evidence docu-
menting a central role of this enzyme in B cell development and
activation (Okkenhaug and Fruman, 2010).

The critical role of p110δ in homeostasis and function of B
cells combined with the fact that PIC3CA and PTEN gene muta-
tions are rare in B cell malignancies (Leupin et al., 2003; Georgakis
et al., 2006; Ismail et al., 2010) made the p110δ PI3K pathway to
attract the interest in understanding its potential involvement in
malignant B cells. Indeed, there is mounting evidence showing
that the p110δ PI3K pathway is over-activated in B cell malig-
nancies because of alterations in BCR signaling and other signals
provided by factors from tumor microenvironment (Pauls et al.,
2012). Significantly higher levels of p110δ PI3K activity have
been determined in cells from patients with chronic lympho-
cytic leukemia (CLL) compared with normal hematopoietic cells
(Herman et al., 2010) whereas overactivation of p110δ has also
been found in multiple myeloma (MM) cell lines and cells from
patients with MM (Ikeda et al., 2010) as well as in cell lines and
cells from patients with Hodgkin’s lymphoma (HL) (Meadows
et al., 2012).

The critical role of p110δ in B cells led to the development of
highly p110δ-specific inhibitors for treatment of B-cell malignan-
cies (Norman, 2011) including the initially developed CAL-101
(GS-1101) (Fruman and Rommel, 2011; Lannutti et al., 2011).
The activity of CAL-101 and other p110δ-selective inhibitors
have been studied in cell lines and patient cells from different
B-cell malignancies including CLL, MM, diffuse large B-cell lym-
phoma (DLBCL), and HL (Herman et al., 2010; Ikeda et al., 2010;
Hoellenriegel et al., 2011; Lannutti et al., 2011; Meadows et al.,
2012) (Table 2). Inhibition of p110δ PI3K by CAL-101 in cells
from patients with CLL led to inhibition of Akt and ERK and
consequently to reduced B-CLL survival (Herman et al., 2010;
Hoellenriegel et al., 2011). Furthermore, inhibition of p110δ leads
to blockade of protective microenvironmental signals on B-CLL.
Indeed, survival signals induced by in vitro stimulation of B-CLL
with TNFα, BAFF and CD40L were attenuated by CAL-101 treat-
ment (Herman et al., 2010). The protective effect provided in
B-CLL by their culture on fibronectin or stomal cells or their
co-culture with nurse-like cells (NLC) was also blocked by inhi-
bition of p110δ activity (Herman et al., 2010; Hoellenriegel et al.,
2011). In these co-culture systems, elimination of p110δ activity
additionally led to decreased secretion of the chemokines CCL2,
CCL3 from CLL cells, CXCL13 from stromal cells, various sur-
vival factors from NLC and inhibited the chemotaxis of B-CLL

to CXCL12, CXCL13 and stromal cell lines (Hoellenriegel et al.,
2011). The later result is in line with previous findings show-
ing that B cells derived from p110δ KO mice poorly respond
to CXCL13 and exhibit reduced homing to lymphatic tissues
(Reif et al., 2004). Similarly, the p110δ selective inhibitor IC87114
(Sadhu et al., 2003) inhibited the B cell chemotaxis to CXCL13
and S1P in vitro and led to depletion of MZ B cells from the spleen
in vivo (Durand et al., 2009). A potential involvement of p110α,
p110β, and p110γ in CLL has been indicated by a study show-
ing that pharmacological inhibition of each of these isoforms
inhibited the proliferation of CLL cells (Shehata et al., 2010).

