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Cancer stem cells (CSC) are considered to be a major driver of cancer progression and suc-
cessful therapies must control CSCs. However, CSC are often less sensitive to treatment
and they might survive radiation and/or chemotherapies. In this paper we combine radia-
tion treatment with differentiation therapy. During differentiation therapy, a differentiation
promoting agent is supplied (e.g.,TGF-beta) such that CSCs differentiate and become more
radiosensitive.Then radiation can be used to control them. We consider three types of can-
cer: head and neck cancer, brain cancers (primary tumors and metastatic brain cancers),
and breast cancer; and we use mathematical modeling to show that combination therapy
of the above type can have a large beneficial effect for the patient; increasing treatment
success and reducing side effects.
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1. INTRODUCTION
Cancer stem cells (CSC) have been identified in many cancer types
as the driving force behind cancer growth and progression (Dick,
2003; Singh et al., 2003; Sell, 2004; Todaro et al., 2007; Maitland
and Colling, 2008. Dingli and Michor (2006) attested as title of
their 2006 paper that “Successful therapy must eradicate cancer
stem cells.” This is hard to do, since CSC can be found at any
location in the tumor (Youssefpour et al., 2012) and they are
difficult to identify in vivo (Kummermehr, 2001). Furthermore,
cancer stem cells are less sensitive to radiation or other cell killing
agents (Kim and Tannock, 2005; Pajonk et al., 2010). One method
to sensitize cancer stem cells is to use differentiation promot-
ing growth factors that force CSCs to differentiate and become
more sensitive to radiation. Possible differentiation promoters,
which are discussed in the literature, are members of the TGF-
β superfamily (Transforming growth factor – β; see Lander et al.,
2009; Watabe and Miyazono, 2009; Meulmeester and Ten Dijke,
2011). TGF-β is known to increase stem cell differentiation, but it
also affects other characteristics of growing tumors such as inva-
sion and immune evasion. Here we focus on the differentiation
stimulating properties of TGF-β. Other examples of differentia-
tion therapy agents include ATRA-therapy (all-trans-retinoic acid)
for acute promyelocytic leukemia (Sell, 2004) and a combination
of INF-β (inferon-beta) and MEZ (mezerein) for treatment of
melanoma (Leszczyniecka et al., 2001). Many more agents are cur-
rently investigated for their differentiation promoting activities
(Leszczyniecka et al., 2001).

The mathematical modeling of cancer progression and treat-
ment has a long history and individual treatments as well as
combination therapies have been studied. A comprehensive review
is given in Swierniak et al. (2009).

Our modeling and analysis of differentiation therapy and the
combination with radiation therapy was motivated through a

detailed computational model of Youssefpour et al. (2012). The
model of Youssefpour et al. (2012) consist of a coupled system
of partial differential equations for CSC, transient amplifying cells
(TAC), differentiated cancer cells (DC), growth factors and growth
inhibiting factors, and differentiation promoters. In addition, the
model is spatially explicit and physical properties related to pres-
sure and force balances are included. This model was developed
over a series of publications (see Wise et al., 2008 and references
therein).

Youssefpour et al. (2012) combine the detailed cancer model
with differentiation therapy and with radiation therapy. They
find that an appropriate combination of differentiation therapy
and radiation therapy can control the cancer in situations where
each individual treatment would fail. Their treatment terms are
generic terms for differentiation and radiation treatments and
they have not been modeled for a specific cancer type. The goal
of this paper is to challenge Youssefpour’s findings for the spe-
cific cases of head and neck cancer, brain cancers, and breast cancer.
We adapt the model of Youssefpour et al. (2012) to be able to
include realistic growth and death rates, realistic differentiation
therapies, realistic radiation therapy schedules, and appropriate
tissue dependent radio-sensitivities. We sacrifice, however, the spa-
tial structure of the model and we study the well mixed, spatially
homogeneous situation. We argue that if the effect of combina-
tion therapy can be clearly demonstrated on a simpler model,
then this mechanism will be part of a more complicated model
as well. We find that for average parameters of brain cancers
and for breast cancer we can confirm the finding of Youssef-
pour et al. (2012) in that, combination therapy can control a
tumor, where each individual method would fail. For head and
neck cancer, we find that differentiation therapy can drastically
reduce the amount of radiation that is needed to control the
tumor.
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2. MATERIALS AND METHODS
We use mathematical modeling and numerical simulations to pre-
dict the outcome of these therapies. Our mathematical model is
based on a model for cancer stem cells that was derived in Hillen
et al. (2013). It describes the interplay of cancer stem cells U (t )
and non-stem cancer cells V (t ). To describe radiation therapy we
use the well-established linear quadratic model (see Fowler, 1989)
with realistic standard treatments (five treatments per week, week-
ends off) and with tissue specific radiosensitivity parametersα and
β (see Fowler, 1989). The parameterization of differentiation ther-
apy is more difficult, since differentiation promoters are hard to
quantify. Here we use the model and parameters of Youssefpour
et al. (2012).

