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The protein p53 is a key regulator of cellular response to a wide variety of stressors. In
cancer cells inhibitory regulators of p53 such as MDM2 and MDMX proteins are often
overexpressed. We apply in silico techniques to better understand the role and interac-
tions of these proteins in a cell cycle process. Furthermore we investigate the role of
stochasticity in determining system behavior. We have found that stochasticity is able to
affect system behavior profoundly. We also derive a general result for the way in which ini-
tially synchronized oscillating stochastic systems will fall out of synchronization with each
other.
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INTRODUCTION
Among the vast number of mechanisms utilized by cancer cells to
sustain cell division, the inactivation of the essential tumor sup-
pressor and transcription factor p53 is one of the most frequent
and effective strategies. Therefore, restoring the activity of the
p53-signaling pathway is currently one of the most promising ther-
apeutic strategies for fighting this disease (Levine and Oren, 2009).

In normal cells, p53 plays a central role in the regulation of the
cell cycle, apoptosis, DNA repair, and senescence (Teodoro et al.,
2007); p53 responds to cellular stress, such as hypoxia or DNA
damage, by accumulating in the nucleus, regulating the expression
of target genes, and activating/inactivating various pathways in
order to maintain the normal function of the cell (Maltzman and
Czyzyk, 1984; Kastan et al., 1991; Graeber et al., 1994). Indeed,
it appears that whenever the integrity of a cell’s genetic code is
threatened, p53 is there to protect it. This conclusion has led p53
to be called the guardian of the genome (Lane, 1992).

However, the p53-signaling pathway is inoperative in almost
all types of human cancer; factors that inactivate p53 specifically
include genetic mutations or deletions (Feki and Irminger-Finger,
2004), defective post-translational modifications, and interactions
with its main endogenous inhibitors, MDM2 (Momand et al.,
1998) and MDMX (Shvarts et al., 1996). Excitingly, a number
of these tumors have been shown to have a less invasive phenotype
upon restoration of p53 activity (Olivier et al., 2002; Ventura et al.,
2007; Suad et al., 2009; Mandinova and Lee, 2011).

With the cost of drug development on the scale of hundreds
of millions to billions of dollars per new drug entity – and ris-
ing – there is strong need to look for any possible acceleration and
improvement to the efficiency and accuracy of the development
process (Paul et al., 2010). Thanks to the increasing comput-
ing power available to researchers, it is now becoming affordable
and practical to attempt to use in silico models to improve the

development process. One way to do this is to improve the ability of
researchers to select appropriate proteins, or interactions between
proteins, as targets for drug development by better understanding
their function in protein interaction networks.

The purpose of this study is to gain new insights into the func-
tioning of p53, a central protein in cell cycle regulation. A simple
model of p53 oscillations in response to ionizing radiation is pre-
sented. Additionally, the behavior of stochastic and deterministic
representations of the same model system is compared.

CELL CYCLE
The protein p53 is a regulator of the cell cycle and cell fate. Under
normal conditions, a cell will normally progress through several
stages. In the G1 phase (first gap phase) the cell grows in size to
prepare for DNA synthesis. After G1, the cell moves into S phase
(synthesis phase), during which new DNA is synthesized. Cells that
are not replicating can also leave G1 and enter the G0 phase, a state
in which they do not grow, and can remain quiescent indefinitely.
Next comes the G2 phase (second gap phase), where cells grow
further and complete their final preparations for mitosis. Mitosis
then occurs and the cycle can begin anew (Lodish et al., 2008). A
damaged cell may need to halt its cycle or even self-destruct in a
process called apoptosis. Apoptosis is necessary for normal devel-
opment and homeostasis of multicellular organisms, and is also a
desirable outcome for cancer cells during cancer chemotherapy.

In order to ensure that the process of cell division is carefully
regulated, the cell has a number of checkpoints. These checkpoints
are conditions that a cell must meet in order to progress in the
cell cycle. For example, one checkpoint in G1 ensures that a cell
has grown sufficiently in size to move into S phase and replicate
its DNA. Another checkpoint that occurs in G1 is mediated by
the protein p53: when DNA is damaged, p53 halts the cell cycle
until the damage is repaired; this prevents the cell from trying
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to duplicate the damaged DNA. When p53 is inactivated, this
checkpoint no longer functions. A cell attempting to duplicate
damaged DNA is likely to accumulate mutations (Alberts et al.,
1994). Figure 1 diagrams the relevance of p53 to the cell cycle.

p53
The protein p53 responds to many stressors including ultravio-
let light (Maltzman and Czyzyk, 1984), ionizing radiation (Kastan
et al., 1991), hypoxia, heat (Graeber et al., 1994), improper cell
adhesion (Nigro et al., 1997), ribonucleotide depletion (Linke
et al., 1996), and infection by influenza (Turpin et al., 2005). Some
viral proteins are known to interact with p53, for example hepatitis
B virus HBx protein (Truant et al., 1995) and the large T antigen
of simian virus 40 (Dobbelstein and Roth, 1998). The protein p53
has been demonstrated to induce cell cycle arrest, senescence, and
apoptosis, with the specific outcome dependent on the extent and
type of stress, and the genetic background of the cell (Vousden
and Lu, 2002). The expression of p53 is tightly regulated by the
cell (Sugrue et al., 1997; Lodish et al., 2008). In order to help it exe-
cute its various functions p53 is post-translationally modified at
many sites to determine its response (Meek and Anderson, 2009;
Dai and Gu, 2010). The protein p53 transcriptionally regulates
numerous genes, with a pattern that varies depending on the type
of stress and the cell type (Zhao et al., 2000). In addition to its tran-
scriptional activity, p53 plays a transcription-independent role in
apoptosis by binding to several anti-apoptotic proteins (Mihara
et al., 2003).