The above summarized data suggested that inhibition of
p110δ by CAL-101 reduces the B-CLL survival driven by B-cell
molecules and furthermore acts by blocking cells to access protec-
tive niches inhibiting the environmental protective interactions
that otherwise would promote B-cell survival and proliferation.
These were promising results for potential efficacy of p110δ

inhibition in CLL patients since CLL is characterized by the
accumulation of B lymphocytes in the peripheral blood, lymph
nodes, and bone marrow (Cheson et al., 1996; Hallek et al.,
2008). Indeed, the phosphorylation of Akt in B-CLL and the
plasma levels of CXCL13, CCL3, CCL4, and TNFα were found
to be significantly reduced in patients treated with CAL-101
(Hoellenriegel et al., 2011; Sharman et al., 2011) suggesting that
inhibition of p110δ disrupts the interactions of B-CLL from their
protective microenvironment. These results are consistent with
the increased numbers of B-CLL found in the peripheral blood
of the CAL-101-treated patients (Sharman et al., 2011) indicat-
ing a release of lymphocytes from lymphoid tissues or a failure
to home into lymph nodes which consequently leads to reduced
lymph node size (Hoellenriegel et al., 2011; Castillo et al., 2012). It
seems therefore that inhibition of p110δ in B-CLL in vivo is more
efficient to release B-CLL from their microenvironment than to
kill them which is consistent with recent data showing that even
extremely reduced levels of class I PI3K activity are sufficient to
sustain cell survival (Foukas et al., 2010). Inhibitors of Syk or Btk
that also involved in BCR signaling (Figure 3) led to similar clin-
ical responses (Herman et al., 2011; Ma and Rosen, 2011; Burger,
2012; De Rooij et al., 2012; Ponader et al., 2012; Puri and Gold,
2012).

Similar effects of CAL-101 and other p110δ inhibitors have
been observed on other B-cell malignancies such as MM, DLBCL,
and HL (Ikeda et al., 2010; Lannutti et al., 2011; Meadows et al.,
2012) (Table 2). The important role of p110δ in MM pathogen-
esis was indicated by its high expression in patient MM cells
(Ikeda et al., 2010). Suppression of p110δ expression or inhibi-
tion of p110δ activity by CAL-101 in MM cell lines and patient
MM cells decreased the phosphorylation of Akt and P70S6K and
inhibited cells growth (Ikeda et al., 2010). The implication of
p110δ in protective signals derived from bone marrow microen-
vironment seems to be the case also in MM since CAL-101
inhibited MM cells growth and Akt and P70S6K phosphory-
lation in cells treated with IL-6 and insulin growth factor-1
(IGF-1) or co-cultured with bone marrow stromal cells (Ikeda
et al., 2010). The effects of p110δ inhibition was also confirmed
in two xenograft mouse models of human MM, where p110δ-
inhibors prevented the growth of transplanted human MM cells
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Table 2 | Summarized findings showing the effects of p110 isoform-selective inhibitors in cell lines and patient cells from different

hematological malignancies and in animal models described in the text.

Malignancy Targeted isoform

p110δ p110α p110β p110γ

B-CLL • Inhibition of p-Akt and p-ERK • Decreased
proliferation of CLL
cells

• Decreased proliferation of CLL
cells

• Decreased
proliferation of CLL
cells

• Inhibition of B-CLL survival

• Inhibition of TNFα-, BAFF- and CD40L-induced
survival

• Inhibition of protective effects provided by
fibronectin, stomal cells or NLC

• Decreased secretion of CCL2 and CCL3 from
CLL cells, CXCL13 from stromal cells, various
survival factors from NLC

• Inhibition of chemotaxis of B-CLL to CXCL12,
CXCL13, S1P and stromal cell lines

• Depletion of MZ B cells from the spleen

References Durand et al. (2009), Herman et al. (2010),
Hoellenriegel et al. (2011)

Shehata et al. (2010) Shehata et al. (2010) Shehata et al. (2010)

MM • Inhibition of phosphorylation of Akt and P70S6K Not determined Not determined Not determined

• Inhibition of MM cells growth

• Inhibition of IL6-, IGF-1- or stromal cells-induced
phosphorylation of Akt, P70S6K and cell growth

• Inhibition of growth of transplanted human MM
cells in xenograft mouse models

Reference Ikeda et al. (2010)