2.1. THE MATHEMATICAL MODEL
We begin with the spatially homogeneous, cancer stem cell model
developed by Hillen et al. (2013). By spatial homogeneity, we mean
that cell density, cell growth, and the distribution of chemicals are
homogeneous throughout the tumor region.

U̇ (t ) = δmU k(P(t ))U (t ) (1)

V̇ (t ) = (1− δ)mU k(P(t ))U (t )

+mV k(P(t ))V (t )− aV V (t ) (2)

where U (t ) is the volume fraction of cancer stem cells (CSCs) with
respect to the total domain of interest, which contains both tumor
and host cells. Similarly, V (t ) is the volume fraction of non-stem
tumor cells (TCs) with respect to the total domain of interest. The
total volume fraction of the tumor is represented by P(t ), that
is, P(t )=U (t )+V (t ). The parameter δ is the probability that a
CSC will give rise to another CSC, when it divides. Thus, 1− δ
is the probability that a CSC will give rise to one CSC and one
TC, when it divides. It is assumed that the parent CSC remains
(Sell, 2004). The growth rates of the CSCs and TCs are given by
mU and mV, respectively. The apoptosis rate of the TCs is repre-
sented by aV; we assume that CSCs do not undergo apoptosis since
they have unlimited replicative potential. Cell growth and differ-
entiation are tempered by k(P(t )), which is essentially a volume
constraint. Hillen et al. (2013) assume that k(P) is monotonically
decreasing in P and piecewise differentiable, and they set k(P)> 0
for P ∈ [0,P∗) and k(P)= 0 for all P ≥ P∗, for some P∗> 0. For the
purposes of this paper, we adopt the version of k(P) used by Hillen
et al. (2013) and assume normalization of P∗= 1 limiting P to a
maximum volume fraction of one, and k(0)= 1. For simulations
we use:

k (P) = max
{

1− P4, 0
}

(3)

To match the notation used by Youssefpour et al. (2012) we
set δ= 2p− 1. It follows that 1− δ= 2(1− p). In this case, p is
the probability that a CSC gives rise to two CSCs, rather than
two TCs, when it divides. That is, p is the probability that a CSC
renews itself, and 1− p is the probability that a CSC differentiates.
While this model of CSC division ignores asymmetric division, it
is equivalent to the model in equations (1) and (2), as shown in

the Appendix of Hillen et al. (2013). The resulting model is given
in equations (4) and (5).

U̇ (t ) = (2p − 1)mU k(P(t ))U (t ) (4)

V̇ (t ) = 2(1− p)mU k(P(t ))U (t )

+mV k(P(t ))V (t )− aV V (t ) (5)

2.2. BEHAVIOR OF THE UNTREATED TUMOR MODEL
As noted in Hillen et al. (2013), if there are no CSCs, the TC
population is governed by the equation

V̇ (t ) = mV k(V (t ))V (t )− aV V (t )

and since k is assumed to be decreasing, the TC population is fated
to die out if mVk(0)< aV. Further, if we assume that k is strictly
decreasing, then the TC population dies out if

mV k (0) ≤ aV (6)

since either V = 0 and the TCs are already extinct, or V > 0 and
so k(V)< k(0) and mVk(V)< aV for all V > 0.

