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Despite a growing wealth of available molecular data, the growth of tumors, invasion of
tumors into healthy tissue, and response of tumors to therapies are still poorly understood.
Although genetic mutations are in general the first step in the development of a cancer,
for the mutated cell to persist in a tissue, it must compete against the other, healthy
or diseased cells, for example by becoming more motile, adhesive, or multiplying faster.
Thus, the cellular phenotype determines the success of a cancer cell in competition with
its neighbors, irrespective of the genetic mutations or physiological alterations that gave
rise to the altered phenotype. What phenotypes can make a cell “successful” in an envi-
ronment of healthy and cancerous cells, and how? A widely used tool for getting more
insight into that question is cell-based modeling. Cell-based models constitute a class
of computational, agent-based models that mimic biophysical and molecular interactions
between cells. One of the most widely used cell-based modeling formalisms is the cellular
Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM
has become a popular and accessible method for modeling mechanisms of multicellular
processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for bio-
physical cellular properties, including cell proliferation, cell motility, and cell adhesion, which
play a key role in cancer. Multiscale models are constructed by extending the agents with
intracellular processes including metabolism, growth, and signaling. Here we review the
use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We
argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained
and computationally efficient representation of cell and tissue biophysics, make the CPM
the method of choice for modeling cellular processes in tumor development.

Keywords: cellular Potts model, cell-based modeling, tumor growth model, evolutionary tumor model, tumor
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1. INTRODUCTION
The development of a tumor is initiated as the genomes of indi-
vidual cells in an organism become destabilized. Such genetic
instability usually kills cells, but in rare cases it modifies the prop-
erties of the cell in a way that allows it to proliferate and form a
tumor. These biological capabilities are known as the “hallmarks
of cancer” (Hanahan and Weinberg, 2000, 2011), which include:
(1) self-sufficiency in proliferative signaling, (2) evasion of growth
suppressors, (3) the ability to resist apoptotic signals from the
environment, (4) limitless replicative potential, (5) secretion of
pro-angiogenic signals, (6) invasion and metastasis, (7) repro-
graming metabolism (e.g., the Warburg effect), (8) evasion of the
immune system, and (9) recruitment of healthy cells to create
a “tumor microenvironment.” Experimental and computational
studies of cancer typically focus on the molecular peculiarities
of tumor tissues relative to healthy tissues. The main reasons for
this genetic focus are that (a) genetic changes of the cells are main
cause for acquisition of tumor cell capabilities, (b) molecular infor-
mation is readily accessible using high-throughput techniques,

including next generation sequencing, and (c) the molecular level
is the main target for pharmacological agents (Uren et al., 2008;
Shah et al., 2009; Pleasance et al., 2010; Pugh et al., 2012). Such
tumor sequencing studies help identify the key genes involved
in cancers, and sequencing information is helpful in classifying
tumors (Thomas et al., 2007).

The molecular data used in these studies is typically averaged
over the whole-tumor mass, so regional differences within the
tumor or between metastases get lost. Nevertheless, genetic het-
erogeneity of tumors is an inevitable consequence of the genetic
instability of tumor cells (Marusyk et al., 2012), and further
intratumor heterogeneity may arise from epigenetic differences
between cells, driven by transcriptional noise or signaling from the
microenvironment. To test for heterogeneity, Yachida et al. (2010)
sequenced samples of different regions of a pancreatic tumor and
of its metastases. They indeed found genetic differences between
the metastases, which they could trace back to corresponding
regional differences within the primary tumor. Gerlinger et al.
(2012) report similar regional differences within renal carcinomas.
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Thus, these studies have identified significant degrees of intra-
tumor heterogeneity that whole-tumor sequencing studies will
underestimate. These findings underline the importance of spatial
structure within tumors and thus will have direct implication for
understanding tumor development.

A better understanding of the causes and consequences of
tumor heterogeneity is key to developing improved treatment
strategies. In a heterogenous tumor, a single pharmaceutical agent
may target cells differently. As a result, treatments may select for
resistant variants, potentially leading to a tumor relapse (Marusyk
et al., 2012). Intratumor competition of tumor cells for resources
including nutrients, oxygen, or growth space may set off a process
of somatic evolution responsible for tumor progression (Ander-
son et al., 2006). Like in any evolutionary process, the success
of a tumor cell clone during such intratumor competition will
depend only indirectly on the cell’s genome, via the cellular phe-
notype and the cell’s environment, which consists of the other
tumor cells, the extracellular matrix, and the healthy tissue. What
matters for the cell’s survival and reproduction in the tumor, is
its ability to respond to biophysical and molecular cues in the
microenvironment, and face challenges in the microenvironment
more efficiently than its competitors. Such cues and challenges
include mechanical stiffness of the surrounding tissue, physical
pressure due to growth, nutrient or growth factor gradients and
availability, or accessibility to the immune system. Thus, to under-
stand the effects of intratumor heterogeneity, apart from genetic
studies, biophysical studies of cell behavior are crucial. The key
to understanding cancer is not to collect more data, hoping that
“the (data) would somehow arrange themselves in a compelling
and true solution” (Dobzhansky paraphrased in Gatenby, 2012);
we need to find “cancer’s first principles” instead, and “use data to
support or refute a postulated theoretical framework” (Gatenby,
2012).

In this paper we review attempts to develop such theoretical
frameworks for collective cell behavior during tumor develop-
ment. Mathematical descriptions of tumor growth and develop-
ment range from continuum-level descriptions of gene-regulatory
networks or tumor cell populations, to detailed, spatial models of
individual and collective cell behavior. The scale of the biologi-
cal phenomenon of interest, and the scale at which we can collect
data or control the behavior of the system motivates the level of
description of choice. Space-free models focus, e.g., on the dynam-
ics of the gene or metabolic regulatory networks of individual
cells (Vazquez et al., 2010; Frezza et al., 2011), or they describe the
relative growth of tumor cells and healthy cells using population-
dynamics approaches (Gatenby and Vincent, 2003; Stamper et al.,
2007; Basanta et al., 2012).