DLBCL • Inhibition of phosphorylation of Akt and S6 Not determined Not determined Not determined

• Increased cleavage of the apoptotic markers
caspase 3 and poly (ADP-ribose) polymerase

Reference Lannutti et al. (2011)

HL • Inhibition of phosphorylation of Akt Not determined Not determined Not determined

• Induction in apoptosis

• Inhibition of stroma cells-induced Akt activation

• Disruption of survival signals mediated by CCL5,
CCL17, and CCL22 in co-cultures of HL cells with
stromal cells

Reference Meadows et al. (2012)

AML • Inhibition of Akt phosphorylation • Reduction in AML
blast colony
forming cells

• Modest effect in AML blast
colony forming cells

• Modest effect in
AML blast colony
forming cells

• Reduction in viable cells number

• Reduction in NF-kB activity

• Enhancement of cytotoxic effects of VP16

References Sujobert et al. (2005), Billottet et al. (2006) Xing et al. (2012) Xing et al. (2012) Xing et al. (2012)

APL • Suppression of the ATRA-induced
phosphorylation of Akt and S6

• No effect • Suppression of the
ATRA-induced
phosphorylation of Akt and S6

• No effect

• Induction in apoptosis • Induction in apoptosis

References Billottet et al. (2009) Billottet et al. (2009) Billottet et al. (2009) Billottet et al. (2009)
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and prolonged the host survival (Ikeda et al., 2010). Inhibition
of p110δ activity by CAL-101 in DLBCL cell lines reduced the
phosphorylation of Akt and S6 and increased the cleavage of the
apoptotic markers caspase 3 and poly(ADP-ribose) polymerase
(Lannutti et al., 2011). CAL-101 also decreased the phospho-
rylation of Akt and induced apoptosis in HL cell lines and
moreover blocked the stroma cells-induced Akt activation in
HL cells and disrupted the survival signals mediated by CCL5,
CCL17, and CCL22 in co-cultures of HL cells with stromal cells
(Meadows et al., 2012).

Various mechanisms that alter the activity of protein tyro-
sine kinases and phosphoinositide phosphatases that are involved
in BCR signaling have been proposed to account for the over-
activation of the PI3K pathway in malignant B-cells. Lyn kinase
was found to be over-expressed in CLL and its inhibition led
to induced apoptosis (Contri et al., 2005; Trentin et al., 2008).
Syk is also over-expressed and constitutively phosphorylated and
activated in CLL (Buchner et al., 2009; Efremov and Laurenti,
2011). The zeta-associated protein of 70-kD (ZAP-70) kinase,
which is a Syk family kinase, is expressed in a subset of B-
CLL patients (Rosenwald et al., 2001) and has been implicated
in the elevated PI3K activity since its introduction in B cells
that do not express ZAP-70 led to increased Akt phosphoryla-
tion (Gobessi et al., 2007). Other experiments have revealed that
ZAP-70 functions as an adaptor protein in BCR signaling (Chen
et al., 2008) and that the phosphorylation of Syk, PLCγ, and
BLNK is enhanced in B-cell ZAP-70 positive compared to B-cell
ZAP-70 negative CLL (Chen et al., 2005) which could indirectly
alter the PI3K activity. B cells from ZAP-70 positive CLL patients
were also found to express decreased levels of the SHIP phos-
phatase which affects PI3K signaling by dephosphorylating the
product of PI3Ks PI(3,4,5)P3 producing PI(3,4)P2 (Brauweiler
et al., 2000). The lipid phosphatase PTEN which directly antag-
onizes the PI3K pathway (Maehama and Dixon, 1998) has been
found to be rarely mutated in B cell malignancies (Grønbæk et al.,
1998; Sakai et al., 1998), however, its expression was found to
be reduced or lost in CLL (Leupin et al., 2003). This has been
attributed to be a result of miR-17-92 overexpression which nega-
tively regulates PTEN expression in various leukemias (Lenz et al.,
2008; Rao et al., 2012). Reduced PTEN activity has also been
found in CLL (Shehata et al., 2010) which might be a result of
overexpression and overactivation of CK2 that were also detected
in CLL and blockade of CK2 decreased PTEN phosphorylation
leading to PTEN activation (Shehata et al., 2010; Martins et al.,
2011). Other than the control of PTEN activity by CK2 (Torres
and Pulido, 2001), a variety of mechanisms regulate the activity
of the PTEN tumor suppressor in B cells (Pauls et al., 2012) and
might also be involved in B-cell malignancies, a possibility that
remains to be determined.