The steady states of the model defined in (1, 2) are discussed in
detail in Hillen et al. (2013), where it is assumed that the growth
rates mU and mV are both one and that the TC apoptosis rate aV is
greater than zero. Here, we give the main results, which also apply
to the model as stated in (1, 2) or equivalently in (4, 5). We note
that in the untreated tumor, we assume δ ∈ (0, 1), that is p ∈ (0.5,
1), such that (2p− 1)> 0. The steady states of the system are

X0 = (0, 0) , XV = (0, V0) , XU = (1, 0) ,

with k (V0) =
aV

mv
.

The origin, X 0, has eigenvalues λ1= (2p− 1)mUk(0)> 0
and λ2=mVk(0)− aV. Thus, X 0 is an unstable steady state.
The TC only steady state, XV, occurs where V 0 solves
mVk(V 0)= aV and has eigenvalues λ1= (2p− 1)mUk(V 0)> 0
andλ2=mVk ′(V 0)V 0. Thus, XV is also unstable. The linearization
for the pure CSC steady state, XU, has negative trace, mUk ′(1)− aV,
and positive determinant,−aV(2p− 1)mUk ′(1), thus both eigen-
values are negative, and XU is a stable steady state. Hillen et al.
(2013) have shown that XU is globally asymptotically stable in
the biologically relevant region where U ∈ [0, 1], V ≥ 0, and
U +V ≤ 1.

Hillen et al. (2013) derive the slow manifold of the system
defined by (1, 2), where they take mU=mV= 1. The slow manifold
is a subset of the phase space ((U, V)-plane) which describes the
long time dynamics of the system. As shown in Hillen et al. (2013),
solutions very quickly converge to the slow manifold, and then they
slowly follow this manifold getting closer to the attractor at (1, 0).
This same slow manifold applies to the system defined by equa-
tions (4) and (5). We simply restore mU and mV and set δ= 2p− 1,
as described above, giving the slow manifold (see Figure 1A):

M := {(U , V ) : (aV −mV k(P))V = mU k(P)U , P = U + V }

The main result of Hillen et al. (2013) is the existence of the
Tumor Growth Paradox. They show that a tumor with larger death
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A B C

FIGURE 1 | (A) Slow manifold from equation (10) in the (U, V ) phase plane. (B) rate of symmetric division p(t ) [equation (7)] as a function of the sensitivity ψ .
The values of pmax and pmin are set to 0.505 and 0.2. The differentiation promoter, CF, is fixed at one. (C) Schematic of the radial diffusion problem for the
differentiation promoter CF.

rate aV grows quicker on the slow manifold. As a consequence,
tumors with larger death rate outgrow tumors with lower death
rate. The reason is that increased TC death can liberate CSC which
were surrounded by TC, and it can allow CSC to replicate and
produce more CSCs. As a result, the tumor becomes bigger. See
Hillen et al. (2013) for the detailed argumentation using geometric
singular perturbation analysis of the system.

2.3. MODELING OF DIFFERENTIATION THERAPY
Following Youssefpour et al. (2012), we model differentiation ther-
apy through a simple relationship between the average level of the
differentiation promoter, which we denote CF, and the probabil-
ity of CSC self-renewal, p. Unlike the model of Youssefpour et al.
(2012) our model does not include a self-renewal promoter; thus,
we use the relationship set forth by Youssefpour et al. (2012) but
we omit the self-renewal promoting factor:

p (t ) = pmin +
(
pmax − pmin

) ( 1

1+ ψCF (t )

)
(7)

where pmax is the maximum probability of self-renewal, and pmin

is the minimum probability of self-renewal. The value of pmax is
attained if no differentiation promoter CF is present, while pmin is
attained for CF→∞. Youssefpour et al. (2012) choose pmax= 1
and pmin= 0.2 in their therapy simulations. Unlike Youssefpour
and coworkers, we do not model the production of differentiation
promoters by tumor cells. Thus, CF solely represents the level of
differentiation promoter prescribed during differentiation ther-
apy. To address this lack of endogenous differentiation promoters,
we choose pmax= 0.505, which is equivalent to setting δ= 0.01,
as was done by Hillen et al. (2013). Following Youssefpour et al.
(2012) we choose pmin= 0.2. The parameter ψ models the sensi-
tivity of the CSCs to the differentiation promoter. The dependence
of p(t ) on the sensitivity ψ is shown in Figure 1B. Other possible
effects of differentiation therapy, such as effects on growth rates,
are ignored, as they are by Youssefpour et al. (2012).

