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Neuroblastoma is the most common extra cranial solid tumor in childhood and the most
frequently diagnosed neoplasm during the infancy. MYCN amplification and overexpression
occur in about 25% of total neuroblastoma cases and this percentage increases at 30%
in advanced stage neuroblastoma. So far, MYCN expression profile is still one of the
most robust and significant prognostic markers for neuroblastoma outcome. MYCN is
a transcription factor that belongs to the family of MYC oncoproteins, comprising ¢c-MYC
and MYCL genes. Deregulation of MYC oncoprotein expression is a crucial event involved
in the occurrence of different types of malignant tumors. MYCN, as well as c-MYC, can
heterodimerize with its partner MAX and activate the transcription of several target genes
containing E-Box sites in their promoter regions. However, recent several lines of evidence
have revealed that MYCN can repress at least as many genes as it activates, thus proposing
a novel function of this protein in neuroblastoma biology. Whereas the mechanism by
which MYCN can act as a transcriptional activator is relatively well known, very few
studies has been done in the attempt to explain how MYCN can exert its transcription
repression function. Here, we will review current knowledge about the mechanism of
MYCN-mediated transcriptional repression and will emphasize its role as a repressor
in the recruitment of a precise set of proteins to form complexes capable of down-
regulating specific subsets of genes whose function is actively involved in apoptosis, cell
differentiation, chemosensitivity, and cell motility. The finding that MYCN can also act as
a repressor has widen our view on its role in oncogenesis and has posed the bases to
search for novel therapeutic drugs that can specifically target its transcriptional repression
function.
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INTRODUCTION

Another formal demonstration that gene and protein expres-

Neuroblastoma is one of the most frequent extracranial solid
tumor in childhood. It arises from the neural crest cells dur-
ing development of the sympathetic nervous tissue. The overall
incidence is approximately one case in 7,000 live births and
the median age at diagnosis is about 18 months. Neuroblas-
toma is responsible for around 15% of all pediatric oncology
deaths. Roughly 25% of most aggressive neuroblastomas are
characterized by the amplification/overexpression of the MYCN
transcription factor that nowadays is considered one of the most
robust prognostic factors for the neuroblastoma unfavorable out-
come (Bordow etal., 1998; Cohn etal., 2009). Recently it has
been demonstrated that MYCN protein level is predictive for
neuroblastoma outcome independently from its genomic ampli-
fication and up-regulation (Chan etal, 1997). In fact, it is
well known that MYCN protein level is not always correlated
with its mRNA level thus suggesting possible different ways to
increase MYCN protein stabilization. Indeed, activated PI3K/AKT
pathway and Aurora kinase A activity (AURKA) has been
demonstrated to be involved in MYCN protein stabilization (Ken-
ney etal., 2004; Chesler etal., 2006; Otto etal., 2009; Segerstrom
etal., 2011).

sion are not always equivalent came from Molenaar etal. (2012).
They found out that MYCN protein level can be enhanced by
LIN28B overexpression through its repression activity on Let-
7 microRNA (miRNA) which regulates MYCN protein amount
(Molenaar et al., 2012).

Furthermore, Valentijn etal. (2012) have identified a novel
MYCN-dependent signature consisting of 157 genes that directly
correlate with MYCN protein level but not with MYCN ampli-
fication thus increasing the MYCN protein level significance in
neuroblastoma development and outcome. Notably, among these
genes there are 21 down-regulated genes involved in neuronal
differentiation (Valentijn etal., 2012).

MYCN, as a member of Myc family, is a transcription factor
primarily known for its transactivating function, but during the
last 10 years it has been also shown that it has the ability to repress
transcription of target genes. The aims of this review are to discuss
the role of MYCN-mediated repression in neuroblastoma onset
and summarize the knowledge so far accrued on the molecular
mechanism(s) by which MYCN can exert transcriptional repres-
sion on a specific subset of genes, the majority of which involved
in apoptosis, cell differentiation, and cell cycle regulation.
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MYCN

MYCN was first discovered in 1983 by Schwab etal. (1983) as a
paralog of the most popular c-Myc (Vennstrom and Bishop, 1982;
Vennstrom etal., 1982). The Myc family of transcription factors
is composed by three elements: c-MYC, L-MYC, and MYCN. The
Myc oncoproteins are transcription factors belonging to a subset
of the larger class of proteins containing basic-region/helix-loop-
helix/leucine-zipper (BR/HLH/LZ) motifs. They are structurally
similar: the N-Term region can interact with co-activators or co-
repressors and contains several domains conserved among the
Myc family members, whereas the C-Term carries a BR/ZHLH/LZ
domain required for dimerization with the partner MAX and for
interaction with DNA.