ROLE OF p110δ PI3K IN MYELOID MALIGNANCIES
Besides the B-cell malignancies, the role of class IA PI3Ks has
been also studied in some myeloid malignancies (Table 2). Acute
myeloid leukemia (AML) is characterized by the uncontrolled
survival and proliferation of immature myeloid cells and their
abnormal accumulation in the bone marrow. PI3K/Akt pathway
was found to be constitutively activated in leukemic cells of AML

patients, contributing to unrestricted cell survival and prolifera-
tion (Min et al., 2003; Xu et al., 2003; Zhao et al., 2003; Doepfner
et al., 2007). Further studies have demonstrated that p110δ was
the main PI3K isoform that was involved, as it was indicated from
the higher p110δ expression levels, compared to other isoforms,
in blast cells of AML patients (Sujobert et al., 2005). Treatment of
these cells with the p110δ-specific inhibitor IC87114, suppressed
the constitutive Akt activation (Sujobert et al., 2005; Billottet
et al., 2006) to equal levels as those observed upon the pan-PI3K
inhibitor LY294002 treatment (Sujobert et al., 2005) confirming
that the p110δ is the main isoform contributor of PI3K activ-
ity in AML cells. It is of note that IC87114 did not affect the
proliferation of normal hematopoietic progenitor cells (Sujobert
et al., 2005). The combination of IC87114 with other antineo-
plastic agents such a topoisomerase II inhibitor VP16, which is
used in AML patients treatment, further reduced AML cell num-
bers and NF-kB activity and most profoundly induced apoptosis
(Billottet et al., 2006). Thus, the use of p110δ-specific inhibitors in
combination with other cytotoxic drugs, may offer the maximum
therapeutic efficiency in AML pathology accompanied with min-
imum overall toxicity. A recent study has shown that inhibition of
p110α is also effective in killing AML blast colony forming cells
(Xing et al., 2012), however, the concentration of p110α inhibitor
used in this study was much higher (more than 1000 fold higher)
than the IC50 value of this compound (Hayakawa et al., 2007)
making thus unclear whether this inhibitor retains its isoform
selectivity. Inhibitors for p110β or p110γ had a very modest effect
(Xing et al., 2012).

Acute promyelocytic leukemia (APL) is a relative to AML
malignancy, characterized by the increased accumulation of
abnormal promyelocytes to the bone marrow due to their inabil-
ity to differentiate normally and to their increased resistance in
apoptotic signals. Similar to AML, p110δ seems to contribute in
the constitutive PI3K signaling observed in APL promyelocytes
(Billottet et al., 2009). However, p110β is also involved in APL and
in line with this, both isoforms are consistently expressed in APL
cells (Billottet et al., 2009). All-trans retinoic acid (ATRA) is an
agent used in APL treatment because of its potential to promote
the differentiation of promyelocytic leukemic cells by regulat-
ing the PI3K/Akt/mTOR pathway (Lal et al., 2005). Inhibition
of p110δ or p110β suppressed the ATRA-induced Akt and S6
phosphorylation without affecting the ATRA-induced differenti-
ation (Billottet et al., 2009). Dual inhibition of both p110δ and
p110β activity promoted the apoptosis of primary APL cells in the
presence and in the absence of ATRA treatment (Billottet et al.,
2009). These results suggested that inhibition of p110δ and p110β

combined with differentiation induced treatments may represent
potential therapeutic targets in APL.