To model the average level of differentiation promoter within
the spatially homogeneous tumor as a function of time, CF(t ),

we assume that the tumor resides in a spherical region of tissue
and that the differentiation promoter enters this area through the
boundary. The ODE system [equations (4) and (5)] gives the mean
tumor behavior in this spherical tissue region. Growth promoter
that enters the region from the boundary will diffuse very quickly
and attain a steady state distribution over this region. To compute
this value of CF(t ) we solve the problem of diffusion over a sphere
of radius R and average the solution over the volume of the sphere.
A schematic is given in Figure 1C. We use a lower case letter to
describe the radial symmetric solution cF(r, t ) of the following
boundary value problem

∂cF

∂t
= ω

(
∂

∂r

(
∂cF

∂r

)
+

2

r

∂cF

∂r

)
cF (R, t ) = CF0 (t ) .

Here ω is the effective diffusivity of the differentiation pro-
moter. We setω= 10−7 cm2/s throughout our simulations. Before
differentiation therapy begins, CF0(t ) is zero. When differentia-
tion therapy begins, the boundary condition on the sphere is set
to CF0(t )= 1 and the promoter diffuses into the sphere. When
differentiation therapy ends, the boundary condition is simply set
to zero and the promoter diffuses out of the sphere. We then set

CF (t ) =
3

R3

∫ R

0
cF (r , t ) r2dr .

2.4. MODELING OF RADIATION THERAPY
To model external beam fractionated radiotherapy, we apply the
broadly used linear quadratic (LQ) model. The surviving fraction
of cells, S(d), after a single fraction of d grays (Gy) of radiation, is
given by

S (d) = exp
(
−αd − βd2) (8)

where α may be interpreted as lethal damage due to a single track
of radiation, and β may be interpreted as lethal damage due to
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the misrepair of DNA damage produced by two separate tracks of
radiation (Sachs et al., 2001). As a simple approximation of the
radiation resistance of CSCs, we assume that they are better able
to repair DNA double strand breaks such that the quadratic inter-
action term β is zero for CSC. We further assume that there is no
interaction between DNA damage produced by separate fractions
of radiation, owing to the relatively large time between fractions,
typically 1 day, when compared to typical DNA repair times on the
order of 1 h (O’Rourke et al., 2009).

Rather than incorporate an appropriate form of the LQ model
into the system of ODEs [equations (4) and (5)], we simply apply
equation (8) to the CSC volume fraction, U, and to the TC volume
fraction, V, at scheduled times during the simulation, using α and
β values appropriate for each cell type. For example, if a fraction is
scheduled to be delivered at the beginning of the two-hundredth
day of the simulation, the simulation is stopped at this time, the
LQ model is applied to U and V, using their respective parame-
ter values, and the simulation is continued at 200 days plus the
fraction duration, using the surviving fractions given by equation
(8) as the new initial conditions. We assume fraction durations of
10 min throughout our simulations.

2.5. TUMOR CONTROL PROBABILITY
We use tumor control probability (TCP) to model the probability
that the cells remaining after treatment will die out. To reflect the
fact that we must eliminate all CSCs for treatment success (Dingli
and Michor, 2006), and the fact that TCs are doomed to die out
in the absence of CSCs, we calculate TCP based on the number of
CSCs remaining after treatment, using the Poisson TCP formula
(see Gong et al., 2013 for Poisson TCP and other TCP models).

TCP = exp (−NU ) ≈ exp

(
−U

4

3
πR3ρ

)
(9)

where NU stands for the number of CSCs; R is the radius of the
spherical region of interest in cm, as described in the section on
differentiation therapy; and ρ is the density of cells in the region
of interest, which we assume to be 109 cells per cm3, a typical cell
density for tumors (for example, see Joiner et al., 2009) The closer
TCP is to one, the greater the probability that all CSCs die out and
the tumor is controlled.