The protein p53 is known to be mutated in approximately 50%
of human tumors (Soussi and Wiman, 2007; Brown et al., 2009;
Freed-Pastor and Prives, 2012). In addition, in tumors with wild
type p53 it is common for p53 expression to be misregulated. For
example, proteins that have a part in downregulating p53, such
as MDM2 and MDMX, are commonly overexpressed in human
tumors (Momand et al., 1998; Danovi et al., 2004). Furthermore, it
has been demonstrated that restoration of p53 function can cause
tumors to regress in vivo (Ventura et al., 2007). The importance of
p53-signaling in cancer progression, and its therapeutic implica-
tions, have been investigated in previous mathematical models
(Gammack et al., 2001; Perfahl et al., 2011), which highlights
further our study.

Note that simply removing the limitations on a cell imposed
by p53 is not enough for it to become cancerous; for a cell to
become cancerous it must accumulate multiple hallmarks includ-
ing: self-sufficiency in growth signals, insensitivity to anti-growth
signals, limitless replicative potential, sustained angiogenesis, and
the ability to migrate to other tissues (Hanahan and Weinberg,
2011). When such traits accumulate in a cell lacking functional
p53, the probability of a cell becoming cancerous rises (Alberts
et al., 1994).

MDM2
The protein MDM2 is a key player in the regulation of p53 (Bond
et al., 2005) and it has been found that MDM2 is commonly ampli-
fied in human cancers (Momand et al., 1998). MDM2 has been
shown to be an E3 ubiquitin ligase for p53 (Honda et al., 1997).
This means that MDM2 can mark p53 for degradation by the
proteasome. As such, amplification of MDM2 leads to reduced

FIGURE 1 | Diagram of p53 and the cell cycle, showing possible
outcomes of stress and p53 activation.

FIGURE 2 | Relationships between MDMX, MDM2, and p53. MDM2
inhibits p53 and is promoted by it. MDM2 inhibits itself and this effect is
reduced by MDMX. MDMX inhibits p53 directly, and is itself inhibited by
MDM2.

p53 levels (Haupt et al., 1997; Kubbutat et al., 1997). MDM2
production is also induced by p53, forming a feedback loop (Barak
et al., 1993). Figure 2 illustrates the interactions of MDM2 with
p53. Additionally, MDM2 helps to regulate itself by autoubiquiti-
nation, meaning it marks itself for degradation by the proteasome
(Fang et al., 2000). MDM2 possesses a nuclear localization signal,
which is a structure on the protein that induces the cell to import
the protein into the cell nucleus (Chen et al., 1995). MDM2 also
has a cryptic nucleolar localization signal, which flags the protein
for localization to the nucleolus, but only when MDM2 binding
to another molecule changes the conformation of the signaling
region (Lohrum et al., 2000).

In 2004 several small molecule inhibitors for the p53-MDM2
interaction were discovered (Vassilev et al., 2004). One of these
inhibitors, Nutlin-3, was in Phase I clinical trials for retinoblas-
toma (Secchiero et al., 2011). Nutlins may also have some p53-
independent effects, and these may be related to MDM2. It has
been shown in some cell lines that MDM2 is upregulated by
hypoxia independently of p53 (Gillespie, 2007). Furthermore, it
has been shown that Nutlin-3 can radio-sensitize hypoxic cells
that are p53 null, although it has a greater effect on cells with
wild type p53 (Supiot et al., 2008). Additionally, Nutlin-3 has
been shown to bind to several anti-apoptotic proteins other than
MDM2, further complicating any analysis of its effects (Ha et al.,
2011). MDM2 inhibitors bind to the protean competitively and
occlude the binding site with p53 (Barakat et al., 2010). To the
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best of our knowledge Nutlins do not alter the autoubiquitination
properties of MDM2.

MDMX
Another important regulator of p53 is MDMX, a homolog of
MDM2 (Shvarts et al., 1996; Finch et al., 2002). MDMX is com-
monly overexpressed in tumors, and its upregulation has been
shown to promote tumor formation (Danovi et al., 2004). Unlike
MDM2, however, MDMX expression is not induced by DNA dam-
age (Shvarts et al., 1996). MDMX binds to both MDM2 (Sharp
et al., 1999) and p53 (Shvarts et al., 1996). MDMX binding
to MDM2 inhibits MDM2 autoubiquitination (Okamoto et al.,
2009). Furthermore, MDM2 ubiquitinates MDMX (De Graaf
et al., 2003). The interaction of MDMX and p53 has been shown
to inhibit p53 activity (Marine et al., 2007). Figure 2 schemati-
cally depicts the relationships between p53, MDM2, and MDMX.
MDMX possesses a cryptic nuclear localization signal (LeBron
et al., 2006), so it can only reach the nucleus while bound to other
proteins. MDMX is normally located primarily in the cytoplasm
(Gu et al., 2002).

Small molecule inhibitors of MDMX have only recently been
discovered (Reed et al., 2010). Although initial results show some
efficacy against cancers with upregulated MDMX in cell culture
(Wang et al., 2011), more work will need to be done to show
whether or not they will be active in vivo, as well as whether or not
it is the MDMX interaction or some off-target interaction that is
causing the effect.

UPSTREAM REGULATORS
There are many feedback loops known to affect p53, and the
behavior of the p53 system is mediated by a number of upstream
regulators (Harris and Levine, 2005). For example, the protein
ATM is activated in response to ionizing radiation (Bakkenist and
Kastan, 2003). Active ATM phosphorylates p53 (Banin et al., 1998),
MDM2 (Maya et al., 2001), and Chk2 (Matsuoka et al., 2000). A
related protein, ATR, phosphorylates p53 in response to single
strand breaks in DNA (Tibbetts et al., 1999). Chk2 along with
Chk1 also phosphorylate p53 (Shieh et al., 2000). These phospho-
rylations disrupt the ability of MDM2 to affect p53 (Zhang et al.,
1998; Chehab et al., 2000; Maya et al., 2001).