MYCN is predominantly expressed in the peripheral and cen-
tral nervous systems, lung, kidney, and spleen during embryonic
development, and it is subjected to a strict temporal and spatial
expression pattern as shown by comparison of fetal and adult
brain cells (Grady etal., 1987) and by analyses of fetal mouse
tissues during the development (Jakobovits etal., 1985; Zimmer-
man etal., 1986). MYCN heterodimerizes with MAX forming a
functional transcriptional activator that can bind DNA upon a
specific consensus sequence CACGTG called E-Box. Like c-MYC,
MYCN recruits histone acetyltransferase complexes [i.e., trans-
formation/transcription domain-associated protein (TRRAP) and
Tat-interactive protein 60 kDa (TIP60)] that keep chromatin in an
active state (Frank et al., 2003). Moreover, it was demonstrated that
MYC can also promote transcript elongation by recruiting positive
transcription elongation factor (pTEF-f) that induces phospho-
rylation of Ser2 of RNA polymerase C-terminal domain (CTD;
Majello etal., 1999).

First indication that MYC can act as a transcriptional repressor
came from Cleveland etal. (1988). Nonetheless it was not possi-
ble to identify specific DNA sequences that were bound by MYC
in order to enact transcription repression. Later on, these issues
were elucidated demonstrating that MYC induces transcriptional
repression by an indirect binding to DNA trough interaction with
basal transcription factors as specific protein 1 (SP1; Gartel etal.,
2001) or Myc-interacting zinc-finger protein-1 (MIZ-1; Peukert
etal., 1997). The importance of MYC induced repression were
then emphasized by genome-wide chromatin immunoprecipita-
tion analyses which demonstrated that more than 40% of MYC
binding sites lack recognizable E-Box sequences (Zeller et al., 2006)
suggesting that MYC can repress many target genes, most likely
through mechanisms that are distinct from those used to activate
transcription.

We already mentioned in this review that MYCN and ¢-MYC
are highly homologous and share several domains including the
transactivating and DNA binding domains. This has led to think
that c-Myc and MYCN can function in similar fashion although
expressed in different cellular backgrounds. Thus, several inves-
tigations pertaining to MYCN activity have been, somehow,
suggested by previous studies on c-Myc. More specifically, these
studies revealed that not all genes are repressed by Myc through
the same mechanism.

Some Myc repressed target genes contain a subclass of ini-
tiator elements (INRs consensus, YYCAYYYYY, where Y rep-
resents a pyrimidine base T/C), which are usually, but not

exclusively, present in TATA-less promoter types. INRs elements
are recognized by transcription factor II D (TFII-D) as well
as a number of regulatory proteins like TFII-I, YY1, and the
MIZ-1.

It has been demonstrated that c-Myc can interact with MIZ-1
and that the MIZ-1/Myc complex promotes stabilization of Myc
by inhibiting its ubiquitination and degradation (Park etal., 2001;
Eilers and Eisenman, 2008; Akter etal., 2011). MIZ-1 (also known
as ZBTB17) gene encodes for a protein of 721 aa characterized
by a series of consecutive 13 zinc-finger domains (N-terminus)
and a BTB (BR-C, ttk, and bab)/POZ (pox virus and zinc-
finger) domain which is a protein/protein interaction domain
found in a multiple zinc-finger proteins. MIZ-1 interacts with
Myc “outside” the helix-loop-helix (HLH) domain, but does not
interact with Mad, Max, and Mnt (Peukert et al., 1997; Eilers and
Eisenman, 2008). Nowadays the putative mechanism of MYCN-
mediated repression through interaction with MIZ-1 is still
unclear.