The mechanism leading to the dominant activity of p110δ

in myeloid malignancies is not yet completely clear. The most
profound reason seems to be its high expression in leukocytes
since no mutations on PIK3CD gene have been found in sam-
ples from AML patients (Cornillet-Lefebvre et al., 2005). The
PTEN expression levels were also readily detected in AML sam-
ples and its phosphorylation on S380/T382/T383 was marginally
affected (Billottet et al., 2006), indicating that other mecha-
nisms are involved in the constitutive Akt activation in AML.
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The constitutive p110δ activity in AML could be triggered by
upstream factors and autocrine mechanism. Previous studies had
shown that insulin growth factor-1 receptor (IGF-1R) signaling
is constitutively activated in AML cells through IGF-1 autocrine
production (Doepfner et al., 2007; Tazzari et al., 2007). The IGF-
1R was found to be constitutively phosphorylated in all leukemic
cells tested, whereas its inhibition with neutralizing anti-IGF-1R
strongly inhibited the phosphorylation of Akt and cell prolif-
eration in AML cells (Chapuis et al., 2010). Inhibition of both
p110β and p110δ impaired the IGF-1 stimulated Akt activation,
cell growth and survival, suggesting that both isoforms are acti-
vated downstream of IGF-1 signaling in AML cells (Doepfner
et al., 2007).

A PROMISING ROLE OF p110δ PI3K EMERGES IN
NON-HEMATOLOGIC CANCERS
Since the p110δ PI3K was cloned and characterized (Chantry
et al., 1997; Vanhaesebroeck et al., 1997b) an increasing cat-
alog of evidence showing p110δ-isoform specific functions in
hematopoietic cells have suggested p110δ as a potential ther-
apeutic target in immunity, inflammation, and hematological
malignancies (Rommel et al., 2007; Okkenhaug and Fruman,
2010; Rommel, 2010; Soond et al., 2010; Fruman and Rommel,
2011). The p110δ-isoform specific functions were demonstrated
by mice with inactivated p110δ (Clayton et al., 2002; Jou et al.,
2002; Okkenhaug et al., 2002; Ali et al., 2004; Aksoy et al., 2012)
and by p110δ-selective inhibitors such as the IC87114 compound,
which was the first isoform-selective inhibitor published (Sadhu
et al., 2003), and the CAL101 which has recently entered clini-
cal studies for hematologic malignancies (Fruman and Rommel,
2011; Castillo et al., 2012). It was the preferential expression
of p110δ in leukocytes (Chantry et al., 1997; Vanhaesebroeck
et al., 1997b) together with the absence of somatic mutations in
PIK3CD gene that placed p110δ PI3K in the realm of immune
system and hematologic cancers.

A non-expecting role of p110δ in oncogenesis of non-
hematopoietic cells was first observed in avian fibroblasts in
which overexpression of wild-type p110δ induced oncogenic
transformation (Kang et al., 2006). The p110δ-overexpressing
cells were found to express elevated levels of phosphorylated Akt,
comparable to those detected in cells expressing the oncogenic
H1047R p110α mutant (Kang et al., 2006). The p110δ onco-
genic activity was not required binding of p110δ to RAS and
was resistant to inhibitors of the MAPK pathway (Zhao and
Vogt, 2008a; Vogt et al., 2009). Further data have also suggested
a role of p110δ in non-hematologic human cancers (Table 1).
Overexpression of p110δ mRNA and increased copy number of
the PIK3CD gene were found in some cases of glioblastoma
(Knobbe and Reifenberger, 2003; Mizoguchi et al., 2004). p110δ

mRNA was also found to be increased in prostate carcinoma com-
pared with normal prostate (Jiang et al., 2010). Abnormally high
p110δ expression levels were found in primary neuroblastoma tis-
sue compared with the normal adrenal gland tissue (Boller et al.,
2008) and suppression of p110δ expression in neuroblastoma cells
led to impaired cell growth and survival (Boller et al., 2008). All
this evidence suggested that the expression levels of wild-type
p110δ might correlate with its oncogenic potential.