2.6. NUMERICAL SIMULATIONS
For all numerical simulations of the tumor model [equations (4)
and (5)] we assume the mitosis rates of the CSCs and TCs are equal.
That is, mU=mV. Further, following Youssefpour et al. (2012),
we assume the apoptosis and mitosis rates of the TCs are equal:
aV=mV. These assumptions imply that the TC populations dies
out if k(0)≤ 1, which is equation (6) for this case. When combined
with our earlier assumptions regarding k(P) and with our chosen
form for k(P) [equation (3)], we see that in our model TCs are
always doomed to die out in the absence of CSCs. Our assumptions
regarding the mitosis rates and TC apoptosis rate also simplify the
form of the slow manifold to

M := {(U , V ) : (1− k (P))V = k (P)U , P = U + V } (10)

for all simulations.

Whenever we apply radiation therapy, we assume no difference
in the ability of CSCs and TCs to withstand lethal single track
damage. Thus, we use the same α value for both cell types. As
mentioned previously, we set β = 0 for CSCs to simulate perfect
repair of two-track non-lethal damage.

All numerical simulations are carried out in Maple™, using the
dsolve ODE solver employing the rfk45 numerical method. For
every simulation, the initial conditions are (U 0, V 0)= (0.1, 0.1),
and therapy begins on the two-hundredth day. These settings allow
the tumor system to hit the slow manifold, M, before treatment
begins, in each of our simulations.

To prevent negative volume fractions during numerical simu-
lation, we introduce a simple cutoff function

G (x) =

{
1, x > λ

0, x ≤ λ
(11)

where λ is chosen to allow the TCP to approach one before the
cutoff is imposed. The system we use for numerical simulation,
incorporating the cutoff function is

U̇ (t ) = (2p − 1)mk(P(t ))U (t )G(U (t ))

V̇ (t ) = 2
(
1− p

)
mk(P(t ))U (t )G(U (t ))

+mk(P(t ))V (t )G(V (t ))−mV (t )G(V (t ))

where m=mU=mV= aV.
As a measure of treatment success, we calculate the TCP [equa-

tion (9)] using the value of U obtained at the end of treatment,
which is defined as the latter of: (a) the completion of the final
radiation fraction, and (b) the point in time when p(t ) reaches
0.5, after differentiation therapy has ended. This second point (b),
accounts for the effect of lingering differentiation promoter, after
the promoter is no longer being applied.

3. RESULTS
We summarize the chosen parameter values in Table 1 and we give
relevant references and explanations in the following subsections.

3.1. HEAD AND NECK CANCER TUMOR SIMULATIONS
To simulate ahead and neck tumor, we choose the following para-
meter values for the LQ model: anα/β ratio of 10 Gy and anα value
of 0.35 Gy−1 (Fowler, 2010). We set the mitosis rates of the TCs
and CSCs to ln 2/ 3 day−1, using a cell doubling time of 3 days as
per Fowler (2010). We note that this is an estimate of cell doubling
time for cells undergoing cytotoxic treatment, which tend to have
shorter doubling times than untreated cells (Fowler, 2010). For the
radius of the domain of interest, R, we choose 1.5 cm. All simula-
tions of radiation therapy use fraction sizes of 2.53 Gy, delivered
once per day, on weekdays only. We used one of the optimized
head and neck radiation schedules recommended by Fowler as a
constraint on radiotherapy, which is 25 fractions of 2.53 Gy each,
for a total of 63.25 Gy delivered over 32 days (Fowler, 2010). This
schedule is optimized to satisfy a late tissue constraint of 70 Gy
EQD3/2 and an acute mucosal constraint of 51 Gy EQD10/2 while
delivering the maximum possible BED to the tumor, given the
chosen fraction size and weekday only schedule (Fowler, 2010).
We indicate the position of this schedule in Figure 2 using a black

Frontiers in Oncology | Molecular and Cellular Oncology March 2013 | Volume 3 | Article 52 | 4

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Bachman and Hillen Optimization of combination therapies

Table 1 | Summary of model parameters for the three cancers studied here.