Here we focus on cell-based models (Merks and Glazier, 2005),
a class of modeling formalisms that predicts collective cell behav-
ior from coarse-grained, phenomenological descriptions of the
behavior of the cells. The input to a cell-based model is a dynam-
ical description of the active behavior and biophysics of cells and
of the properties of extracellular materials, a description that often
simplifies the underlying genetic networks to the minimal level of
complexity required for explaining the cell’s responses to extra-
cellular signals. The output of a cell-based model is the collective
cell behavior that emerges non-intuitively from the interactions

between the cells in the model. In this way, cell-based models
help unravel how tissue-level phenomena, e.g., tumor growth,
metastasis, tumor evolution, follow from the – ultimately genet-
ically regulated – behavior of single cells. A range of cell-based
modeling techniques is available. The least detailed cell-based
models describe the position and volume of individual cells. Such
single-particle approaches include cellular automata (CA, see for
example: Alarcón et al., 2003; Anderson et al., 2006; Hatzikirou
et al., 2008; Enderling et al., 2009; Sottoriva et al., 2010; Owen
et al., 2011), which represent cells as points on a lattice. Off-lattice
single-particle approaches describe cells as points or spheroids in
continuous space; applications in tumor growth include the stud-
ies of Drasdo et al. (1995), Drasdo and Höhme (2003), Gevertz
and Torquato (2006), Kim et al. (2007), Van Leeuwen et al. (2009),
Macklin et al. (2012), or Kim and Othmer (2013). Single-particle
cell-based models are well suited for describing the emergence
of spatial and clonal structure in growing tumors, but they are
less suitable to answer more detailed, biomechanical questions on
how the tissue changes due to cancer cell growth. Such morpho-
logical changes can result from local cell rearrangements through
cell shape change or intercalation (Keller and Davidson, 2004).
For answering such questions, we need to describe the individual
cells in more detail and include their shape, elasticity, polarity, etc.
Multi-particle cell-based models make this possible by using a col-
lection of particles to represent the cell. Off-lattice, multi-particle
methods either describe cells by their boundaries (Brodland et al.,
2007; Farhadifar et al., 2007; Rejniak, 2007; Merks et al., 2011) or
as collections of connected particles (Newman, 2005; Sandersius
et al., 2011b). For broad reviews of single-particle and multi-
particle cell-based models of tumor development, see, e.g., Rejniak
and Anderson (2011) and Hatzikirou et al. (2005). Here we will
review computational models of tumor growth based on a multi-
particle, lattice-based cell-based model: the cellular Potts model
(Graner and Glazier, 1992; Glazier and Graner, 1993).

2. A MULTI-PARTICLE, CELL-BASED METHOD ON THE
LATTICE: THE CELLULAR POTTS MODEL

In the cellular Potts model (CPM), cells are represented as spatially
extended objects with explicit cell shapes. This makes it possi-
ble to define the cell neighborhood more precisely. The model
describes amoeboid cell motion, cellular rearrangements, and
pressure inside the tissue. The CPM was introduced by Graner
and Glazier (Graner and Glazier, 1992; Glazier and Graner, 1993)
for modeling cell sorting according to the differential adhesion
hypothesis of Steinberg (1970), and was applied thereafter to var-
ious phenomena in vertebrate biological development, including
convergent extension (Zajac et al., 2003), blood vessel network
formation (Merks et al., 2006, 2008; Szabo et al., 2008), vascular
sprouting (Bauer et al., 2007; Szabó and Czirók, 2010), ureteric bud
branching in kidney development (Hirashima et al., 2009), and
somitogenesis (Hester et al., 2011). Its proven utility in describing
normal embryonic development, makes the CPM a natural choice
for modeling pathological developmental mechanisms in cancer.

The CPM is defined on a regular, square or hexagonal lattice,
with a spin σ(Ex) ∈ Z+,0 defined on each lattice site Ex . Biological
cells are represented as domains on the lattice with identical spin
σ(Ex), where σ∈N can be seen as a cell identification number, and
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σ= 0 typically identifies a medium or the extracellular matrix.
Each cell and the medium is additionally marked with a label
τ(σ)∈Z+, 0 to identify a biological cell type. The CPM describes
amoeboid cell movement with a Metropolis algorithm, which iter-
atively attempts to copy the spin value σ(Ex) of a randomly selected
site Ex into a randomly chosen adjacent lattice site Ex ′.
The spin-copy attempt is accepted with probability 1 if it would
decrease the value of a globally defined Hamiltonian, H, or with
Boltzmann probability if it would increase the value of H :

p
(
σ (Ex)→ Ex ′

)
=

{
1 , if ∆H

(
σ (Ex)→ Ex ′

)
< 0

exp
[
∆H

(
σ (Ex)→ Ex ′

)
/µ (σ)

]
, if ∆H

(
σ (Ex)→ Ex ′

)
≥ 0

(1)

where ∆H (σ(Ex)→ Ex ′) is the change in the Hamiltonian due to the
attempted copy, and µ(σ) parameterizes the intrinsic cell motility.
The Hamiltonian approach acts to represent the balance of effec-
tive (both physical and phenomenological) forces acting on the
cells, with the spatial gradient of the Hamiltonian proportional to
the force acting on that location, E∇H (Ex) ∝ EF(Ex).

In the originally proposed model the Hamiltonian function
consists of a volume constraint term responsible for maintaining
an approximately constant cell volume and a surface energy term
responsible for cell-cell adhesion properties:

H = Hv + Ha =

=
∑
σ

λv
(
Vσ − V T

σ

)2
+

∑
(Ex ,Ex ′)

J
(
τ (σ (Ex)) , τ

(
σ
(
Ex ′
)))

(
1− δ (σ (Ex)) ,

(
σ
(
Ex ′
)))

.
(2)

Here,V σ is the volume and V T
σ is the target volume of the cell σ.

σ(Ex) denotes the cell number of the cell occupying position Ex and
τ(σ(Ex)) is its cell type. J (τ(σ(Ex)), τ(σ(Ex ′))) is the adhesion coeffi-
cient between cell types τ(σ(Ex)) and τ(σ(Ex ′)), and δ(σ(Ex), σ(Ex ′))
is Kronecker’s delta function with a value 1 if σ(Ex) = σ(Ex ′) and
0 otherwise. The first summation runs over all cells and penal-
izes the deviation of the cell’s volume from a prescribed target
volume with a coefficient λv. The second term sums the adhe-
sion energies (J ) of all adjacent lattice site pairs (Ex , Ex ′), with the
Kronecker delta selecting lattice pairs at cell boundaries, where
σ(Ex) 6= σ(Ex ′). As J (τ(σ(Ex)), τ(σ(Ex ′))) is typically positive, cells
tend to minimize their surface area with other cells or the medium,
making the adhesion term equivalent to surface tension (Glazier
and Graner, 1993). The Monte Carlo Step (MCS) is the usual time
measure in the model. One MCS is defined as N elementary steps,
or copy-attempts, where N is the number of lattice sites in the grid.
This choice ensures that on average all sites are updated in every
MCS, decoupling the system size and the number of copy-attempts
needed to update the whole configuration.