OTHER FEEDBACKS
Aside from the MDM2 loop, there are other feedbacks affecting
p53, although many of these involve also MDM2. The ARF protein
is known to bind to MDM2 and promote its degradation (Zhang
et al., 1998). ARF causes both MDM2 and MDMX to be localized
to the nucleolus (Weber et al., 1999; Jackson et al., 2001). ARF is
negatively regulated by p53 in a complex manner, thus forming a
feedback loop (Stott et al., 1998; Lowe and Sherr, 2003). MDM2
activity becomes enhanced by a feedback in which p53 upregulates
cyclin G, which then forms a complex with PP2A phosphatase.
This complex then dephosphorylates MDM2, removing the inhi-
bition caused by the phosphorylation effect (Harris and Levine,
2005). The Wip1 protein is induced by p53 and is able to mod-
ify ATM and Chk2, deactivating these proteins, and thus resulting
in a stronger interaction between p53 and MDM2 (Fiscella et al.,
1997; Fujimoto et al., 2006; Shreeram et al., 2006). Pirh2 has a

more direct feedback with p53. Like MDM2, Pirh2 and COP1
both ubiquitinate p53 and are upregulated by p53 (Leng et al.,
2003; Dornan et al., 2004).

PROTEIN LEVEL OSCILLATIONS?
Lahav et al. (2004), Geva-Zatorsky et al. (2006), and Geva-Zatorsky
et al. (2010) all directly observed sustained oscillations of p53 and
MDM2 levels in the nuclei of individual cells. It is worth noting,
however, that these single cell studies used MCF-7 cells. MCF-7
cells were initially used to study p53 because they exhibit wild type
p53 (Lahav et al., 2004). Unfortunately, the MCF-7 cell line has a
mutation in an MDM2 intron causing upregulation of MDM2 (Hu
et al., 2007), lacks ARF (Stott et al., 1998), and possesses amplified
MDMX (Danovi et al., 2004). Because of this, any assumption that
any wild type cell would behave similarly to an MCF-7 cell with
respect to p53 regulation is questionable at best. Unfortunately,
there are no similar single cell studies of non-tumorigenic cell
lines at the time of writing this paper. Also of note is the finding
by Batchelor et al. (2011) that MCF-7 cells respond differently to
damage induced by ultraviolet light than they do to double-strand
breaks induced by gamma radiation or radiomimetic drugs. Geva-
Zatorsky et al. (2006) also pointed out that undamped oscillations
of p53 levels may appear damped in studies of cell populations
due to the individual cells falling out of sync with each other.
Damped oscillations have been observed in populations of non-
tumorigenic cell lines, for example in entire mice (Hamstra et al.,
2006).

PREVIOUS MODELING WORK
A number of models of p53 response to DNA damage have been
proposed in the past. These models are based on a variety of
approaches and serve a number of functions. Some basic models
use built-in time delays on p53 induction of MDM2 transcrip-
tion, such as some of the models developed by Geva-Zatorsky
et al. (2006). In contrast, the model presented by Lev Bar-Or et al.
(2000) used coupled differential equations to create time delay
effects. There are advantages and disadvantages to each of these
approaches. In a real cell, proteins are not produced instantly
in response to a promoter. Both transcription and translation
processes take time, and transport of the mRNA and the protein to
the cytoplasm does not happen instantaneously. An explicit time
delay deals with this problem directly, but may be more difficult
to analyze than coupled equations. It also adds to the complex-
ity of any computer algorithm made for stochastic simulations.
A set of coupled equations, on the other hand, will start to show
effects of induced protein production in the protein levels instan-
taneously, but the effect will be very small until some time has
passed. In a stochastic system the protein levels are quantized and
instead of instantaneous effects there is simply a small but non-
zero possibility of instantaneous effects. In both the stochastic and
deterministic cases adding more steps in the form of more cou-
pled equations makes the system both more realistic and more
computationally intensive. Another factor to consider is that p53
induces the transcription of MDM2 mRNA, and that mRNA is
active for a time. Because of this, the actual rate of MDM2 pro-
duction is dependent on a weighted average of past p53 levels
rather than p53 levels at some specific time in the past. Using a
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single delayed p53 term to describe MDM2 production is therefore
problematic. One way around this problem is to use a delay term
for the production of the MDM2 mRNA rather than the MDM2
protein, as was done by Cai and Yuan (2009). Ma et al. (2005)
investigated the number of p53 pulses that occur in response
to DNA double-strand brakes using a model made from three
linked modules, simulating DNA repair, ATM activation, and the
p53-MDM2 feedback loop. Linking together multiple systems like
this, in particular linking to systems that can be easily perturbed
experimentally, may be a good way to develop models that are
straight-forward to test. Batchelor et al. (2008) proposed a model
based on abstracted signal and inhibitor systems interacting with
MDM2 as well as active and inactive p53. This model was cre-
ated to investigate the possible effects of ATM, CHK2, and WIP1
on p53 behavior. They included an equation for an input signal
that converted p53 from an inactive form to an active form, and a
p53 induced inhibitor that reduced the effects of the signal. There
have also been past efforts to look at stochastic models of the p53
regulatory system. Cai and Yuan (2009) modeled p53-MDM2 and
MDMX interactions and analyzed some of the effects of intrin-
sic noise. Their model has MDM2 mRNA being produced with
a time delay. It also includes ubiquitinated states of proteins and
a deubiquitination term, rather than just assuming all ubiquiti-
nated proteins are degraded. Puszynski et al. (2008) developed a
complex stochastic model of p53 behavior aimed at showing how

stochastic effects lead to variability of cell fate in a bistable model.
Their model includes a cytoplasmic compartment and a nuclear
compartment, although p53 is not included in their cytoplasmic
compartment. In addition to the negative feedback of MDM2 and
p53 they include a positive feedback involving a series of events
that lead to MDM2 being sequestered in the cytoplasm where it
can no longer degrade p53.

Table 1 summarizes the key differences between the models.
Ultimately, the differences in the models have as much, if not more,
to do with differences in what the researchers were trying to inves-
tigate, rather than with differing assumptions about p53 behavior.