Cancer α/β [Gy] α [Gy−1] β [Gy−2] m [day−1] R [cm] d [Gy] Max D [Gy]

Head and neck 10 0.35 0.035 ln 2/3 1.5 2.53 63.25

Brain cancer 12 0.3 0.025 ln 2/3.9 1.9 3.8 57.5

Breast 2.88 0.08 0.0027 ln 2/ 8.2 0.25 2.26 65.54

All radiation treatment schedules are standard treatments, with one fraction each week day and weekends off. Further references and explanations are given in the

text below.

FIGURE 2 | (Head and neck)TCP for various regimens of
differentiation therapy (DT), radiation therapy (RT), and combination
therapy, as applied to a simulated head and neck cancer tumor. The
RT protocol and tumor parameters are described inTable 1. (A)

Simulations with CSC sensitivity to DT, ψ =0.5. Thus, the probability of
CSC self-renewal, p>0.40. (B) Simulations with ψ =2. Thus, p>0.30.
(C) Simulations with ψ = 5. Thus, p>0.25. (D) Simulations with ψ =50.
Thus, p> 0.205.
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plane at 63.25 Gy, which we take as our constraint on radiation
therapy.

The only parameter not yet specified is the sensitivityψ toward
the differentiation promoter and we have no experimental data
available. In Figure 2, we show four simulations of the tumor
control probability for four different sensitivities ψ = 0.5, 2, 5,
50 which covers a wide range of possible values. The x-axis
denotes the duration of the differentiation treatment and the y-
axis denotes the total radiation dose. The black plane indicates the
maximum tolerable radiation dose in this particular treatment.
The colored plane is the tumor control probability (TCP). We see
in all four Figures that the TCP is 0 near the origin and it rises
sharply to values close to one as both treatment modalities are
increased. In Figure 2B for example, we see that radiation alone
reaches a TCP of about 60% for the maximum dose. In combina-
tion with differentiation therapy of 50 days, we observe treatment
success already at total dose of 40 Gray. This effect is more pro-
nounced for higher sensitivity parameter ψ . Notice that the curve
for 0 DT days is the same in all four figures.

A good quantitative measurement for efficiency of a treatment
is the TCP= 50% value. To illustrate how the treatment regimens
change for a fixed TCP, we list a few treatment regimens that result
in a 50% TCP in Table 2. We see that for large enough sensitivityψ ,
the total radiation dose can be drastically reduced if differentiation
therapy is applied.

3.2. BRAIN CANCER SIMULATIONS
To simulate a brain cancer, we use an average α/β ratio of 12 Gy
andα value of 0.3 Gy−1, as estimated by Yuan et al. (2008) for brain
cancers (primary tumors as well as brain metastatic cancers). This
gives a β value of 0.025 Gy−2. For the radius of the domain of
interest, R, we use 1.9 cm, which is roughly the radius of a sphere
of volume 28.8 cm3, the volume of a brain metastatic cancer aris-
ing from non-small-cell lung cancer, reported in the same paper
(Yuan et al., 2008). For the CSC and TC growth rates, we use

Table 2 | A selection of head and neck cancer tumor treatment

parameters resulting inTCP≈0.5.

DT sensitivity, ψ DT duration (days) Total radiation (Gy) TCP

N/A 0 63.25 0.581

0.5 9 60.72 0.498

29 58.19 0.506

2 18 53.13 0.492

35 48.07 0.490

5 20 45.54 0.508

39 37.95 0.486

50 4 35.42 0.498

36 15.18 0.505

These are selected from simulations using the model parameters inTable 1 where

differentiation therapy is varied in increments of a single day, from 0 to 60 days,

and radiation therapy in increments of a single fraction, from 0 to 75.9 Gy total

radiation.TheTCP without differentiation therapy is given as a point of reference.

ln 2/ 3.9 day−1, where 3.9 is an estimate of the mean potential
doubling time of brain metastatic cancer originating from vari-
ous primary cancers, as measured by flow cytometry (Struikmans
et al., 1997). All simulations involving radiation use a fraction size
of 3.8 Gy, delivered once per day on weekdays only. This fraction
size is listed by Yuan et al. (2008) as part of a hypofractionated
stereotactic radiotherapy regimen involving 15 fractions, and it
approaches the radiation tolerance for normal brain tissue. We
take the total dose of 57.5 Gy listed by Yuan et al. (2008) as our
constraint on radiation therapy, which appears as a black plane in
Figure 3.