The basic CPM has been extended with numerous cell behav-
iors relevant for tumor biology. To represent growth factors (Jiang
et al., 2005), extracellular materials (Turner and Sherratt, 2002),
nutrients (Jiang et al., 2005; Shirinifard et al., 2009), or other
diffusing chemicals, the CPM often interacts with systems of
partial-differential equations, which are typically solved numer-
ically on a grid matching with that of the CPM. To model the cell’s

response to the chemical fields, most studies assume that cells are
more likely to extend (or retract) pseudopods along concentration
gradients (Turner and Sherratt, 2002; Bauer et al., 2007; Ruben-
stein and Kaufman, 2008; Tripodi et al., 2010). To this end, an
additional energy bias is incorporated in the Hamiltonian at the
time of copying (Savill and Hogeweg, 1997):

∆Hχ

(
σ (Ex)→ Ex ′

)
= ∆H

(
σ (Ex)→ Ex ′

)
− χ

(
c (Ex)− c

(
Ex ′
))

,
(3)

for the copying step σ(Ex) → Ex ′, where c(Ex) represents the con-
centration at position Ex , and χ is a scalar parameter setting the
relative strength of the chemotactic motion in the Hamiltonian
(equation (2)).

Cell growth and division are implemented in the model either
by increasing the target volume V T

σ (Stott et al., 1999; Shirinifard
et al., 2009), or keeping it fixed while dividing the cell into two
smaller daughter cells (Turner and Sherratt, 2002; Rubenstein and
Kaufman, 2008). Cell division can be triggered when certain con-
ditions are met, such as the cell reaches a certain size (Jiang et al.,
2005), or volume-to-surface ratio (Stott et al., 1999), or can depend
on the time since last division (Sottoriva et al., 2011), and so on.
Further extensions make it possible to model, e.g., the effect of cell
shape (Merks et al., 2006; Starruß et al., 2007; Palm and Merks,
2013), anisotropic differential adhesion (Zajac et al., 2003), persis-
tent cell motion (Szabó et al., 2010; Kabla, 2012). These behaviors
can be made specific for the cell types τ(σ) included in the model,
e.g., tumor, stromal, necrotic tumor cell, and cancer stem cells.
The extracellular matrix can also be modeled in varying levels of
detail. We will discuss these extensions in more detail as they occur
in the tumor models reviewed below.

3. AVASCULAR TUMOR GROWTH
The outgrowth of primary, avascular tumors originating from
a small, proliferative population of cells is a first step toward
tumor development, and it forms a basis for more elaborate mod-
els of tumor development. Models of avascular tumors aim to
reproduce the growth characteristics and spatial organization of
avascular tumors from first principles, including cellular division
rates, and local accessibility of nutrients. Laird (1964) showed that
many avascular tumor growth curves are well characterized by
Gompertz growth curves (Gompertz, 1825): an initial exponential
growth phase, followed by a deceleration of the growth rate and a
final, steady-state size of the tumor due to exhaustion of growth
resources. The number of cells in the tumor, N (t ), at time t is
given by the formula:

N (t ) = N0exp

[
A

α

(
1− e−αt )] . (4)

Here N 0 is the initial number of cells in the tumor, α character-
izes the deceleration of the growth rate, and A/α sets the maximum
size of the tumor. Because of the limited supply of nutrients from
the surrounding stroma via diffusion,avascular tumors in vitro fol-
low Gompertz-like, saturated growth curves, while the diffusion
depth of the nutrient stratifies the aggregate into a necrotic core,
a quiescent layer, and a proliferative rim (Folkman and Hochberg,
1973).
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3.1. MODELING GOMPERTZ GROWTH FROM FIRST PRINCIPLES
One of the first simulations that reproduced Gompertz growth
from first principles using the CPM was reported by Stott et al.
(1999). Their three-dimensional model represents stromal cells,
proliferating tumor cells, quiescent tumor cells, and necrotic cells
(Figure 1A). The model is based on the experimental observa-
tion that the volume of proliferating cells in an in vitro tumor
is constant throughout growth (McElwain and Pettet, 1993). The
thickness of this outer proliferative layer is denoted by Dq, and
the first necrotic cells appear at approximately 4Dq distance from
the outer surface of the aggregate (McElwain and Pettet, 1993).
This property is used to reconstruct the nutrient levels within the
aggregate: cells are assumed to change their “type” (proliferative,
quiescent, necrotic) depending on nutrient availability. The level
of nutrients at depth Dq, is a constant Nq. Nutrient levels at other
positions are assumed proportional to R− d, where R is the tumor
radius and d is the distance from the tumor surface. The nutri-
ent level determines the growth rate of proliferative cells in the
model, as

G =


0 , if 0 ≤ N ≤ Nq ,

1
2

(
1− N

Nq

)2
, if Nq ≤ N ≤ 3Nq ,

2 , otherwise.

(5)

Cell growth and cell necrosis are implemented by increasing
or decreasing the target volumes, dVT/dt=G, of the cells over
time. Necrotic cells further from the interface decrease their target
volume faster. Proliferating cells grow and divide when reaching
a certain volume-to-surface ratio. Simulations of the model cor-
rectly reproduce the growth of avascular tumors: an exponential
growth phase is followed by a linear phase, after which the tumor
reaches a steady size. The final size of the aggregate is maintained
by the balance of cell proliferation at the tumor edge, and the decay
of necrotic cells at the center. In this state cells are gradually shifted
from the outer rim toward the necrotic core. The model also repro-
duces the stratified, spatial organization of avascular tumors, with
a proliferative rim, a quiescent layer, and a necrotic core. How-
ever, this is not unexpected, since the nutrient, that determines the
cell types, is an explicit function of the distance from the tumor–
stroma interface. This is a good approximation, if the nutrient
diffuses uniformly from the stroma into the tumor.

