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We present a stochastic model of driver mutations in the transition from severe congenital
neutropenia to myelodysplastic syndrome to acute myeloid leukemia (AML). The model
has the form of a multitype branching process. We derive equations for the distributions
of the times to consecutive driver mutations and set up simulations involving a range of
hypotheses regarding acceleration of the mutation rates in successive mutant clones. Our
model reproduces the clinical distribution of times at diagnosis of secondary AML. Sur-
prisingly, within the framework of our assumptions, stochasticity of the mutation process
is incapable of explaining the spread of times at diagnosis of AML in this case; it is nec-
essary to additionally assume a wide spread of proliferative parameters among disease
cases. This finding is unexpected but generally consistent with the wide heterogeneity of
characteristics of human cancers.
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INTRODUCTION
Granulocytes are essential for host defense and survival. Their
importance is apparent in severe congenital neutropenia (SCN).
Life-threatening infections in children with SCN can be avoided
through the use of recombinant granulocyte colony-stimulating
factor (GCSF). However, SCN often transforms into secondary
myelodysplastic syndrome (sMDS) and then into secondary acute
myeloid leukemia (sAML). A great unresolved clinical question is
whether chronic, pharmacological doses of GCSF contribute to
this transformation (Glaubach and Corey, 2012). A number of
epidemiological clinical trials have demonstrated a strong associ-
ation between exposure to GCSF and sMDS/sAML (Dong et al.,
1995; Donadieu et al., 2005; Rosenberg et al., 2006; Germeshausen
et al., 2007; Carlsson et al., 2012). Mutations in the distal domain
of the GCSF Receptor (GCSFR) have been isolated from patients
with SCN who developed sMDS/sAML or patients with de novo
MDS (Beekman and Touw, 2010). Most recently, clonal evolution
over approximately 20 years was documented in a patient with
SCN who developed sMDS/sAML (Beekman et al., 2012). Clonal
evolution of a sick hematopoietic progenitor cell in SCN involves
perturbations in proximal and distal signaling networks triggered
by a mutant GCSFR. Transition from SCN→ sMDS→ sAML
involves chance mechanisms such as mutations, drift and tran-
scription, and receptor noise, which require that stochastic models
are needed (Whichard et al., 2010).

In the present paper we use stochastic modeling to under-
stand the wide range of times at which the transition to sAML
occurs. We develop a model in the form of a multitype branch-
ing process, which allows one tying population genetics and

population dynamics aspects of the transition from SCN to sMDS
to sAML, and validating it against existing evidence. Branching
processes have been used widely to model mutation, selection, and
drift processes in populations of variable size, to which the classical
Wright–Fisher model does not apply (Cyran and Kimmel, 2010).
We adopted approach similar to that developed in Nowak’s group
(Bozic et al., 2010), modified to bring out stochastic time intervals
between successive driver mutations.

The model we developed allows predicting the time at tran-
sition to sAML given the probability of each successive driver
mutation, the number of mutations needed, and the proliferative
potential of each successive mutated clone of hemopoietic stem
cells. We can then compare these times to observed distribution
of times at transition. As documented in the paper, the outcome
is intriguing: stochasticity inherent in the mutation process is
insufficient to explain the wide distribution of times at transition
(ranging from 1 to 38; Table 1). Additional factors are required,
one of which may be a wide interpatient spread of proliferative
potential of the mutant clones.

POPULATION GENETICS AND POPULATION DYNAMICS MODEL OF THE
SCN → sMDS → sAML TRANSITION
Missense, nonsense, and frameshift mutations, and dysregulated
alternative splicing in GCSFR have been isolated in patients with
MDS/AML. In the study of Beekman et al. (2012), nonsense and
missense mutations in GCSFR arose during the course of the
disease. In the model we envision, population genetics, and pop-
ulation dynamics of proliferating bone marrow cells are closely
intertwined.
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Table 1 | Summary of life histories of patients transitioning from

severe congenital neutropenia (SCN) to secondary myelodysplastic

syndrome (sMDS) to secondary acute myeloid leukemia (sAML)

(Walter et al., 2012).

Phase of

disease

Age at diagnosis

(years)

Number of co-existing

mutations

SCN 0–0.5 1*

MDS 1–12 1–3± chromosomal loss or gain**

AML 2–38 1–9± chromosomal loss or gain***

*ELANE, HAX1, G6PC, WAS, CSF3R.