The results as documented in Figure 3 are very similar to those
for the head and neck cancer. One difference is that without any
differentiation therapy, the cancer cannot be controlled by radi-
ation alone. At least not within the given parameter values. In
Table 3 we list some TCP 50% values for this case.

3.3. BREAST CANCER TUMOR SIMULATIONS
To simulate the treatment of a small breast tumor, perhaps remain-
ing after the resection of a large tumor, we choose R= 0.25 cm. The
CSC and TC growth rates are set to ln 2/ 8.2 day−1, where 8.2 is the
median potential doubling time of human breast tumors measured
by Rew et al. (1992) using flow cytometry. Plausible parameter
values for the LQ model [equation (8)] are taken from Qi et al.
(2011): α/β = 2.88 Gy and α= 0.08 Gy−1. We use a fraction size
of 2.26 Gy, delivered once per day on weekdays only. Our radia-
tion constraint, indicated by a black plane in Figure 4, is 65.54 Gy,
which corresponds to 29 fractions, the maximum number of frac-
tions that satisfy the late tissue constraint of 70 Gy EQD3/2 and
the acute mucosal constraint of 51 Gy EQD10/2 given in Fowler
(2010).

Since the breast tumor in this example is late responding (low
α/β-ratio), it is very difficult to control the cancer with radia-
tion alone. The maximum tolerable dose of 65.54 Gy is reached
much earlier than the TCP shows any growth. Using radiation in
combination with differentiation therapy gives some hope that the
cancer can be eradicated. Provided, however, that the CSC cells are
sensitive enough to the differentiation promoter. In Table 4 we list
a few TCP 50% values.

4. DISCUSSION
Current treatment modalities of cancer include surgery, radia-
tion, chemotherapy, immuno-therapies, hormone therapies, and
differentiation therapies. All of these methods have distinct advan-
tages and limitations and clinicians often combine various meth-
ods to obtain the best results. In fact, in most cases a surgical
removal or a radiation treatment is followed by chemotherapy.
However, if chemotherapy is based on a single cytotoxic agent
then the sensitive part of the tumor is killed but the resistant
cell population persists; leading to chemo-resistance (Swierniak
et al., 2009). The sensitivity to ionizing radiation can also vary in
a tumor, where quiescent cells, or stem cells are less radiosen-
sitive than cells that are actively proliferating (Kim and Tan-
nock, 2005; Pajonk et al., 2010). Differentiation therapy describes
the attempt to force stem cells into differentiation to increase
their sensitivity to treatment agents (Leszczyniecka et al., 2001;
Sell, 2004). This idea is conceptually intriguing and it is our
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FIGURE 3 | (Brain cancer)TCP for various regimens of differentiation
therapy (DT), radiation therapy (RT), and combination therapy, as
applied to a simulated brain cancer with average parameter values.
The RT protocol and tumor parameters are described inTable 1.

(A) Simulations with CSC sensitivity to DT, ψ =0.5. Thus, the probability of
CSC self-renewal, p>0.40. (B) Simulations with ψ =2. Thus, p>0.30.
(C) Simulations with ψ = 5. Thus, p>0.25. (D) Simulations with ψ =50.
Thus, p> 0.205.

attempt in this paper to quantify the possible benefit for three
specific cases: head and neck cancer, brain cancers, and breast
cancer.

Our results are based on a mathematical model for the dynam-
ics of cancer stem cells (CSC) and non-stem cancer cells (TC).
The model is derived from previous models of Youssefpour et al.
(2012) and Hillen et al. (2013) and it includes control through
differentiation therapy and radiation treatment. The benefit of a
given treatment is computed using the (Poissonian) tumor control
probability (TCP).