Other sets of genes repressed by Myc do not contain INR
sequences and the repression appears to be mediated by group-
specific component (GC)-rich regions that are recognized by other
factors. An important GC binding protein that is involved in the
repression mechanism is the basal transcription factor 1 (SP1; Liu
etal., 2007; Marshall etal., 2010, 2011; Valli etal., 2012). SP1 is
a zinc-finger protein of 785 aa, involved in many cellular pro-
cesses including: differentiation, growth, apoptosis, responses
to DNA damage, and chromatin remodeling. It possesses two
transcriptional activation domains (TADs) and normally recruits
TATA-binding protein (TBP). The interaction between MYCN and
SP1 was deeply investigated by Iraci etal. (2011) that identified,
through GST pull down assay, the MB2 (MYC box 2) as the MYCN
domain responsible of its interaction with SP1. Once MYCN is
bound to SP1, it exerts its repressive function via recruitments
of chromatin modifiers such as histone deacetylases. In 2007,
Marshall and colleagues have also shown that MYCN can repress
transcription of the transglutaminase 2 (TG2) gene through inter-
action with SP1 and subsequent recruitment of histone deacetylase
1 (HDACT1) that removes the acetyl group of histone tail inducing a
greater compacting of chromatin and consequent transcriptional
repression (Liu etal., 2007). Importantly, chromatin immuno-
precipitation studies have shown that HDACI recruitment by
MYCN occurs in absence of the partner MAX and can be dis-
rupted using trichostatin A (TSA), an HDAC1 inhibitor. However,
while HDACI is released by the complex in the presence of TSA,
MYCN remains associated with the TG2 promoter suggesting that
the formation of a SP1/MYCN/HDACI complex is quite dynamic.
MYCN as well as c-MYC seems to interact with several paralogs
of HDACI such as HDAC2 or HDAC3 (Zhang etal., 2012a,b).
Marshall etal. (2010) demonstrated that MYCN can inhibit the
transcription of CyclinG2 gene through the interaction with SP1
and HDAC2 and consequent transcriptional repression of the
gene. In vitroanalyses of the MYCN regions required for its interac-
tion with both SP1 and MIZ-1 show that MYCN MB2 domain can
directly interact with SP1, while the basic helix-loop-helix leucine-
zipper (bBHLHZip) domain is required for interaction with MIZ-1.
The “ternary complex” can also drive the transcriptional repression
of genes such as TRKA (tyrosine kinase receptor A), P75NTR (p75
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neurotrophin receptor), and p21 in neuroblastoma by recruitment
of HDACI on the respective promoters (Iraci etal., 2011).

Finally, a MYCN/SP1 complex also appears to be critical for
the recruitment of SIRT1 (a NAD-dependent histone deacety-
lase; Marshall etal., 2011) to repress the transcription of MPK3
gene. In this case the MB1 domain of MYCN encompassing amino
acids 1-88 is required for its physical association with SIRT1 (Liu
etal., 2007).

CELL CYCLE AND PROLIFERATION

Although MYCN and ¢-MYC are generally defined as oncogenes
which act as positive transcriptional regulators of pro-proliferative
gene networks, it has been also proposed that they may also pro-
mote the oncogenic process through repression of target genes
including both protein-encoding genes and miRNAs (Shohet et al.,
2011). Like c-MYC, MYCN, when induced ectopically, stimulates
the re-entry of quiescent cells into the cell cycle and shortens the
time taken to progress through the cell cycle, specifically reducing
the G1 phase and decreasing cell attachment to the extracellu-
lar matrix. Nevertheless, reduction of MYCN expression level
promotes cell cycle arrest, differentiation, and apoptosis (Bell
etal., 2010). Cyclin-dependent kinase inhibitors (CKIs) are a fun-
damental class of proteins that negatively regulate progression
through the cell cycle and so prevent uncontrolled cell growth
and cancer. There are two distinct families of CDK inhibitors:
INK4 and Cip/Kip (Sherr and Roberts, 1999). The members
of the INK4 family (p16™NK42  p15INKeb - (51 gINKde =1 gINKad)
specifically inhibit the activity of CDK4 and CDK6, whereas
Cip/Kip members (p21“IP1/WAFL [1y57KIP1 1 57KIP2) inhibit all the
other cyclin-CDK complexes. MYCN represses the expression of
p21°PL by forming a complex with transcriptional regulators,
such as the MIZ-1 and SP1 (Iraci etal., 2011) thereby promoting
cell growth and cancer onset. Because of its high homology with
c-MYG, it is plausible to think that MYCN may repress p15™NK4P a5
well, through the same mechanism enacted by c-MYC, although
this has not been formally demonstrated (Staller etal., 2001;
Wu etal., 2003).