**GCSF3R, ZC3H18, LLGL2; RAS±monosomy 7.

***RUNX1, ASXL1, p300, CEBA, CSF3R, MGA,SUZ12, LAMB,FBXO18,

CCDC15,±monosomy 7, trisomy 21.

POPULATION GENETICS PERSPECTIVE
Proliferating healthy cells in the bone marrow mutate at ran-
dom times, possibly influenced by super-pharmacological doses of
GCSF. A summary of possible mutations and their consequences
for proliferation dynamics of granulocyte precursors is depicted
in Figure 1. GCSF signaling occurs through its cognate receptor,
GCSFR. It involves both proximal signaling networks consisting
of signaling molecules such as Lyn, Jak, STAT, Akt, and ERK, and
distal gene regulatory networks consisting of transcription factors.
Together, these signaling networks promote proliferation, survival,
and differentiation. In patients with SCN,the earliest known muta-
tion to contribute to transformation to secondary MDS or AML is
a nonsense mutation in the GCSFR gene. This mutation leads to
a truncated receptor, GCSR delta 715 (Glaubach and Corey, 2012,
and reference therein).

It follows from a simple calculus of mutation events that as
long as the cell population size is kept in check, the rate at
which new mutant clones appear in the population is rather low.
When the population expands, new mutant clones arise faster (see
further on).

In our model we take the view that carcinogenesis is driven
by a succession of small-scale (e.g., point) mutations in specific
loci. Other viewpoints (epigenetic effects, karyotypic alterations,
intercellular interactions, etc.) have been suggested. In treatment-
related MDS some drugs (e.g., many alkylating agents) induce
t-MDS primarily via large scale alterations that lead to karyotypic
instability (Bhatia, 2011).

POPULATION DYNAMICS PERSPECTIVE
Limited mutation load at the SCN phase causes neutropenia and
fluctuations of cell population size. With time, accumulation of
driver mutations causes expansion of mutant clones, which how-
ever are not yet expanding at a dramatic rate. At some point in
time, mutations accumulate sufficiently to cause a major change
in the proliferation law and the now malignant cell population
starts rapidly expanding.

Our model is based on the following hypotheses (Figure 2):

1. At the time of diagnosis of SCN, GCSF therapy is initiated,
which induces an initial series of X driver mutations, occurring
at random times.

2. The X -th mutation causes transition to the MDS, during which
further Y mutations occur.

3. After X +Y mutations, the AML stage begins, during which
the subsequent mutant clone grow at increasing rate, which in
turn shortens times at which still new mutations appear.

In the model, the increasing proliferation rate of successive
mutant clones causes acceleration of growth of the malignant bone
marrow stem cell population, which shortens the time interval to
appearance of new clones, which in turns increases proliferation
rate, and so forth; this results in a positive feedback. As we will
see, the stochastic nature of the process (the times to appearance
of each next mutant are random) causes a spread of the timing
of the subsequence mutations, particularly the first X mutations
during the SCN phase. This may result in the transition to MDS
not manifesting itself for a very long time in a fraction of cases.

ROLE OF STOCHASTIC DYNAMICS IN THE MODEL
We explain some other intuitions underlying the model. For a
new subclone, stochastic theory is used to estimate extinction
probability, with extinction after more than a few cell genera-
tions being negligible in view of the growth advantage of the new
clone. However the time at which the next mutation occurs in
a cell clone is also stochastic and it is as a rule more dispersed
for the slower-growing clones. Therefore the time to reaching the
threshold number of bone marrow stem cells (which in our model
defines the time at sAML diagnosis), is a random variable. One of
the questions we ask is if dispersion of this time matches the wide
distribution of the times at diagnosis (Rosenberg et al., 2010).

MATERIALS AND METHODS
MATHEMATICS OF THE MODEL
The population-genetic effect of population size-dependent accu-
mulation of mutations occurs as a natural consequence of the pro-
liferation law in the form of a multitype Galton–Watson branching
process:

1. Consecutively arising surviving mutant clones are numbered
with the index k, ranging from 1 to K ; time interval between
the appearance of the k-th and k + 1-st surviving mutant clones
is denoted by τk. k-th mutant cells have accumulated k driver
mutations (assuming the clone in SCN bone marrow at diag-
nosis has a single cell with one driver mutation, which seems a
defendable idealization).

2. All clones expand as Galton–Watson branching processes (see
further on). Cell life length is constant and equal to T, and at
that time the cell either produces two progeny with probability
bk (cell type k) or dies (or becomes quiescent or differentiated,
which does not make a difference for disease dynamics) with
probability 1− bk.