A more complete model of tumor spheroids was presented by
Jiang et al. (2005). They simulate the diffusion of nutrients, waste,
growth factors, and inhibitory factors. They use a simplified, intra-
cellular model of the cell cycle based on a Boolean network in
each cell to determine if a cell is proliferative or quiescent. The
secreted growth factors and inhibitory factors are assumed to regu-
late the progression through the cell cycle by altering the activation
state of proteins within the Boolean network. A set of partial-
differential equations describes the secretion, diffusion and uptake
of the nutrients, waste products, growth factors, and inhibitory
factors, as:

∂ci (Ex , t )

∂t
= Di∇

2ci (Ex , t )+ Si (τ (σ (Ex)))− ∈ici (Ex , t ) , (6)

FIGURE 1 |Tumor growth models. (A) Cross section of the 3D avascular
tumor model of Stott et al. (1999). Black cells in the middle of the tumor are
necrotic, surrounded by quiescent cells (light gray). The outer layer of the
tumor consists of proliferating cells (dark gray). The tumor is embedded in
stroma, represented by stromal (white) cells. Image reproduced from Stott
et al. (1999) with permission. (B) Cross section of the 3D avascular tumor
model of Jiang et al. (2005), with a numerical simulation of nutrient and
waste diffusion, cell cycle regulation, and cell metabolism. The figure
shows the three layers of avascular tumors. The stroma is modeled as a
continuum, depicted in blue. Image reproduced from Jiang et al. (2005)
with permission. (C) Avascular tumors with a homogeneous population of
tumor cells and mixed cancer stem cells and transient amplifying cancer
cells (Sottoriva et al., 2011). Homogeneous tumors produce spherical
aggregates, whereas a heterogeneous population gives rise to a rugged
surface, enhancing metastasis. The lower images show the distribution of a
couple of clones that illustrates the growth dynamics within the
aggregates. Image reproduced from Sottoriva et al. (2011) with permission.

with ci denoting the concentration of glucose, oxygen, metabolic
waste, growth factors, or inhibitory factors. Di is an effective
diffusion coefficient, Si(τ(σ(Ex))) is the source, and ∈i is the decay
rate of the substances. As a boundary condition, the authors
assume constant concentrations in the medium surrounding the
tumor (Si(medium)= consti). Consumption and production at
position Ex depends on the cell type τ(σ(Ex)) occupying that posi-
tion. Proliferative and quiescent cells produce waste, and consume
nutrients and growth factors, while necrotic cells do not consume
any substance. Necrotic and quiescent cells produce inhibitory fac-
tors. Cells metabolize nutrients through anaerobic glycolysis and
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respiration, producing lactate as waste. They assumed that meta-
bolic activity determines cell survival: cells turn necrotic if glucose
concentrations drop below 0.06 mM, or at oxygen concentrations
below 0.02 mM, or at lactate concentrations above 8 mM. Cell
shedding is introduced in the model by allowing mitotic cells to
detach from the aggregate at a constant rate at the tumor sur-
face. These cells are then taken out from the simulation. With
these assumptions, the proliferative rim, the quiescent layer, and
necrotic core emerge in the model (Figure 1B).

Jiang et al. (2005) compare their simulation to the growth of
in vitro aggregates of mouse mammary tumor cells cultured in sus-
pension. They fitted a Gompertz model to both the experimental
and simulated tumor growth curves, which yielded estimates for
the initial cell doubling time (related to parameters α and A in
equation (4)). The resulting estimate of the equilibrium number
of tumor cells in the spheroids, N 0exp(A/α), differed at most by a
factor of 2 between model and experiments.

The model of Jiang et al. (2005) also predicted the appearance of
the spheroids’ stratification. The combined width of the prolifer-
ative rim and the quiescent layer remains constant during growth,
whereas the radius of the necrotic core increases linearly in time,
which the simulation accurately reproduce. Based on these results
the authors propose that the size of the necrotic core is governed by
the accumulation of wastes and depletion of nutrients, and is inde-
pendent of the cell cycle. Interestingly, the inclusion of a simplified
model of the cell cycle accurately reproduced cell phase distribu-
tions in tumor spheroids, and the growth arrest characteristic of
avascular tumors. Since the authors reproduced growth dynamics
without any mechanically restricting extracellular microenviron-
ment, they conclude that such biophysical constraints are not
necessarily crucial for the growth arrest of the observed tumor
aggregates.

3.2. ANISOTROPIC TUMOR GROWTH: THE CANCER STEM CELL
HYPOTHESIS

A higher level of heterogeneity within tumors was suggested by
the cancer stem cell hypothesis (Reya et al., 2001). The hypothe-
sis assumes that only a small fraction of tumor cells, the cancer
stem cells (CSC), are capable of unlimited reproduction, while the
main tumor mass consists of cells with only limited replication
potential. It is still not clear where the CSCs originate from: they
could be transformed stem cells, or cancerous cells that acquire
self-renewal properties (Visvader and Lindeman, 2008). In this
view, tumors are inherently heterogeneous with respect to prolif-
eration potential. The hypothesis is still debated, but supportive
evidence is accumulating: Visvader and Lindeman (2008) list sev-
eral experimental attempts to isolate CSCs from solid tumors, by
propagating and passaging cells. These studies aimed at identifying
cell-surface markers for CSC properties, with candidates including
CD44, CD133, and ESA.

Sottoriva et al. (2011) explored the effect of CSCs on tumor
development using the CPM. Two cell types are represented in
their model: CSCs, that are allowed to divide indefinitely, and dif-
ferentiated cells, that divide only a limited number of times. CSCs
divide either symmetrically to give rise to two CSCs, or asym-
metrically to produce a CSC and a differentiated cell. Cells are
killed at random with a constant rate. Confirming their previous

result from a cellular automata model (Sottoriva et al., 2010), Sot-
toriva et al. (2011) show that the presence (or absence) of CSCs
affect tumor morphology in their CPM. Tumors in which all cells
have infinite reproductive potential grow into a spherical shape.
In comparison, tumors in which only CSCs can reproduce indefi-
nitely, tend to assume a more irregular shape (Figure 1C): in these
populations the whole tumor is made up of a collection of small,
spherical tumors, each originating from one CSC. In this view, the
tumor is an aggregate of self-metastases (Enderling et al., 2009).
The authors argue that the emergent irregular surface of the whole
aggregate is reminiscent of invasive tumor growth.