A more complex scenario of the role of MYCN as a piv-
otal regulator of the cell cycle is provided by studies employing
small interfering RNAs (siRNAs). MYCN knock-down in neurob-
lastoma MYCN-amplified (MNA) cell lines such as IMR32 and
SKNBE(2c) determines an up- or down-regulation of several cell
cycle related genes involved in different important signaling path-
ways. For example, Bell etal. (2007) have identified a number of
genes involved in regulation of the G1 checkpoint that are dif-
ferentially expressed after MYCN knock-down. Tumor protein
53-induced protein 1 (TP53INP1) has been reported to cause a
GI arrest and apoptosis and its expression level increases after
MYCN knock-down. This is a MYCN-dependent effect as con-
firmed by experiment in TET21N neuroblastoma cells that carry
a MYCN conditional minigene. TP53INPI regulates p53 and
P73 transcriptional activity, and in particular has been found to
increase p53-dependent p21WAF! transcription (Bell etal., 2007).
A member of Dickkopf (DKK) family, DKK1, is down-regulated
by MYCN in neuroblastoma and this might contribute to the well-
documented stimulation of cell proliferation by MYCN (Lutz et al.,
1996). Surprisingly, DKK1 inducible expression did not inhibit the

canonical Wnt/B-catenin signaling, suggesting a role of DKK1 in
an alternative route of the Wnt pathway (Koppen etal., 2007).

Transforming growth factor 8 (TGF-p) is a potent inhibitor of
cell proliferation and induces differentiation and growth arrest in
certain cell types. TGF-f signaling pathway targets include bone
morphogenetic proteins, Smad transcription factors and activins.
p579P2, a CDK inhibitor that targets cyclin D-CDK4/6 com-
plexes, is the downstream transcriptional target of TGF-f signaling
which causes a G1 arrest. Levels of TGF-B2 and p57<P? expression
increased 48 h after MYCN knock-down in p53wt IMR32 cells.
Therefore, amplification of MYCN expression in this neuroblas-
toma genetic background may repress TGF-p signaling in order to
prevent cyclin D inhibition by p57¢P? (Bell etal., 2007).

Valentijn etal. (2005) suggest that MYCN expression represses
cell division cycle 42 gene (CDC42) a G-protein involved
in a cytoskeletal remodeling pathway. Ectopic MYCN expres-
sion decreased CDC42 expression in the Tet2IN system and
conversely MYCN siRNA increased CDC42 expression (Valentijn
etal., 2005).

All MYCN downstream regulated gene (NDRG) family mem-
bers seem to be required in many biological responses even
if their exact role is not yet clear. NDGR proteins contribute
to cell proliferation, differentiation, development, and stress
responses. Emerging evidence suggests that mutations in these
genes are associated with diverse neurological and electrophysio-
logical syndromes. Shimono etal. (1999) reported NDRGI to be
down-regulated by Mycn in mice. Murine NDRG1 promoter activ-
ity is repressed by Mycn and Myc (Shimono etal., 1999). Human
NDRGI was also found to be down-regulated in MYCN-amplified
neuroblastoma cell lines by interaction of the MYCN protein with
the NDRGI core promoter (Li and Kretzner, 2003). Expression
of human NDRG2 is down-regulated by MYCN via transcrip-
tional repression via binding of the MIZ-1 at the core promoter
(Zhang etal., 2006). Furthermore, the repression of the NDRG1
and NDRG2 promoter activity by MYC is sensitive to TSA, indicat-
ing involvement of histone deacetylase activity in the mechanism
of transcriptional repression of these promoters (Shimono etal.,
1999; Zhang etal., 2006).

CELL INVASION

As the majority of aggressive solid tumors, neuroblastoma cells
develop the ability to invade the surrounding tissues from the
primary localization. Once cancer cells reached blood vessels
or the lymphatic system, they metastasize throughout all the
body. MYCN plays a central role in neuroblastoma invasive-
ness primarily by direct or indirect repression of specific target
genes. Judware and Culp (1997) demonstrated that MYCN
overexpression could alter the cell-matrix and cell-cell interac-
tions by reducing expression of a2, a3, Bl integrin subunits.
Caveolin-1 is also directly repressed by MYCN (Park etal., 2001)
and its down-regulation elicits anchorage-independent growth
and tumor formation (Galbiati et al., 1998).