MATERIALS AND METHODS
THE MODEL
Since it has been observed that stochastic effects can cause a pop-
ulation of cells that undergo undamped oscillations to appear as
if they were undergoing damped oscillations (Lahav et al., 2004;
Geva-Zatorsky et al., 2006), it is interesting to compare a stochas-
tic model of cell behavior to a deterministic one. By using both
stochastic and deterministic versions of the same model it will be
possible to look at the process of desynchronization between cells,
which causes oscillations to appear damped, and to search for any
other effects by which stochasticity could influence the system. As
we shall see later, further investigation revealed several unexpected
ways in which stochasticity influenced the system.

Table 1 | Key features of various models of p53 behavior.

Model Stochasticity MDMX Compartments Time delayed

equations

Stress

signal

Other notes

Geva-Zatorsky

et al. (2006)

These models do not have

saturable MDM2 production

Model 1 Limited noise No No No No Linear Model

Model 2 Limited noise No No No No

Model 3 Limited noise No No Yes No Linear Model

Model 4 Limited noise No No No No

Model 5 Limited noise No No No No Linear Model

Model 6 Limited noise No No Yes Yes

Lev Bar-Or

et al. (2000)

None No No No Yes Stress is abstract and gets

repaired

Ma et al.

(2005)

In the stress and repair

modules only

No No Yes Yes Complex stress and repair

modules

Batchelor et al.

(2008)

No No No Yes Yes p53 promotes an inhibitor of

the stress signal

Cai and Yuan

(2009)

Yes Yes No Yes No Includes phosphorylated

proteins

Puszynski

et al. (2008)

Yes No Yes, but not for p53 No Yes Includes many other proteins

Our model Stochastic and non-stochastic

versions were implemented

No Only for MDM2 No No Details in Section “Materials

and Methods”
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In this model p53 induces the transcription of MDM2 mRNA in
the nucleus; there are three steps between induced transcription
of MDM2 by p53 and the arrival of MDM2 proteins in the cell
nucleus. Induced transcription is assumed to be proportional to
[p53]/(K 1.8

D + [p53]1.8), as was seen in the binding properties
found by Weinberg et al. (2005). MDM2 mRNA is also produced
at a basal rate. After being produced in the nucleus, the MDM2
mRNA proceeds to the cytoplasm, where it is translated and even-
tually decays. Even though mRNA from MDM2’s different pro-
moter regions are translated at different rates, they are treated as
one species. Because the two types of mRNA are assumed to decay
at the same rate, this amounts to absorbing the difference in trans-
lation rates into the mRNA production rates. Cytoplasmic MDM2
moves to the nucleus at a constant rate, and all other behaviors that
cytoplasmic MDM2 could exhibit are ignored in this model. ARF
was given constant production and degradation rates. Once in the
nucleus, MDM2 can become bound to ARF, which removes both
proteins from the system. Additionally, MDM2 autoubiquitinates,
which is a process that also removes it from the system. Figure 3
provides a schematic diagram of this system.

Using the principle of mass-action and the saturable tran-
scription kinetics mentioned above, the system’s behavior can
be mathematically described in terms of a system of differential
equations. In addition to all the chemical reactions in Figure 3
the system of differential equations includes the production and
degradation of p53, basal transcription of MDM2 mRNA, decay
of cytoplasmic RNA, decay of ARF, and production of ARF. The
equations are as follows:

d [p53]

dt
= kp − k1 [p53] [MDM2nuclear]− dp [p53]

d [RNAnuclear]

dt
= km+k2

[p53]1.8

k1.8
D + [p53]1.8 −k0 [RNAnuclear]

d
[
RNAcytoplasmic

]
dt

= k0 [RNAnuclear]− drc
[
RNAcytoplasmic

]
d
[
MDM2cytoplasmic

]
dt

= kT
[
RNAcytoplasmic

]
− ki

[
MDM2cytoplasmic

]
d [MDM2nuclear]

dt
= ki

[
MDM2cytoplasmic

]
− dmn

[
MDM22

cytoplasmic

]
− k3 [MDM2nuclear] [ARF]

d [ARF]

dt
= ka− da [ARF] − k3 [MDM2nuclear] [ARF]

with kp being the production rate of p53, k1 being the rate
at which MDM2 ubiquitinates p53, and dp being the rate of
MDM2-independent p53 degradation. Here, km is the rate of p53-
independent MDM2 mRNA production, k2 is the maximum rate
of p53-dependent MDM2 mRNA production, K D is the dissocia-
tion constant for p53 on the MDM2 promoter region, and k0 is the
rate of MDM2 mRNA transport to the nucleus. In the equations
above, drc is the decay rate of MDM2 mRNA in the cytoplasm,
kT is the translation rate for MDM2 mRNA, and k i is the rate of

FIGURE 3 | A schematic of the model of p53 including MDM2
sequestration by ARF. The blue boxes denote molecular species in the
cytoplasm. The yellow boxes indicate molecular species in the nucleus.
Arrows denote movement between compartments, barred lines indicate
degradation, and circles indicate inducing production.

nuclear localization for MDM2. MDM2 autoubiquitination hap-
pens at the rate dmn and MDM2 binds to ARF at the rate k3.
Lastly, ARF is produced at the rate ka and degraded at the rate da.
The binding properties of p53 and the MDM2 promoter have been
investigated experimentally by Weinberg et al. (2005), who showed
that the appropriate Hill coefficient for the Hill function is 1.8.

A list of the values used for these parameters can be found in
Table 2. The initial conditions were chosen by letting the system
run until it settled into a stable limit cycle and then by using
the values for the time when nuclear MDM2 levels were at a
maximum.