To explore if and how the presence of a CSC population within
a tumor aggregate affects the emergence of treatment resistance,
Sottoriva et al. (2011) implemented a simple model of evolution-
ary dynamics: the division rate of model cells is set by an abstract,
arbitrary fitness function, which is proposed to depend on an
inheritable and mutating methylation pattern on the DNA of the
individual cells. Tumor therapy is implemented by killing a per-
centage of cells at a specific time, that results in new growth space
around the survivors, lowering the selection pressure within the
aggregate, and leading to a second expansion. They observe that
with CSCs, tumors are able to develop a larger variety of methyla-
tion patterns after regrowth. During regrowth the total number of
mutations in tumors with CSCs is higher than in tumors without
CSCs: in the former case a small number of CSCs will recreate the
whole population through a large number of divisions per CSC,
leading to accumulation of mutations. In tumors without CSCs
all cells contribute to repopulation equally, with fewer divisions
per cell, and therefore lower chance of mutation accumulations.
Accumulated mutations can help tumor cells to escape local fit-
ness maxima, leading to a faster evolution, and possibly giving
rise to more resistant cells. These simulations indicate how seem-
ingly effective treatments may induce a more resistant or invasive
phenotype. Gao et al. (2013) show experimental evidence that
in vitro glioblastoma cultures indeed increase their growth rate
and the fraction of CSCs in the populations after irradiation with
less than lethal dose. To quantitatively explore the reason behind
growth acceleration, they present a CPM similar to the model
of Sottoriva et al. (2011). They calibrate the probability of sym-
metric CSC divisions using CSC ratios in in vitro and in vivo
glioblastoma populations. The resistance of CSCs to radio therapy
is incorporated in the model, and calibrated using dose dependent
survival measurements after acute irradiation. When comparing
acute and fractionated irradiation response, the authors found that
the relative increase in CSCs after fractionated treatment cannot
be explained solely by radioresistance of CSCs. These model simu-
lations suggest that repeated exposure to radiation might increase
the symmetric division rate of CSCs, and/or increase the division
rate of CSCs. These effects remain to be tested experimentally.

3.3. TRANSITION BETWEEN HOMEOSTASIS AND UNCONTROLLED
GROWTH

A key issue in cancer, not considered by the above models, is tissue
homeostasis (Anderson et al., 2011). In fact, explaining dynamical
homeostasis of a tissue in which cells are continuously renewed
in a balanced way, may be a far more challenging problem than
modeling uncontrolled growth. Initiation of tumor growth then
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amounts to the loss of tissue homeostasis. Although not specially
targeted at modeling cancer, an abstract model by Tripodi et al.
(2010) makes a first step in this direction. They argue that meta-
bolic exchange is one of the main regulators of tissue renewal and
robustness of developmental patterns. They implemented a grow-
ing heterogeneous population of cells that are interdependent on
one another for metabolic purposes. To do so, they extended the
CPM with a set of rules regulating the cell’s ability to secrete and
consume diffusing nutrients from their environment, and move
toward (or away from) nutrients and other chemicals. The nutri-
ents that the cells consume are metabolized to an internal energy
used for maintenance, division, or chemotactic movement. The
relative rates of these budget terms are determined by a set of
parameters, and are the same for all cells within one simulation.
Different cell types in the model produce different nutrients that
can be used by one other cell type, creating a cross-feeding sys-
tem. Cells can also change types during the simulation. Two main
budget parameters control the behavior of the population: the
rate of maintenance, and the rate of nutrient consumption. A
system with high consumption and low maintenance rates gen-
erates a proliferative population similar to cancer, whereas lower
consumption and higher maintenance rate yields a population in
dynamic homeostasis. Whether the uncontrolled growth of the
high consumption, low maintenance metabolic phenotype pre-
dicted by the model of Tripodi relates to the reprograming of
cellular energy metabolism in cancer as seen in the Warburg effect
(Levine and Puzio-Kuter, 2010), will be an interesting topic of
future theoretical and experimental research.

4. VASCULAR TUMOR GROWTH
To enable their sustained growth, tumors must attract new blood
vessels and remodel the vasculature in a process called angiogen-
esis. The blood vessels provide nutrients and oxygen to the tumor
and remove waste from the vicinity of tumors. Several authors
have looked at the interaction between growing tumors and the
vasculature. In this section we will review a cellular Potts model
studying the growth dynamics of vascular tumors. Models focus-
ing on the mechanisms of angiogenesis (for example: Manoussaki
et al., 1996; Gamba et al., 2003; Merks et al., 2006, 2008; Szabo
et al., 2007, 2008; Bauer et al., 2009; Daub and Merks, 2013; Palm
and Merks, 2013) are reviewed elsewhere (for example, Chaplain
et al., 2006; Jiang et al., 2012; Peirce et al., 2012; Bentley et al.,
2013).

Shirinifard et al. (2009) studied the interaction of tumor growth
and the vasculature. The blood vessels, modeled as a network of
elastically connected endothelial cells, provide oxygen to the tumor
at a constant rate. Oxygen is considered as the only nutrient that
restricts tumor growth, assuming that other nutrients are either
depleted at the same locations as the oxygen, or are not limiting.
Tumor cells in the model are considered either normal, hypoxic or
necrotic, depending on their metabolic state, determined by oxy-
gen levels in their microenvironment. The growth rate of normal
and hypoxic tumor cells thus depends on the oxygen levels:

dV T

dt
=

GmO(ER)

Gk + O(ER)
. (7)

Here VT is the cell’s target volume, O(ER) represents the oxy-
gen levels at the cell’s center of mass (ER) and parameters Gm and
Gk define the dynamics of growth. Once the cells reach doubling
volume, they divide. Hypoxic cells secrete VEGF-A, which attracts
endothelial cells through chemotaxis, and induces their growth.
Necrotic cells decrease their volume at a constant rate until they
completely disappear.

The authors identified distinct phases of tumor growth with
tumors capable and incapable of inducing blood vessel growth. In
both cases, tumors grow exponentially in the initial regime until
the development of hypoxic areas (Figure 2A). After that, the
growth rates of angiogenic tumors and non-angiogenic tumors
start to diverge. In non-angiogenic tumors, necrotic cells appear
shortly after hypoxic cells, creating the three layers typical of avas-
cular tumors. Cells protrude from the spherical tumor towards the
vessels due to oxygen inhomogeneities, resulting in vessel rupture
and more access to oxygen. The tumor continues to grow slowly
along the existing vasculature, producing a cylindrical aggregate
(Figure 2B). In angiogenic tumors, hypoxic cells secrete VEGF-A,
and activate angiogenesis. Neovascular cells form a peri-tumor
network, but do not penetrate the tumor itself. The spherical
angiogenic tumor gradually assumes a cylindrical shape, similar to
the avascular tumor. Due to the intense neovascularization at the
tumor surface, however, cells have sufficient oxygen supply, so they
do not follow the preexisting vasculature. This allows the tumor
to grow from cylindrical shape into a broader sheet, a paddle-like
structure (Figure 2C).

One intriguing behavior arising from the model is the effect of
random cell motility within the tumor. Increased motility results
in more mixing, therefore it allows more cells to access higher
oxygen concentrations at the tumor surface. As oxygen concen-
tration is linked to cell growth, variations in cell size will be
smaller with increased motility. However, since the inhomogeneity
in cell growth drives the transition from spherical to cylindrical
shape, increased cell motility results in a less invasive tumor. This
contra-intuitive mechanism is a good example of how computer
simulations can help in elucidating mechanisms of cancer. The
model neglects blood flow, interstitial pressure, the extracellular
matrix, nutrients, and a large part of cell signaling. Despite these
simplifications, Shirinifard et al. (2009) claim that the initial avas-
cular tumor growth stages in the model are reminiscent to the first
and second stages of gliomas.