We found very good references to most of the model parame-
ters such as growth rates, doubling times, tumor volumes, and
radiation sensitivities (see Table 1). However, we were not able to
find good measurements for the sensitivity parameter ψ . Differ-
entiation therapy alone has been used successfully in several cases.
For example, about 70% of acute promyelocytic leukemia can be
controlled by ATRA-therapy (all-trans-retinoic acid, Sell, 2004).
Melanoma can be treated with the differentiation promoter cock-
tail of inferon-β and mezerein (Leszczyniecka et al., 2001); and
Lander et al. (2009) and Youssefpour et al. (2012) suggest the use of
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the differentiation promoter TGF-β. However, to our knowledge,
the effect of these promoters has never been quantified. Hence we
reside to explore a wide range of possible sensitivities ψ .

In each case we found a clear advantage of combination therapy,
where differentiation therapy drastically reduces the total radi-
ation dose. We are able to confirm the findings of Youssefpour
et al. (2012) for the cases of head and neck cancer, brain cancers,

Table 3 | A selection of brain cancer treatment parameters resulting in

TCP≈0.5.

DT sensitivity, ψ DT duration (days) Total radiation (Gy) TCP

N/A 0 76.0* 0.602

0.5 17 72.2* 0.501

50 68.4* 0.504

2 19 64.6* 0.504

46 57.0 0.502

5 17 57.0 0.518

35 49.4 0.500

50 3 41.8 0.500

47 11.4 0.503

These are selected from simulations using the model parameters inTable 1 where

differentiation therapy is varied in increments of a single day, from 0 to 60 days,

and radiation therapy in increments of a single fraction, from 0 to 76 Gy total radi-

ation. The TCP without differentiation therapy is given as a point of reference.

*Violates radiation constraint of 57.5 Gy.

and breast cancer data. For future studies it is important to get
estimates for the sensitivity ψ and we hope that research groups
around the world might be able to identify this in the future.

It should be noted that the above model is over-simplistic to
fully model a growing tumor. For the brain-tumor, for example,
the spatial extent of the tumor is a dominating problem for treat-
ment. The knowledge of an optimal combination therapy schedule
is only useful if the overall treatment volume is known. It is the
focus of ongoing research to identify a suitable treatment volume
(see Konukoglu et al., 2010; Painter and Hillen, 2013). In addition,
the immune response will be an important player in each of the
tumors mentioned above. As discussed by Hanahan and Weinberg
(2011), the immune system can be both, tumor promoting and

Table 4 | A selection of breast cancer tumor treatment parameters

resulting inTCP ≈ 0.5.

DT sensitivity, ψ DT duration (days) Total radiation (Gy) TCP

5 238 76.84* 0.499

247 72.32* 0.505

50 204 74.58* 0.503

222 63.28 0.500

These are selected from simulations using the model parameters inTable 1 where

differentiation therapy is varied in increments of a single day, from 180 to 250 days,

and radiation therapy in increments of a single fraction, from 0 to 76.84 Gy total

radiation. We use a minimum of 180 days of differentiation therapy, as the TCP

remains near 0 until this level of DT is applied (see Figure 4).

*Violates radiation constraint of 65.54 Gy.

FIGURE 4 | (Breast)TCP for various regimens of differentiation therapy
(DT), radiation therapy (RT), and combination therapy, as applied to a
simulated breast cancer tumor. The RT protocol and tumor parameters are
described in the corresponding result section. (A) Simulations with CSC

sensitivity to DT, ψ =5. Thus, the probability of CSC self-renewal, p>0.25.
(B) Simulations with ψ =50. Thus, p>0.205. We do not include graphs for
simulations with ψ =0.5 or ψ =2, as they result in TCP≈0 for all treatment
regimens tested.
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tumor inhibiting and the complex interactions are not fully under-
stood. When we face all these additional difficulties, it appears as
an advantage to have a simple sub-model, such as (4, 5), which
clearly and consistently shows the benefit of combination therapy
for a wide range of parameters and a selection of different tumors.
This suggests that a combination of differentiation therapy and
radiation therapy should be considered as a serious alternative.
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