Recent data documented that p110δ PI3K inhibits the activity
of the PTEN tumor suppressor via a negative signaling pathway
that involves inhibition of RhoA/ROCK (Papakonstanti et al.,
2007) (Figure 4). The activation of p110δ PI3K was found to
positively regulate the p190RhoGAP activity and to result in
the accumulation of p27 in the cytoplasm (Papakonstanti et al.,
2007). Given that p190RhoGAP catalyzes the return of RhoA-
GTP (active state) to RhoA-GDP (inactive state) (Bernards and
Settleman, 2005) and p27 prevents the return of RhoA-GDP to
RhoA-GTP (Besson et al., 2004) the activation of p110δ leads
to decreased RhoA activity and consequently to decreased PTEN
activity. Upon genetic or pharmacological inactivation of p110δ

FIGURE 4 | p110δ PI3K mediates the effects of CSF-1 or EGF via RhoA

and PTEN in macrophages and some solid tumor cells. Activation of
p110δ leads to increased activity of p190RhoGAP (through PYK2/Src
activation) and to cytoplasmic accumulation of p27 (which is mediated by
the increased Akt activity). p190RhoGAP induces the inactivation of RhoA
whereas p27 prevents the activation of RhoA both thus leading to reduced
RhoA activity and consequently to decreased PTEN activity. Inactivation of
p110δ by IC87114 reverses these pathways leading to PTEN activation
which then opposes the PI3K reaction of the remaining active p110
isoforms. The p190RhoGAP-driven mechanism almost solely keeps RhoA
activity low under basal whereas that of p27 contributes upon stimulated
conditions. Arrows with dashed lines represent alterations in activity or
location in the presence (red) or in the absence (black) of IC87114.
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by IC87114, PTEN becomes activated and dampens the PI3K
pathway (Figure 4). The isoform-selective role of p110δ in the
negative regulation of RhoA and the mechanism by which RhoA
regulates PTEN activity under the control of p110δ are not
currently understood but it seems that these are related with acti-
vation of p110δ at certain cellular compartments (Papakonstanti,
unpublished data). This feedback mechanism was originally
found to be the case in primary (Papakonstanti et al., 2007)
and transformed macrophages (Papakonstanti et al., 2008) and
in mouse brain tissue (Eickholt et al., 2007). More recently we
showed that the negative regulation of PTEN by p110δ is also
the case in those cancer contexts where p110δ is expressed at
high levels (Tzenaki et al., 2012). The p110δ protein was found
to be expressed at different levels in different cancer types e.g.,
the p110δ PI3K is the predominant isoform expressed in human
primary breast carcinoma, whereas ovarian and cervical human
carcinomas mainly express p110α and p110β (Tzenaki et al.,
2012). The activity of wild-type PTEN was found to be suppressed
in breast and prostate cancer cells that express high levels of p110δ

suggesting that the elevated expression of p110δ might provide
these cells with a competitive advantage to keep their wild-type
PTEN inactive (Tzenaki et al., 2012). Breast and prostate cancer
cells expressing functional PTEN were also sensitive to anti-
proliferative effect of p110δ inhibitors through PTEN activation.
In contrast, inhibition of p110δ in ovarian and cervical cancer
cells which express very low levels of p110δ had no effect neither
in PTEN activity nor in cell proliferation (Tzenaki et al., 2012).