Experimental observations of the p53-MDM2 feedback loop
have found periods of oscillations between 4 and 7 h (Geva-
Zatorsky et al., 2006, 2010). Due to scarcity of experimentally
verified data, most of parameters in the model were chosen by
hand in order to produce oscillations with a similar period. Some
of the parameters were constrained by experimental data. K D was
found to be 12.3 nM by Weinberg et al. (2005). Some exper-
imental results suggested that the half-life for MDM2 mRNA
should be in the range of 1–2 h (Hsing et al., 2000; Mendrysa
et al., 2001), so this constrained our choice of the decay rate.
The MDM2 translation rate, kT, was assumed to be one protein
per mRNA molecule per minute, approximately the value esti-
mated by Cai and Yuan (2009). The transport rate for MDM2
mRNA was constrained to be in the range of 5–40 min, based
on Mor et al. (2010). The half-life of the ARF protein, da, was
chosen to be 6 h based on Kuo et al. (2004). Complex for-
mation rates were assumed to be 6× 10−4/nM s, a reasonable
rate for protein–protein interactions (Northrup and Erickson,
1992). It was further assumed that the p53-MDM2 interaction
would always result in p53 degradation. MDM2-independent p53
turnover was assumed to give a half-life of 10 h for the p53 pro-
tein; this is essentially negligible in this model, but this term was
included in the model so that a bifurcation value could be cal-
culated for it. Cytoplasmic volume was assumed to be 1000 µm3

with a nuclear volume of 100 µm3. The values for p53 production,
ARF production, basal MDM2 mRNA production, p53 induced
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Table 2 | Parameters used in the model.

Parameter Description Value Value (alternate expression)

kp p53 Production 0.5 proteins/s 8.30×10−3/nM s

k1 MDM2 dependent p53 degradation 9.963×10−6/s 6×10−4/nM s

dp p53 Decay 1.925×10−5/s 10 h half-life

km p53-Independent MDM2 production 1.5×10−3 RNA/s 1 RNA per 666 s

k2 p53-Dependent MDM2 production 1.5×10−2/s Maximum of 1 RNA per 66 s

K D Dissociation constant 740 proteins 12.3 nM

k0 RNA transport from nucleus to cytoplasm 8.0×10−4/s 14.4 min for half the proteins to move

d rc MDM2 mRNA decay in cytoplasm 1.444×10−4/s 1 h 20 min half-life

kT Transcription rate 1.66×10−2 proteins/s One protein per RNA per min

k i Protein transport from cytoplasm to nucleus 9.0×10−4/s 12.4 min for half the proteins to move

dmn MDM2 autoubiquitination 1.66×10−7/s 2.76×10−9/nM s

ka ARF production 0.5 proteins/s 8.30×10−3/nM s

da ARF decay 3.209×10−5/s 6 h half-life

k3 MDM2-ARF complex formation rate 9.963×10−6/s 6×10−4/nM s

FIGURE 4 | p53 and MDM2 oscillating in the deterministic model. p53 is in black, MDM2 is in red.

MDM2 mRNA production, MDM2 nuclear import, and MDM2
autoubiquitination were unknown. These unknown parameters
were chosen manually in order to produce oscillations similar to
the ones observed in experiments on single cells. Although only
one set of parameters was produced for this model, the choice
is certainly not unique given the somewhat loose selection crite-
ria. The model produces oscillations with a period of 6.4 h as can

be seen in Figure 4. Bifurcation points for the model are listed
in Table 3. The bifurcation points were found numerically using
Matlab (MathWorks, Inc.).

STOCHASTIC SIMULATION ALGORITHM
The Gillespie algorithm is one of the most commonly used
methods of stochastic simulation (Gillespie, 1977). The Gillespie
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Table 3 | Bifurcation points in the deterministic model.

Parameter Bifurcation value Oscillatory behavior

kp 0.215/s Undamped: 0.215≤ kp ≤1.462

kp 1.462/s Damped: kp ≤0.215∪ kp ≥1.462

k1 2.903×10−6/s Undamped: 2.903×10−6
≤ k1 ≤

1.834×10−5

k1 1.834×10−5/s Damped: k1 ≤2.903×10−6
∪ k1 ≥

1.834×10−5

dp 4.237×10−4/s Undamped: dp ≤4.237×10−4

km 2.788×10−3/s Undamped: km ≤2.788×10−3

k2 7.501×10−3/s Undamped: 7.501×10−3
≤ k2 ≤0.118

k2 0.118/s Damped: k2 ≤7.501×10−3
∪ k2 ≥0.118

K D 253.083 Undamped: 253.083≤K D ≤1723.058

K D 1723.058 Damped: K D ≤253.083∪K D ≥1723.058

k0 7.010×10−6/s Undamped: 7.010×10−6
≤ k0 ≤

6.160×10−3

k0 6.160×10−3/s Damped: k0 ≤7.010×10−6
∪ k0 ≥

6.160×10−3

d rc 8.714×10−5/s Undamped: 8.714×10−5
≤d rc ≤

2.704×10−4

d rc 2.704×10−4/s Damped: d rc ≤8.714×10−5
∪d rc ≥

2.704×10−4

kT 8.760×10−3/s Undamped: 8.760×10−3
≤ kT ≤

2.936×10−2

kT 2.936×10−2/s Damped: kT ≤8.760×10−3
∪ kT ≥

2.936×10−2

k i 6.845×10−6/s Undamped: 6.845×10−6
≤ k i ≤

1.559×10−2

k i 1.559×10−2/s Damped: k i ≤6.845×10−6
∪ k i ≥

1.559×10−2

dmn 1.251×10−6/s Undamped: dmn ≤1.251×10−6

ka 0.324/s Undamped: 0.324≤ ka ≤0.963

ka 0.963/s Damped: ka ≤0.324∪ ka ≥0.963

da 2.088×10−3/s Undamped: da ≤2.088×10−3

k3 5.866×10−6/s Undamped: k3 ≥5.866×10−6

algorithm has the advantage of being exact, unfortunately, it is also
computationally expensive. In order to conduct our investigation
we chose to instead use an approximate simulation, because the
Gillespie algorithm is too slow for the required complexity and
number of simulation runs.