Intriguingly, MYCN directly regulates transcription of a spe-
cific subset of the ATP-binding cassette (ABC) transporters genes
that in addition to their typical drug efflux function appear to
control cell motility and invasion (Porro etal., 2010) through
mechanism(s) that are not yet known (Henderson etal., 2011).
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Over the last 10 years, a lot of effort has been made on the
biology of miRNAs. MYCN may also activate the transcription
of many miRNAs thus causing the indirect repression of genes
regulated by them, and interfering, among other things, with the
activity of the cell adhesion pathway (Ma etal., 2010; Mestdagh
etal., 2010).

ANGIOGENESIS

Angiogenesis is a physiological phenomena consisting in the gener-
ation of new capillaries from preexisting vessels. It occurs mainly
during embryonic development but can also occur in the adult,
for example, during the wound healing and in granulation tis-
sue. Furthermore, angiogenesis is a key feature of more aggressive
solid tumors, indeed through the formation of new capillaries
to the tumor mass ensures the continuous flow of nutrients and
the ability to metastasize. Molecularly, angiogenesis is the result
of a complex and strictly regulated interplay between humoral
stimulators and inhibitors (Carmeliet and Jain, 2011). Among
activators, the vascular endothelial growth factor (VEGF) family
holds the most important role (Nagy etal., 2007; Ferrara, 2009),
but angiogenesis is also induced by other active molecules such
as those encoded by the fibroblast growth factor (FGF) family
(Beenken and Mohammadi, 2009). Substantially, these two fami-
lies of activators can induce all the necessary step for a complete
angiogenesis.

Angiogenesis is also a key pathological marker in neurob-
lastoma (Katzenstein etal., 2000; Ribatti etal., 2004) and many
works correlate its induction to the amplification and/or over-
expression of MYCN transcription factor (Ribatti etal., 2002;
Kang etal., 2008). Intriguingly, MYCN has both the ability
to transcriptionally activate angiogenic factors and to represses
directly the transcription of angiogenic inhibitors. One of the
first evidences of MYCN-repressed inhibitors was shown by Fotsis
etal. (1999). They purified a protein factor from non-MYCN-
amplified neuroblastoma cells culture medium; such a peptide
was absent in MYCN-amplified culture medium and exhibited
anti-angiogenic properties (Fotsis etal., 1999). A couple of years
later, the same authors identified this peptidic factor as Activin-A
(Breit etal., 2000). By the same strategy, Hatzi etal. (2002) iden-
tified IL-6 as another important anti-angiogenic factor repressed
by MYCN.

REPRESSION OF PRO-APOPTOTIC GENES

In addition to that previously described another mechanism by
which MYCN can contribute to neuroblastoma onset is through
the repression of nerve growth factor receptor (NGFR) gene.
NGFR, also known as P75NTR, encodes a membrane receptor that
binds neurotrophins with low affinity. The role of NGEFR in neu-
roblastoma is still unclear. However, some lines of evidence suggest
that the intracellular regions of NGFR containing death domains
might send signals to induce neuronal cell death and NGFR
expression level are prognostic in neuroblastoma correlating with
undifferentiated tumors (Casaccia-Bonnefil etal., 1998; Schulte
etal,, 2009). As for TRKA, the expression of NGFR is strongly
down-regulated in aggressive neuroblastoma having MYCN over-
expression. Recently, Iraci etal. (2011) demonstrated that MYCN
can bind NGFR promoter thus repressing its expression. They

also proved that MYCN silencing using a siRNA technology
induces a NGFR re-expression and sensitize neuroblastoma cells
to NGF-mediated apoptosis (Iraci etal., 2011).

Intriguingly, MYCN also represses genes characterized by an
anti-apoptotic function such as Galectin-3 suggesting a very
complex balance on apoptosis regulation (Veschi etal., 2012).