The p110δ expression levels might therefore represent one
of the parameters that correlate with the cancer type-specific
response to PI3K pathway inhibitors, a possibility that will be
important to be explored in future studies. This hypothesis is also
corroborated by other published data. For example, breast can-
cer cells were found to be sensitive to growth inhibition by PI3K
inhibitors without having mutations in PTEN or PIK3CA genes
(O’Brien et al., 2010). On the other hand, breast cancer cells with
PTEN deficiency were found to be resistant to PI3K inhibitors
(Tanaka et al., 2011), PI3K/mTOR inhibitors (Brachmann et al.,
2009) or mTOR inhibitors (Weigelt et al., 2011) whereas some
of the PTEN-deficient breast cancer cell lines were sensitive to
inhibitors of the PI3K pathway (She et al., 2008; Lehmann et al.,
2011; Sanchez et al., 2011; Tanaka et al., 2011). In ovarian can-
cer cells, however, PIK3CA gain-of-function mutations and PTEN
deficiency were correlated with their response to PI3K pathway
inhibitors (Ihle et al., 2009; Di Nicolantonio et al., 2010; Meuillet
et al., 2010; Santiskulvong et al., 2011; Tanaka et al., 2011; Meric-
Bernstam et al., 2012). There are also evidence showing that in
human breast tumor cells and cancer cell lines there is no good
correlation between the presence of PIK3CA gain-of-function
mutations and the basal or growth factor stimulated PI3K and
Akt activity (Stemke-Hale et al., 2008) suggesting that other reg-
ulatory mechanism may affect the status of PI3K activity. It will
be important to determine whether in breast cancers that PIK3CA
gene is mutated and PTEN gene is wild-type, induction of PTEN
activity by inhibition of p110δ PI3K dampens the production of
PI(3,4,5)P3 and cell growth. An open question is also whether
in cells with heterozygously mutated PTEN, the remaining wild-
type PTEN allele is under the influence of high levels of p110δ.

Given that PTEN gene is often wild-type in human breast cancers
(Stemke-Hale et al., 2008; Chalhoub and Baker, 2009), further
experiments may reveal that p110δ-selective inhibitors alone or
combined with inhibitors of other components of PI3K pathway
could be beneficial in this cancer type.

CONCLUSIONS
The PI3K signaling pathway was brought at the center of attention
in the field of cancer research by the discovery of cancer-specific
gain-of-functions mutations in PIK3CA gene (Campbell et al.,
2004; Samuels and Velculescu, 2004). Deregulated PI3K signaling
in cancer has also been attributed to gain of function in receptor
tyrosine kinases, activated Akt or to loss-of-function mutations in
PTEN gene (Vivanco and Sawyers, 2002; Engelman et al., 2006;
Yuan and Cantley, 2008). Although the p110α PI3K pathway
and the loss of function of PTEN have received a great atten-
tion for their involvement in human cancers there are still some
unexplained observations. Indeed, recent studies have shown that
there is poor correlation between the PIK3CA or PTEN muta-
tional status in cancer cell lines and the response of these cells
to anti-proliferative effect of PI3K inhibitors (Edgar et al., 2010;
O’Brien et al., 2010; Tanaka et al., 2011) indicating that uniden-
tified mechanisms or PI3K isoform(s) other than p110α are also
involved in the control of cancer cells survival. There are also evi-
dence documenting no correlation between the oncogenic activity
of p110α PI3K and signaling through Akt (Gymnopoulos et al.,
2007; Zhao and Vogt, 2008b; Vasudevan et al., 2009) suggesting
that Akt can be a non-obligatory partner in PI3K signaling and
that Akt-independent PI3K pathways may be important in cancer
cells.