The algorithm we created was based on the concepts of a finite
difference integrator. In a finite difference integrator a system of
differential equations is evaluated by first calculating each of the

derivatives at a point in time, then multiplying them by the time
step size, and finally updating each of the variables by the corre-
sponding amount. In our algorithm, rather than being evaluated
as a single set of derivatives each chemical reaction is evaluated
separately. When the simulation evaluates a chemical reaction, the
first step is to use the law of mass-action and the average of the
current chemical concentrations, and their concentrations after
the last time the reaction was evaluated, to find an expectation
value for the number of times the reaction will occur during this
time step. Next, the expectation value for the number of times
the reaction will occur is set as the expectation value for a Pois-
son random number generator and the result is the number of
times the reaction will actually occur during that time step. This
gives the algorithm a strong resemblance to the well known tau
leap method (Gillespie, 2007), in which Poisson random num-
bers are used in combination with the Gillespie algorithm to
improve efficacy. In order to improve efficiency while preserv-
ing accuracy in our algorithm, an adaptive time step is used. The
program evaluates each reaction 0.5N times per simulated second,
with N chosen such that the expectation value for a particular
evaluation of a reaction is lower than a preset threshold mul-
tiplied by the quantity of the chemical molecules involved. In
this way parts of the system that are changing rapidly are eval-
uated with a low enough time step to prevent numerical errors,
without needing to waste additional computations on the slower
reactions.

Figure 5 shows some examples of individual simulation runs
for this model. The stochastic nature of the simulation leads to
a number of interesting differences arising from the desynchro-
nization of the individual model runs as well as from applying a
distribution of p53 values into the non-linear function for MDM2
production.

RESULTS
DESYNCHRONIZATION IN GENERAL
In order to understand how the individual stochastic realizations
of our model fall out of synch with each other let us first consider
how stochastic systems may fall out of synchronization in general.
An experiment averaging protein levels across many cells is analo-
gous to looking at the average of many runs of a stochastic system.
As such, it is interesting to consider how aggregate average behav-
ior differs from the behavior of individual model runs. A given
run of the stochastic model will not necessarily just be equal to the
deterministic model plus noise. At any given step the stochastic
model’s variables depend on the values of the variables at the pre-
vious time step. For a periodic model this will result not only in
noise moving variables up and down but also in random stepping
forwards and backwards of the model’s phase. Consequently, an
ensemble of model runs will fall out of synchronization over time.
Imagine for simplicity a stochastic model based on a deterministic
model with a variable given by A sin(ωt + ϕ). In the stochastic
model random chance continuously moves each run in the ensem-
ble toward or away from the next peak. Considering the central
limit theorem applied over a large number of runs, one would then
expect the distribution of timing of the peak in individual runs to
approach a normal distribution. If all the runs are initialized from
the same starting point, then the amplitude of the mean will not
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FIGURE 5 | Examples of time courses in the stochastic model. p53 is in black and MDM2 is in red.

be A sin(ωt + ϕ) but rather it will be

A

∫
∞

−∞

1

σ
√

2π
e
−

1t ′2

2σ2 sin
(
ωt + ϕ+ ωt ′

)
dt ′

because the timing of each run will be shifted with a Gaussian
weighting given to the shift. Since the width of the distribution

will increase proportionally to the square root of time, the stan-
dard deviation σ can be expanded as α

√
t , where α is a parameter

related to the rate of desynchronization. This integral then works
out to be

Ae−
ω2α2t

2 sin (ωt + ϕ)
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FIGURE 6 | Comparison of stochastic and deterministic models.
(A) Shows the comparison for MDM2 with MDM2 from the
deterministic model in red and from the mean of 5,000 runs of the

stochastic model in blue. (B) Shows the comparison for p53 with the
deterministic model in black and from the mean of 5,000 runs of the
stochastic model in green.

FIGURE 7 | (A) Comparison of p53 levels in the deterministic model in black to a curve fitted to it from the function f (t) = a0 + a1 sin (ωt + ϕ1)+

a2 sin (2ωt + ϕ2) in red. (B) Comparison of p53 levels in the stochastic model in black to a curve fitted to it from the function f (t) = a0 + e−
α2 t
2 a1 sin (ωt + ϕ1)+

e−
4α2 t

2 a2 sin (2ωt + ϕ2) in red.

Consider a 2π periodic function that is integrable on the inter-
val from −π to π. This function could be expressed as a Fourier
series such that

f (t ) =
a0

2
+

∞∑
n=1

[an cos (nt )+ bn sin (nt )]

or equivalently

f (t ) =
a0

2
+

∞∑
n=1

[
an sin

(
nt +

π

2

)
+ bn sin (nt )

]

Applying the result above we find that the function will be
changed by desynchronization to become

f ′ (t ) =
a0

2
+

∞∑
n=1

[
an sin

(
nt +

π

2

)
+ bn sin (nt )

]
e−

n2α2t
2

Since the decay is proportional to the square of the frequency,
any function will rapidly take on the appearance of a single
decaying sine-function curve as time progresses.
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DESYNCHRONIZATION IN THE STOCHASTIC MODEL
The damping caused by desynchronization in the stochastic model
can be seen in Figure 6. The deterministic and stochastic systems
can be compared by fitting a curve to the time series for p53.
Specifically:

f (t ) = a0 + a1 sin (ωt + ϕ1)+ a2 sin (2ωt + ϕ2)

for the deterministic model, and

f (t ) = a0 + e−
α2t

2 a1 sin (ωt + ϕ1)+ e−
4α2t

2 a2 sin (2ωt + ϕ2)

for the stochastic model. Table 4 lists the parameter estimates for
the deterministic model as well as 95% confidence intervals for the
stochastic model. Figure 7 shows graphs of the functions and their
best fits. The best fit was determined by using least squares regres-
sion on the mean p53 values from 5,000 instances of the stochastic

Table 4 | Comparisons of the parameters found when fitting the

deterministic model’s p53 levels to the function f (t ) = a0 +

a1 sin (ωt + ϕ1)+ a2 sin (2ωt + ϕ2) and the stochastic model’s p53

levels to the function f (t ) = a0 + e−
α2 t

2 a1 sin (ωt + ϕ1)+

e−
4α2 t

2 a2 sin (2ωt + ϕ2).