5. TUMOR–STROMA INTERACTIONS
We will next review models investigating another general struc-
ture in the stroma besides the vasculature: the extracellular matrix
(ECM). This heterogeneous spatial network provides mechanical
scaffold for the tissues. In order to grow out of the aggregate and
invade the host, tumor cells have to be able to migrate through
the ECM. For this reason, cells develop the ability to remodel
the surrounding ECM (Friedl and Wolf, 2008). ECM representa-
tion in models vary. Some authors model the ECM surrounding
the tumor as a homogeneous substance, assuming that the size
of ECM components is significantly smaller than the cell size.
Others argue that structures within the matrix, such as collagen
fibers, reach and typically exceed the size of the cells, therefore they
represent the ECM as a heterogeneous substance. Studies in the
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FIGURE 2 | Vascular tumor growth of Shirinifard et al. (2009).
(A) Number of normal proliferative tumor cells in the non-angiogenic (red
curve) and angiogenic (black curve) model, showing different stages of
development. Black arrows: (1) the exponential growth phase of the
spherical tumor; (2) no growth; (3) the linear-spherical phase; (4) slow
growth; (5) the linear-cylindrical phase; (6) the linear-sheet phase. Red

Arrows: (1) the exponential growth phase of the spherical tumor; (2) slow
growth; (3) cylindrical growth phase. (B) Cylindrical shaped
non-angiogenic tumor. Tumor cells are shown in green, the vasculature is
red. (C) Paddle-shaped angiogenic tumor. Neovascular endothelial cells
are shown in purple. Images reproduced from Shirinifard et al. (2009)
with permission.

following sections consider the interface between the tumor and
the stroma.

5.1. INVASIVENESS AND HAPTOTAXIS
Cells have been described to move toward higher concentrations
of ECM, a property termed haptotaxis. This behavior might nat-
urally play a role in tumor invasion, therefore it has been in the
focus of more computational studies.

Turner and Sherratt (2002) reproduce invasion in streams, also
known as “fingering,” eventually resulting in an advancing front
that separates from the main tumor mass (Figure 3A). In this
model the system is filled with ECM initially, and it is assumed to
be exponentially degraded in the vicinity of cells. Cells divide with
a division probability increasing with time and with increasing
cell-ECM contact. This assumption is based on the observation
that cells divide more often if they have more contact with the
ECM (Huang and Ingber, 1999).

In this model, the tumor front invades deeper into the ECM
if the cells have higher haptotactic sensitivity, or if they secrete
proteolytic enzymes at a higher rate. Interestingly, increasing
both the haptotactic sensitivity and the secretion rate of the
proteolytic enzymes simultaneously leads to more effective inva-
sion than invasion driven by either of these mechanisms alone.
Counterintuitively, the model suggests that an increase in cell
proliferation results in a slower invasion. The reason for this
behavior is found in the mechanism of invasion: cells at the inva-
sion front detach from the main tumor body. As the haptotactic
effect is highest at the very edge of the front, the back of the
front and the main tumor mass is exposed to a smaller hap-
totactic gradient. Due to cell-cell adhesion, these cells pull the
invading front back and thus slow the invasion. Cell prolifera-
tion creates an increasing tumor mass and keeps the cells at the
front connected for a longer time. In a follow-up paper, Turner
et al. (2004) extended their model to explore possible effects
of tamoxifen treatment on tumor invasion. This more detailed
model explicitly describes the secretion and diffusion of prote-
olytic enzymes and TGF-β. Tamoxifen increases TGF-β secretion

in tumors, resulting in reduced cell proliferation rates and higher
apoptosis rates. Based on experimental observations (Koli and
Arteaga, 1996; Nakata et al., 2002), increase in TGF-β expres-
sion increases haptotaxis index of cells in the model. Turner and
co-workers find that TGF-β treatment can increase invasiveness:
although high levels of TGF-β decrease the tumor cell population,
the interface morphology becomes more irregular, reminiscent of
more invasive tumors. By inducing apoptosis inside the tumor,
TGF-β dilutes the aggregate, making it easier for cells to sepa-
rate from the main tumor and invade the ECM. This behavior
is further enhanced by the increase in haptotactic response due
to TGF-β.

The model framework of Turner and colleagues has been
extended by Scianna and Preziosi (2012), to include intracellu-
lar regulation of cell motility, based on extracellular growth factor
concentrations. In accord with the findings of Turner and Sher-
ratt (2002), Scianna and Preziosi (2012) point out that therapies
aiming at increasing cell-cell adhesion between tumor cells, or
loosening adhesions between tumor cells and the ECM, lead to a
more compact tumor aggregate, that is easier to remove surgically.
Inhibiting the matrix degrading ability of tumor cells, or inhibit-
ing their ability to haptotax also resulted in less disperse invasion
fronts in the model of Scianna and Preziosi (2012). These results
were obtained by simulating invasion of a homogeneous envi-
ronment. Giverso et al. (2010) showed that these hold in a more
realistic environment as well. They simulated in vitro ovarian can-
cer transmigration essays, where single tumor cells or a group of
tumor cells invade a connected layer of mesothelial cells. They
show that depending on the cohesion of the tumor cells, invasion
occurs at multiple or single loci. In both their in vitro experiments
and model simulations, Giverso and colleagues show that indi-
vidual cells can penetrate, or intercalate, the monolayer without
damaging it. A group of tumor cells, however, disrupts the mono-
layer as they invade. Using their model, they demonstrate that the
mode of invasion – group or individual – depends on the relative
adhesion between tumor cells and tumor cells and the mesothelial
cells.
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FIGURE 3 |Tumor invasion with homogeneous and heterogeneous ECM.
(A) Invasion front of tumor penetrating the stroma via “viscous fingers”. Image
reproduced from Turner and Sherratt (2002) with permission. (B) Avascular
tumor model of Rubenstein and Kaufman (2008), exploring invasion along

ECM fibers. Image reproduced from Rubenstein and Kaufman (2008) with
permission. (C) Invasion front of persistently moving cancer cells penetrate in
“fingers” along ECM fibers describe penetration dynamics even without cell
division. Image produced based on the model of Szabó et al. (2012).