The relationship of p110δ PI3K with cancer had received
much less attention but recently p110δ has entered the realm
of hematologic cancers and p110δ-selective inhibitors have pro-
vided promising results in some hematological malignancies
(Fruman and Rommel, 2011; Castillo et al., 2012). p110δ is
exceptional in that it regulates not only homeostasis and func-
tion of B-cells but also it is involved in the transduction of
microenvironmental signals including chemokines and cytokines
derived from lymphoid tissues or T-cells (Okkenhaug and
Fruman, 2010; Puri and Gold, 2012). p110δ-selective inhibitors
have been studied in multiple hematologic malignancies and
the most promising results are currently available for B-CCL.
It was remarkable that inhibition of p110δ in B-CLL cells
or treatment of patients with the p110δ-selective inhibitor
CAL-101 prevented B-CLL survival and moreover disrupted
the signals from supporting cells of B-CLL microenvironment
thus providing an anti-tumor activity (Herman et al., 2010;
Hoellenriegel et al., 2011; Castillo et al., 2012). The fact, how-
ever, that CAL-101 inhibited cytokine production by human T
cells (Herman et al., 2010; Hoellenriegel et al., 2011) together
with data showing that p110δ plays an important role in func-
tions of NK cells (Kim et al., 2007; Saudemont et al., 2007),
in anti-tumor response of cytotoxic T lymphocytes (Putz et al.,
2012) and in the development of regulatory T cells (Patton
et al., 2006), raise the question if the efficacy of p110δ inhi-
bition might be counterbalanced by a potential suppression
of anti-tumor immunity. Nevertheless, although a single agent
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treatment was unexpected to have clinical activity, the outcome
of the patients treated with CAL-101 went far beyond the
expectations.

A critical role of p110δ in solid tumor cells has just emerged
by published data showing that an oncogenic potential of
p110δ might correlate with its expression levels (Knobbe and
Reifenberger, 2003; Mizoguchi et al., 2004; Boller et al., 2008;
Zhao and Vogt, 2008a; Vogt et al., 2009; Jiang et al., 2010) and
by evidence documented that in those solid tumor cells express-
ing leukocyte-levels of p110δ, this isoform suppresses the activity
of wild-type PTEN rendering these cells sensitive to growth-
inhibitory effects of p110δ-selective inhibitors (Tzenaki et al.,
2012). The mechanism that accounts for the high expression
levels of p110δ PI3K in some cancer types whilst in others the
expression of p110δ is very low (Tzenaki et al., 2012) is unclear
at the moment. The differential expression of p110δ in human
cancers might be a result of transcriptional regulation by dif-
ferentially activated transcription factors in each cancer type or
a consequence of epigenetic aberrations. It is also of note that
the expression levels of the PI3K regulatory subunit p85β were
found to be elevated in breast carcinomas and that altered PIK3R2
expression affected tumor progression (Cortés et al., 2012). It
will be important to determine whether a specific combination of
p110δ with p85β exists in breast carcinomas and whether it affects
the activity of p110δ.

There is also evidence to suggest that GEFs and GAPs,
which regulate the activity of small GTPases, could play impor-
tant roles in cancer biology as components of PI3K signaling.
Indeed, P-REX2a (phosphatidylinositol 3,4,5-trisphosphate Rac
exchanger 2a), which activates the small GTPase Rac, was found

to interact with PTEN and directly inhibit PTEN function (Fine
et al., 2009). It is also of note that the p190RhoGAP-driven
mechanism (the p110δ/p190RhoGAP/RhoA/PTEN branch in
Figure 4), contributes almost solely to inhibition of RhoA and
PTEN under non-stimulated conditions (Papakonstanti et al.,
2007) suggesting that p110δ can signal to a large extend indepen-
dently of Akt through p190RhoGAP and RhoA.

The p110δ PI3K has just become eminent in the field of
hematologic malignancies and it seems to have the potential
to come into the spotlight of non-hematologic cancers. More
work is needed to delineate the role of p110δ in cancer and to
determine important aspects of its regulation and function such
as the possible activation of p110δ at certain cellular locations,
the mechanisms by which p110δ regulates its cellular locations,
the role of p110δ in cancers cells expressing mutated p110α

and/or heterozygously mutated PTEN, the p110δ triggered sig-
naling through effectors other than Akt and last but not least
the mechanism that regulates the differential expression of p110δ

in different cancer types. Answering these questions will reveal a
ground of discoveries that might illuminate some currently unex-
plained observations potentially improving therapeutic strategies
against cancer.
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