Parameters

fitted to

deterministic

model

Parameters

fitted to

stochastic

model

Lower bound

for stochastic

parameters

Upper bound

for stochastic

parameters

α N/A 21.8/s1/2 21.2/s1/2 22.5/s1/2

ω 2.73×10−4/s 2.63×10−4/s 2.62×10−4/s 2.64×10−4/s

A0 332 346 345 347

A1 −348 −396 −406 −388

f 1 1.21 1.40 1.38 1.43

A2 105 136 −136 144

f 2 0.633 −1.16 −36.6 13.6

FIGURE 8 | Comparison of nuclear MDM2 levels in the stochastic
model in black to a curve fitted to it from the function
f (t ) = a0 + e−

α2 t
2 a1 sin (ωt + ϕ1)+ e−

4α2 t
2 a2 sin (2ωt + ϕ2) in red.

model. The upper and lower bounds were found by using boot-
strapping on the 5,000 instances that were used to compute the
best fit. The 95% confidence intervals for the amplitude and phase
of the second sine curve ended up being very large due to the curve
fitting function jumping between local minima. To ensure that the
algorithm was being run at a high enough numerical precision,
an additional 5,000 instances were generated with the acceptable
error parameter in the code selected to equal 10 times the value
used in this analysis. The resulting new confidence intervals were
compared to the ones from the higher accuracy runs. In all cases
significant overlap of the intervals was found, suggesting that the
acceptable error was set low enough in the high accuracy runs to
result in only negligible deviations from an exact solution.

The differences between the stochastic model’s behavior and the
deterministic model’s behavior are statistically significant. Most
striking is that the frequency of the oscillations was changed by
stochastic effects. The same analysis has been done on nuclear

Table 5 | Comparisons of the parameters found when fitting the

deterministic model’s nuclear MDM2 levels to the function f (t ) = a0 +

a1 sin (ωt + ϕ1)+ a2 sin (2ωt + ϕ2) and the stochastic model’s nuclear

MDM2 levels to the function f (t ) = a0 + e−
α2 t

2 a1 sin (ωt + ϕ1)+

e−
4α2 t

2 a2 sin (2ωt + ϕ2).

Parameters

fitted to

deterministic

model

Parameters

fitted to

stochastic

model

Lower bound

for stochastic

parameters

Upper bound

for stochastic

parameters

α N/A 20.7/s1/2 20.2/s1/2 21.3/s1/2

ω 2.73×10−4/s 2.63×10−4/s 2.62×10−4/s 2.63×10−4/s

A0 302 345 343 346

A1 −314 −372 −379 −365

f 1 −1.72 −1.49 −1.51 −1.47

A2 −71 −78.5 −82.8 −74.6

f 2 −1.73 −0.80 −0.87 −0.73

FIGURE 9 | A comparison of the function [p53]1.8

k1.8
d +[p53]1.8 between the

function applied to mean p53 values in black and the mean of the
function when applied to the distribution of p53 values in red.
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MDM2 levels, which can be seen in Figure 8 and Table 5. The
discrepancy between the fitted curve for MDM2 levels and the
levels from the simulation hints at another difference between sto-
chastic and deterministic systems, which will be discussed below.
It is also worth noting that this stochastic model only consid-
ers the differences between cells due to noise in a few chemical
reactions. In a real cell there would be many more factors con-
tributing to desynchronization. Even simply adding mRNA for the
p53 and ARF included in this model raises the desynchronization
parameter a from 21.8 to 23.5 s−1/2 (a mean of 30 mRNA mol-
ecules was used for this simulation). Additionally, differences in

cell volume would increase desynchronization by altering protein
concentrations between cells.

CHANGES DUE TO NON-LINEAR EFFECTS
The mean of a stochastic ensemble for the stochastic model devi-
ates from the deterministic model not just from desynchronization
but also due to non-linear effects. For a non-linear function
applied to a distribution of inputs, the mean of the function
will not necessarily be equal to the function of the mean. In
other words, as is well known in statistics, the following is usu-
ally true: <f(x)> 6= f(<x>), unless f is a linear function of x.

FIGURE 10 | Comparison of stochastic and deterministic models when
p53 production is near the lower bifurcation point. (A) Shows the
comparison for MDM2 with MDM2 from the deterministic model in red and

from the mean of 5,000 runs of the stochastic model in blue. (B) Shows the
comparison for p53 with the deterministic model in black and from the mean
of 5,000 runs of the stochastic model in green.

FIGURE 11 | Comparison of stochastic and deterministic models when
p53 production is near the upper bifurcation point. (A) Shows the
comparison for MDM2 with MDM2 from the deterministic model in red and

from the mean of 5,000 runs of the stochastic model in blue. (B) Shows the
comparison for p53 with the deterministic model in black and from the mean
of 5,000 runs of the stochastic model in green.
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FIGURE 12 | Comparison of stochastic and deterministic models when
the p53 production value is past the upper bifurcation point. (A) Shows
the comparison for MDM2 with MDM2 from the deterministic model in red

and from the mean of 5,000 runs of the stochastic model in blue. (B) Shows
the comparison for p53 with the deterministic model in black and from the
mean of 5,000 runs of the stochastic model in green.

Production of MDM2 mRNA in this model is clearly non-linear

because it is proportional to f (p53) =
[p53]

1.8

k1.8
d +[p53]

1.8 . Figure 9

compares the function of the mean to the mean of the func-
tion for this case. Mean MDM2 values in the stochastic model
are determined by <f(p53)> (the red curve in Figure 9) which
has a different amplitude then f(<p53>) (the black curve in
Figure 9). This discrepancy causes the behavior of the system to
change relative to the deterministic case, which only has mean
p53 values. This is also the most likely source of the discrep-
ancy between the fitted curve in Figure 8 and the actual levels
of MDM2. With production that behaves differently, the initial
conditions in the simulation would not have represented a point
on the limit cycle for MDM2 levels. As a consequence, the system
would have been moving toward the limit cycle at the same time
as it was desynchronizing. The simple fitted curve cannot possi-
bly account for this, which is why it did not fit well. p53 levels
would also have been affected by this but this does not seem to
have been a large enough effect to be readily noticeable on the
graph.