5.2. INVASIVENESS AND NUTRIENT SUPPLY
In the previous section we described studies of tumor invasion
due to cell-ECM interactions. Popławski et al. (2009) show how
invasion fronts can be affected by nutrient availability. They show
that tumor starvation (low nutrient flux) promotes tumor inva-
sion, and cell–stroma adhesion (surface tension) defines the width
of invading clusters of cells. Following Turner and co-workers,
Popławski et al. (2009) assumed that tumor cells secrete matrix
degrading enzymes. In their model matrix digestion releases a
nutrient or growth factor required for cell growth. Cell growth
is an increasing function of available substrate, and cells divide
when reaching doubling size. Cell death is not considered in
the model. Tumor metabolism efficiency is implicitly included
in the model by controlling substrate uptake and cell growth rate
independently.

The authors find that if nutrient supply is abundant, e.g., if the
substrate consumption is relatively low, the tumor assumes a dense
and spherical morphology. In this case cell-matrix surface tension
(or cell-cell adhesion strength) does not affect tumor morphology.
If the nutrient becomes more limiting, the tumor assumes a lobed,
branched shape, and becomes sensitive to the cell-matrix surface
tension parameter: lower surface tension allows for more rugged
tumor surface. As the substrate cannot reach deep areas inside the
tumor, growth slows down closer to the tumor center, resulting in
deep groves, in a mechanism related to the classic diffusion-limited
aggregation model (Witten and Sander, 1981). This effect is coun-
teracted by the surface tension which smoothens regions of high
positive curvature. Therefore the substrate penetration length (set
by substrate consumption) and the capillary length (set by sur-
face tension) together define the surface morphology. The results
of Popławski et al. (2009) suggest that depriving nutrients from
tumors might increase their invasive potential. Thus they sug-
gest that anti-angiogenic tumor therapies, which aim to reduce
the nutrient supply of tumors, might actually induce invasive,
metastatic tumor phenotypes.

5.3. HETEROGENEOUS EXTRACELLULAR MATRIX AND CELL
MIGRATION

Although the scale of the extracellular matrix building blocks are
negligible when compared with the size of the cell, the matrix
can still contain structures comparable to or even larger than a

cell. These not only include inhomogeneities in matrix density,
but also anisotropic structures such as collagen filaments. Ruben-
stein and Kaufman (2008) explore avascular tumor growth using a
model including both a homogeneous and a filamentous extracel-
lular matrix component, representing diffusible matrix proteins
and collagen fibers (Figure 3B). Based on the angiogenesis model
of Bauer et al. (2007), the ECM is represented as a special frozen
cell type that is not allowed to move. Cells are allowed to occupy
ECM sites, but when they leave the site, the ECM is restored. Cells
strongly adhere to filamentous ECM, and also require this contact
for cell division.

Cells in the model of Rubenstein and Kaufman (2008) consume
a non-diffusing nutrient and produce waste, producing stratified
avascular tumor growth. Cell division is controlled by explicit con-
tact with the ECM: if a cell has reached a target surface area and is
in contact with a collagen fiber or matrix, it divides. This results in
a proliferating rim around the tumor. Due to a large difference in
cell-cell and cell-matrix adhesion, cells are shed at the rim, even in
the absence of collagen fibers (similar to the model of Jiang et al.,
2005). Cells elongate and invade along fibers in the vicinity of the
tumor surface, producing a growth similar to a Gompertz growth.
Due to the depletion of nutrients and constant proliferation at the
edge, however, the tumor diameter does not stabilize, as expected
in a Gompertzian growth. In their two-dimensional in vitro exper-
iments Rubenstein and Kaufman observed that tumor cells spread
fastest at intermediate collagen concentrations, an effect that their
computational model reproduces. Their simulations suggest that
this behavior is only valid for shorter collagen fibers, where the
density of collagen has to be high in order to form long, con-
tiguous fibers. As collagen density increases and the network is
interconnected, cells invade along the fibers. At sufficiently high
densities cells overpopulate the immediate neighborhood of the
tumor, thus preventing it from faster expansion. One can view this
behavior as cells getting stuck at the border of the tumor. Another
interesting insight is that fiber anisotropy might direct the inva-
sion when the connected fiber length is significantly larger than
the cell size. When cells are allowed to change the structure of
the fibrous matrix by degrading it, invasion distance decreases
and cells become more rounded. When cells deposit collagen
matrix, their invasion becomes slower, much like in the case of
high collagen density simulations. Allowing full remodeling of the
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ECM, however, results in more invasive tumors than with only
degradation or only deposition.

The proposed invasion mechanism is driven by haptotaxis and
proliferation at the invading front. Although this model quali-
tatively reproduces growth curves comparable with experimental
observations, it does not account for invasion without cell pro-
liferation. Szabó et al. (2012) show experimentally, that tumor
cell lines are able to invade collagen gels in vitro even if their
proliferation was inhibited. The authors reproduce the fingered
invasion morphology and invasion speeds using a model similar
to Rubenstein and Kaufman (2008). The model does not account
for cell proliferation, nutrients, or waste, but cells are moving in
a persistent manner (see below) in a fibrous, aligned matrix envi-
ronment (Figure 3C). The model results suggest that persistent
cell motion may also play a role in invasion, besides proliferation
and haptotaxis.

In order to efficiently invade the microenvironment, cells might
acquire the ability to move persistently. Motion persistence can
result from gradients of nutrients, ECM, growth factors, or pres-
sure, but persistent cell motion might also be intrinsic to cells, as
described by in vitro studies of Stokes et al. (1991) and Selmeczi
et al. (2005). In a cellular Potts model focusing on persistent
cell motility, Kabla (2012) explores the necessary conditions for
inducing a stream of cells in a heterogeneous cell population.
Kabla represents both tumor tissue and the stroma as a densely
packed epithelium, with tumor cells having a higher motility
and persistence than healthy cells. Persistent motion is mod-
eled using an internal direction of movement in cells (EP i), that
biases the probability of cell extensions and retractions through
the Hamiltonian, as:

∆H
(
σ (Ex)→ Ex ′

)
= ∆H0

(
σ (Ex)→ Ex ′

)
+ λP

∑
i∈{σ(Ex),σ(Ex ′)}

EP i∣∣EP i
∣∣ ∆ Er

|∆ Er |
.