DIFFERENTIATION
Differentiation is a cellular process by which a less specialized cell
becomes more specialized during development. Up to date, cel-
lular differentiation is very important in cytopathology where the
level of differentiation is used as a measure of cancer progres-
sion and aggressiveness. In fact, more aggressive neuroblastoma
stages (III and IV) are usually characterized by a low grade of
differentiated cells. Is well known that MYCN can form several
complexes capable of regulating both directly and indirectly a
set of genes involved in neuronal differentiation processes. High
level of MYCN drives down-regulation of NLRR3, a gene with
effects on cell differentiation (Koppen etal., 2007; Akter etal.,
2011). Jiang etal. (2011) suggest that a stable MYCN knock-
down using lentiviral short hairpin RNAs (shRNAs) can induce
p27 and nuclear export sequence (NES) increase with subse-
quent stimulation of the neuronal differentiation pathways. In
addition, neuroblastomas without MYCN amplification are char-
acterized by good expression levels of Shh—GLI1-Ptchl and good
prognosis though the molecular link between these two aspects
is unknown (Souzaki etal., 2010). In contrast to other cancer
types, the Hh pathways may be associated with commitment and
differentiation stimuli in neuroblastoma (Ahlgren and Bronner-
Fraser, 1999; Williams etal., 2000). Moreover MYCN has been
found to play a pivotal role in neurotrophic tyrosine receptor
kinase (NTRK) gene family regulation especially on TRKA recep-
tor. Is well known that MYCN expression counter-correlates with
TRKA expression and that more aggressive neuroblastomas are
characterized by low levels of TRKA (Nakagawara etal., 1992,
1993; Suzuki et al., 1993; Brodeur, 2003). Nara et al. (2007) found
out that after silencing MYCN using RNA interference (RNAi)
technology the relative expression of TRKA and TRKC were signif-
icantly up-regulated; in addition, Iraci etal. (2011) described the
molecular mechanism by which MYCN can directly repress TRKA
expression. Furthermore, MYCN can up-regulate Bmilt protein
thus leading to repression of KIF1Bb and tumor suppressor in
lung cancer 1 (TSLC1) transcription and maintaining an undif-
ferentiated cell status (Ochiai etal., 2010). Another important
contributor to cell differentiation is TG2. TG2 is a multifunc-
tional enzyme that catalyses transamidation and multimerization
of proteins. It is involved in both intra- and extracellular pro-
cesses and its deregulation determine various downstream effects
in several types of cancer. It has been demonstrated that the
MYCN-mediated repression of TG2 is essential to inhibit neu-
ronal differentiation in MYCN overexpressing neuroblastoma
cells. MYCN recruits HDAC1 protein to a core promoter of TG2
gene containing SP1 binding sites where SP1 transcription factor
is bound (Fesus and Piacentini, 2002; Lorand and Graham, 2003;
Liu etal., 2007).

Finally, a recent study by Valli etal. (2012) has provided
support that MYCN can prevent neuronal differentiation by
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repressing transcription of the CDKL5 gene through interaction
with SP1.

miRNA AND MYCN: AN INDIRECT MECHANISM OF GENE
EXPRESSION CONTROL

Almost 20 years ago, Victor Ambros and colleagues found out
that LIN-14 protein abundance, in C. elegans, was directly regu-
lated by a short RNA product encoded by the lin4 gene (Lee etal.,
1993). In the last 20 years, hundreds of studies have addressed
short RNA function and regulation. miRNA have been found to
be misregulated in a variety of tumors and some of them have a
tumor suppressor function while others have a oncogenic func-
tion (oncomiR). Numerous studies in neuroblastoma have shown
that MYCN can act as a transcriptional regulator factor even on
miRNA expression. MYCN could suppress miR-152 expression
thus playing an important role in the control of the genome
methylation status, DNA methyltransferase 1 (DNMT1) being a
direct target of miR-152 (Das etal., 2010). A well-known target
of MYCN is the miR-17-92 cluster. Indeed, MYCN up-regulates
miR-17-92 cluster and one of the effects is a down-regulation of
DKK3 a gene with tumor suppressor function involved in Wnt
pathway and having a significance value in neuroblastoma prog-
nosis (De Brouwer etal., 2012). Low levels of DKK3 are usually
associated with MYCN-amplified tumors and its down-regulation
promotes G1 arrest checkpoint skipping through its negatively
regulation of B-catenin and cyclin D. The miR-17-92 cluster has
been found to be involved even in the negative regulation of clus-
ter in a gene involved in metastasization process (Chayka etal.,
2009). Besides miR-591, a short tumor suppressor RNA, is down-
regulated in neuroblastomas with MYCN amplification (Shohet
etal, 2011). Interestingly, miR-542-5p is another miRNA found
expressed at low level in patients with highly aggressive neuroblas-
toma. It is still unknown if MYCN directly or indirectly regulates
this miRNA but it is clear that miR-542-5p expression correlates
with TRKA expression both in vivo and in vitro thus playing a role
in neuroblastoma outcome (Schulte etal., 2010). Recently, Lynch
etal. (2012) have found that MYCN can bind at promoter level
of miR-335 promoting its repression, resulting in up-regulation
of TGF-p with consequent enhancement of cell migration and
invasiveness.