Although the effect on the amplitude of the oscillations with
the original parameters was relatively small, amounting to approx-
imately 5%, the non-linear effects can be larger in other situations.
Consider the case when the p53 production rate is set near to the
lower bifurcation point, as shown in Figure 10. In this case the
mean level of MDM2 from the stochastic model ends up being
higher than the maximum amplitude of the oscillations in the
deterministic model. A similar phenomenon occurs when p53
production is near the upper bifurcation point as is shown in
Figure 11.

EXCURSIONS FROM THE MEAN
Stochastic effects continue to play an interesting role in the sys-
tem’s behavior even as we move past the upper bifurcation point,

FIGURE 13 | Comparison of the function [p53]1.8

k1.8
d +[p53]1.8 between the

function applied to mean p53 values in black and the mean of the
function when applied to the distribution of p53 values in red.

so that the deterministic model exhibits damped oscillations. For
Figures 12–14, p53 production was set to 1.6, putting the system
into the realm of damped oscillations. In Figure 12 we can see
that as the oscillations decay, the MDM2 levels settle in at a value
significantly higher in the stochastic model than the determinis-
tic one. From Figure 13 we can see that the non-linear effects of
variable p53 levels are still altering behavior, but something more
is occurring this time. In Figure 12B we see that mean p53 levels
are settling in at a level higher in the stochastic model than in
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the deterministic one. This seems strange in light of the higher
MDM2 levels but Figure 14 shows the reason. The stochastic
nature of the system is sufficient to cause significant excursions
from the mean even though the oscillations should be decaying.
Some of the oscillations that occur later on are even larger than
the initial pulse. Similar behavior has been observed in other sto-
chastic models such as the one presented in McKane and Newman
(2005), but has not been previously observed in a model of the
p53 system.

DISCUSSION
The stochastic work we present in this paper differs from previ-
ous modeling efforts in that its goal is primarily to compare the
behavior of stochastic and deterministic realizations of the same
model. This requires only a simple model; therefore much of the
complexity of the p53 system can be ignored. Since the model
presented in this work is not aimed at addressing DNA repair, or
dealing with the problem of variable damage being done, it does
not include such systems. The model presented here also differs

FIGURE 14 | Examples of individual stochastic realizations when p53 production is past the upper bifurcation point. p53 is in black MDM2 is in red.
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from the previous models in a few other ways. Unlike in other
models, MDM2 autoubiquitination was assumed to happen at a
rate proportional to the square of MDM2 concentration. Given
that MDM2 forms heterodimers with MDMX (Sharp et al., 1999),
that MDMX inhibits MDM2 autoubiquitination (Okamoto et al.,
2009), and that MDM2 ubiquitinates MDMX (De Graaf et al.,
2003), it seems likely that one MDM2 molecule is ubiquitinating
a second MDM2 molecule.

The work on the deterministic and stochastic models presented
here demonstrates that the effects of stochasticity on the behavior
of genetic regulatory networks cannot be dismissed without care-
ful consideration. In our system stochastic effects altered every
aspect of system behavior. In addition to desynchronization lead-
ing to the appearance of decaying oscillations, the amount of
MDM2 in the system increased and the period of the oscilla-
tions changed. The changes in MDM2 levels became more obvious
when p53 production was near bifurcation points. When the sys-
tem was put into a state with decaying oscillations, the quantity
of MDM2 still remained above that in the deterministic model,
showing that stochasticity still alters behavior as the system is near
a steady state. Furthermore, stochastic systems will not necessar-
ily undergo damped oscillations even when assigned parameters
that would cause damped oscillations in a deterministic system.
Instead, they may show sporadic oscillation-like excursions from
the mean behavior. It would seem then that even for cells in a
steady state, the distribution of protein levels across a popula-
tion and over time could wreak havoc with attempts to model cell
behavior. This has implications for researchers wishing to model
cell-level processes, as systematic errors could occur in determin-
istic models with no obvious way to compensate for them. As
computers and algorithms improve, it may be the case that simply
moving to stochastic modeling of cell populations will become the
most practical solution.

The demonstration that stochasticity can be relevant is very
general, but it was also shown that the magnitude of the effects
could vary significantly between systems. The effect on mean pro-
tein levels could be around 5%, as in the original parameter set,
or around 50%, as in some of the parameter sets with differing
p53 levels. The obvious way to experimentally test the relevance

of stochasticity on any given system is by comparing data from
cell populations to data from individual cells. Such experimental
comparisons were, after all, the inspiration for investigating sto-
chasticity in this system in the first place. The difference between
a stochastic model and a deterministic one with different parame-
ters are not likely to be obvious from population data, even if the
effects of stochasticity are expected to be large. Testing the details of
stochastic models will require investigating the behavior of indi-
vidual cells. Of course, stochasticity is not the only factor that
could drive individual cells to different behaviors. Factors such as
differences in cell size, different cell cycle stages, and non-uniform
distributions of components in cell culture medium could all alter
behavior on the scale of single cells. Untangling these effects is
potentially a fruitful area for future research.

A valuable way of expanding the utility of our model would
be to link it to other models of related processes. The DNA
repair and damage detection modules in Ma et al. (2005) would
be a good example of this. Once one system is sufficiently well
understood, it would be possible to begin analyzing how alter-
ing it changes connected systems, or conversely, how changing
connected systems alters it. This could allow one to study down-
stream drug effects. For that kind of work it would likely be
best to start as far upstream as possible, in order to facilitate
the experimental control of inputs. For example, for the p53 sys-
tem it would make sense to start with a model that quantifies the
damage ionizing radiation causes to DNA and other cellular sys-
tems, because the level of radiation a cell is exposed to can be
controlled in the lab. Then, once that is modeled accurately, one
could study the DNA damage detection systems,and finally the p53
response. Repeating this process for other forms of damage, like
for example ultraviolet light, could bring insight into the system’s
behavior.
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