(8)

Here ∆ Er represents the vector pointing from site Ex to site Ex ′.
The direction of cell motion, EP i , is the average cell displacement
of the cell in the previous k timesteps and λP sets the relative
strength of the polarity bias in the Hamiltonian (equation (2)). A
similar implementation of persistent motion has been experimen-
tally validated earlier by Szabó et al. (2010), where the direction of
cell motion is evolving in time as:

∆ EP i = −
1

k
EP i +∆ ERi , (9)

where ∆ ERi is the displacement of the cell centroid in the whole
timestep (MCS). In Kabla’s model, tumor cells invade the healthy
tissue in streams collectively, with motility and persistence values
that would not allow individual cells to metastasize. In contrast
to angiogenesis, where the presence of a small, specialized tip cell
population is essential for sprouting, Kabla shows that tip cells are
not essential in tumor invasion.

Scianna et al. (2013) further studied the invasion of porous
ECM in 2D and 3D configurations. They sub-divided each cell
into a nucleus and a cytosol region, which enables them to describe
the invasion of dense matrices more realistically and to reproduce

experimentally measured cell migration behaviors. Movement of
the simulated cells is maximal in intermediate pore sizes, when
the cells are still able to move through them. They show that an
increased average alignment of the ECM fibers directs cell motion
into a more linear pattern, which results in an increased migration
persistence. Furthermore, they show that cell migration is only
affected by matrix degrading enzyme production in high density
matrices.

6. DISCUSSION
In this review we presented an overview on tumor models using
the cellular Potts model. The models resolve cell shape, which
allows us to model behavior at the cell level, and give a fair repre-
sentation of the cellular microenvironment. The reviewed models
demonstrate how the CPM can be applied to model tumor growth,
the spatial structure of tumors, the effect of tumor heterogene-
ity on tumor development, the implications of angiogenesis, and
how the invasion of tumor cells depends on nutrient availability
or the extracellular matrix. Furthermore, the models described
above explain cell shedding at the tumor edge, tumor surface
morphology, or the counterintuitive effect of tumor treatment on
heterogeneous tumors. To better understand the properties of the
CPM, it is useful to compare it with other, similar models. Such a
comparison is given by Andasari and colleagues, who studied how
cell-cell adhesion and metastasis is influenced by cell signaling in
epithelial tumors. They directly compared their results obtained
using a CPM (Andasari and Chaplain, 2012) with results from a
cell-center model (Andasari et al., 2011). While in the cell-center
model the malignant cells leave the epithelium in a wave, spreading
radially outwards from an initial cell, in the CPM this radial pat-
tern becomes more stochastic and irregular. This example shows
how the intrinsic stochasticity of the CPM affects the system on
the multicellular scale.

Despite its advantages, the CPM also has its disadvantages. The
dynamics of the model represents a constraint to the simulated
cells: the maximum speed of cells in the model is limited to the
size of the lattice neighborhood per MCS. A related mechanical
constraint is the limited speed of compression waves: if one side
of a floating 3D aggregate is pushed, the aggregate will deform
instead of translating as a whole unit. This is a result of the over-
damped nature of the model, and might present complications
when modeling in vitro tumor invasion from an aggregate (for
a more detailed discussion, see Szabó et al., 2012). Furthermore,
model dynamics is non-local due to the volume constraint term,
which complicates mean-field analyses (Voss-Böhme, 2012) and
computational parallelization (Chen et al., 2007) of the model.
Some of these disadvantages, e.g., grid effects, are resolved by
other multi-particle cell-based models. Probably the closest model
framework to the CPM is the subcellular element model (ScEM),
introduced by Newman (2005). Cells in the ScEM are represented
by elements (analogous to a lattice site in the CPM) that interact
with other elements in the same cell and other cells. Instead of
copying, the elements of the ScEM are allowed to move in contin-
uous space. Similar to the CPM, the interaction between elements
determines the dynamics of the cell, making it a flexible system.
The ScEM is a promising framework with studies focusing on phe-
nomena from single cell rheology (Sandersius and Newman, 2008)
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to multicellular epithelial tissue behavior (Newman, 2008; Sander-
sius et al., 2011a) and invasion (Sandersius et al., 2011b). Another
example of a well developed, off-lattice model is the immersed
boundary framework (IBCell), introduced by Rejniak (2007). The
model has been applied to tumor modeling (Anderson et al., 2009),
together with two other cellular automata-like approaches (the
hybrid discrete continuum model, and evolutionary hybrid cel-
lular automata model), to show the counterintuitive connection
between nutrient availability and tumor surface fingering, sim-
ilar to Popławski et al. (2009). The model represents cells with
boundary points that are connected elastically (similar to models
for plant cells, see for example: Merks et al., 2011). The advantage
of the model compared with the CPM is its ability to explicitly
represent the physical connections between cells, which makes it
a strong model for 2D simulations. Extending the IBCell to 3D,
however, is not straight-forward and would require high technical
skills.

Although these off-lattice models solve some of the problems
inherent to a lattice-based approach, an advantage of the CPM
is its direct extensibility to three-dimensions, and the availability
of community-driven open source implementations, e.g., Com-
puCell3D1 and Tissue Simulation Toolkit2. The packages provide
a straight-forward set of tools for constructing cell-based models
without the need to spend significant time on model development.
CompuCell3D is easily extended with new cell behaviors, subcel-
lular compartments, and extracellular materials. The framework
can be configured to include diffusing substances (such as growth
factors, or nutrients). More recent extensions make it possible to
include extracellular matrix materials in the CPM. The level of

1http://www.compucell3D.org
2http://sourceforge.net/projects/tst/

detail at which the ECM is described depends on the particular
problem that the model addresses, ranging from the ECM as an
extracellular, homogeneous field, to a fibrous matrix represented
with a special CPM “cell.” Cell behavior, such as chemotaxis, cell
elongation, cell proliferation and growth, or persistent motility
can all be readily implemented as modules in the framework. In
its original application the smallest scales of a CPM model were the
pseudopods and the single cells. More recently the CPM has been
extended with additional subcellular structures, including intra-
cellular compartments, epithelial junctions, and focal adhesions,
many of which are now made available as modules for Compu-
Cell3D (Swat et al., 2012). These subcellular extensions have been
applied to modeling cell organelles (Scianna et al., 2013), and
mechanically connected tissues, such as epithelia (for example,
Shirinifard et al., 2012). Another useful extension is the possibility
to run ODE models of regulatory networks inside each of the cells
of a CPM. To this end, CompuCell3D has recently been integrated
with the SBML-compliant regulatory network modeling tool Sys-
tems Biology Workbench (SBW), see, e.g., Hester et al., 2011. This
development opens the door to multiscale models of tumor devel-
opment, in which existing, SBML-compliant models of signaling,
genetic regulation, and metabolism of tumor cells can be studied
in a more detailed, realistic multicellular context.
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