Finally MYCN up-regulates a set of miRNA with oncogenic
function (oncomiR) as miR380-5p, miR-9, and miR-221 but the
molecular mechanism is still unknown (Schulte etal., 2008; Ma
etal., 2010; Swarbrick etal., 2010). On top of this it is well taken
that MYCN overexpression could be associated with genomic
instability and that such an instability affect miRNA expression
profiles (Shohet etal., 2011).

DISCUSSION AND PERSPECTIVE

Nowadays it is well established that MYCN plays a pivotal role
in neuroblastoma tumorigenesis. MYCN, as well as c-MYC, was
widely studied as a transcriptional activator leading to the con-
clusion that up-regulated target genes are responsible for many
aspects of the tumor malignancy. On the other hand, a sig-
nificant amount of work has been done to better understand
the importance of MYCN-mediated transcriptional repression in
neuroblastoma. From the data available so far in the scientific

literature we could conclude that MYCN-mediated transcription
repression is at least important as transcription activation. MYCN
has the ability to activate genes that increase the malignancy of
the tumor and at the same time has the ability to repress genes
that can prevent tumor formation or at least that can keep the
tumor restricted to a more benign form. One interesting aspect
that emerges from these studies is that MYCN can directly inter-
act with many chromatin components, particularly transcription
factors and histone modifiers. These findings reveal a complex,
still incomplete scenario suggesting that Myc-mediated transcrip-
tional repression needs further investigation and deserves to be
considered as a genuine and critical function exerted by this tran-
scription factor during oncogenesis. When we think of Myc as a
transcription activator we always see it as part of a long lasting
partnership with Max. It is this specific heterodimer that does the
job for activated transcription. Very recent studies have shown
that this complex is simply more than just a transcription factor;
in fact increased intracellular levels of the Myc/Max dimer seems
to globally elevate the transcription rate of almost all genes nor-
mally expressed in that specific cellular system (Lin etal., 2012;
Nie etal., 2012). Although this seems to be the case for actively
transcribed genes, less clear is the role of the Myc/Max complex-
ion repressed genes. However, these studies recognize that Myc
can also determine repression of several hundred genes, the mech-
anism for that remains elusive or is simplistically relegated to a
non-specified indirect function. Many studies regarding MYCN
demonstrate that it is directly involved in such a phenomena
and that Myc-mediated repression may involve direct interac-
tion of Myc with many additional regulators of the transcription
function. But why so many regulators? A possible explanation
may be reached by looking at the dynamics through which the
Myc/Max complex forms. There is no doubt that Myc and Max
are “perfect, indissoluble partners” and that this is most likely
what happens in normal conditions. The two proteins find each
other and exert their function as a dimer complex. Nonethe-
less this situation is disturbed during oncogenesis, particularly
when Myc starts to be up-regulated or even abnormally overex-
pressed as a consequence of chromosome translocations or gene
amplification. In that case, the amount of Myc in the tumor
cells strongly exceeds that of Max. Now in addition to increase
the amount of the Myc/Max complex, the exceeding Myc may
begin to establish uncontrolled liaisons with other nuclear com-
ponents. The affinity for this components is probably lower as
compared to that described for Max, but still strong enough to
promote specific biochemical effects. There are few but com-
pelling data that may fit with this model. For instance it has
been found that Myc can repress transcription of TG2 by recruit-
ing HDACI in the absence of Max. Secondly, there are cell lines
such as the rat pheochromocytoma PC12 that express high lev-
els of Myc but do not express Max. Recently it has been found
that about 20% of human pheochromocytomas with high Myc
carry mutations in the Max gene that cripple its ability to dimerize
with Myc (Burnichon etal., 2012). Furthermore, genetic studies in
Drosophila show that the fly larvae with a mutated, inactive Max
can reach late stages of development whereas this is not possible
when Myc is inactivated, suggesting that Myc may exert functions
that go beyond its partnership with Max (Steiger etal., 2008). All
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together, these findings point to the repression function of MYC
as an important determinant of oncogenesis. A better compre-
hension of these mechanisms and the identification of those
nuclear proteins that engage MYCN during oncogenesis may high-
light new druggable molecular targets that will be helpful to
look for new anticancer drugs specifically focalized on defeating

neuroblastoma.
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