3. A cell of type k can mutate upon its birth (for definiteness) to
type k + 1 with probability u.

These three rules allow one derive the probability distributions
of time intervals τk, probabilities of survival of each clone, and
expected growth laws of each clone. Mathematical details fol-
low from the theory of Galton–Watson branching process; see
for example the monograph by Kimmel and Axelrod (2002).
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FIGURE 1 | Dynamic stochastic model of impaired differentiation in
granulocyte precursors. GCSF signaling occurs through its cognate
receptor, GCSFR. It involves both proximal signaling networks consisting
of signaling molecules such as Lyn, Jak, STAT, Akt, and ERK, and distal
gene regulatory networks consisting of transcription factors. Together,

these signaling networks promote proliferation, survival, and
differentiation. In patients with severe congenital neutropenia, the earliest
known mutation to contribute to transformation to secondary MDS or
AML is a nonsense mutation in the GCSFR gene. This mutation leads to a
truncated receptor, GCSFR delta 715.

We assume that cell division is effective with probability b, i.e.,
the probability generating function (pgf) of the number of prog-
eny cells per parent cell has the form f(s)= bs2

+ (1− b). The
extinction probability q is the smaller solution of the equation
q= f(q), which is less than 1 if the process is supercritical. In
our case,

q = bq2
+ (1− b)⇒ q =

(
b−1
− 1

)
; b ∈ (0.5, 1]. (1)

Similarly, the expected number of progeny of a cell is equal to
f ′(1−)= 2b, hence the expected number of cells at time t is equal
to N (t )= (2b)(t /T ), which yields the value of λ

exp (λt ) = (2b)(t/T )
⇒ λ = ln (2b) /T . (2)

We will use “continuous” time t for notational convenience.
However, we consider generations of cells dividing at discrete times
ti= iT, where T is the average cell cycle time. As it is known, the
expected (mean) growth law in the Galton–Watson process has
the form

E [# cells, at time t , in a clone started at time t0]
def
=

[N (t ) = exp (λ (t − t0))] , as t →∞. (3)

To determine the distribution of time to a mutation creat-
ing a new non-extinct clone, we consider a newborn cell. In this
cell, mutation may occur with probability u, and if the extinc-
tion probability of the mutant clone is q′, then the probability
that the cell does not produce a new mutant clone is equal

to 1− u(1− q′). Until time ti= iT, approximately
i∑

j=0
N
(
tj
)
=

N (t0)
(
exp (λT )i+1

− 1
) (

exp (λT )− 1
)−1

new cells are born,
and assuming independence, we obtain

Pr [no mutant initiating nonextinct clone appears until

time ti = iT ]

= Pr [τ =: time to nearest nonextinct

mutant clone > ti = iT ] =
(
1− u

(
1− q′

)) i∑
j=0

N(tj)

=
(
1− u

(
1− q′

))N (t0)
exp (λT )i+1

−1
exp(λT )−1 = ad(exp(ct )−1).

(4)

where, for the k-th mutant population

a =
(
1−

(
1− qk+1

)
uk
)
=
(
1− uk

(
2bk+1 − 1

)
/bk+1

)
,

c = λk = ln (2bk) /T ,

d =
(
exp (λk T )− 1

)−1
= (2bk − 1)−1.

Since the distribution tail of random variable τk has the form

Pr [τk > τ] = ad(exp(ct )−1) = exp
(
− ln

(
a−1) d

(
exp (cτ)− 1

))
.

it can be algorithmically generated using the inverse tail method

τk = c−1 ln (ln r/ (d ln a)+ 1) , (5)
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FIGURE 2 | Proliferating healthy cells in the bone marrow mutate at
random times, possibly influenced by super-pharmacological doses
of GCSF. As long as the cell population size is kept in check, genetic drift,
and selection remove many of the mutants, whereas some mutants

persist. When the population expands, new mutant clones become more
easily established. At some point, a qualitative change in the proliferation
rate occurs and the now malignant cell population starts rapidly
expanding.

where r is a pseudo-random number uniformly distributed from
0 to 1. In this framework, a sample path of the number of cells
in the k-th mutant clone (which contains cells with k mutations
accumulated) is equal to

Nk (t ) =

{
0 t ≤

∑k−1
j=1 τj

exp
(
λk

(
t −

∑k−1
j=1 τj

))
otherwise

(6)

The derivations presented are quite similar to those of Bozic
et al. (2010), except that in that paper, expected times E(τk)
to the next mutation have been used. Here, we are interested
in exposing stochastic variability in the time course of the
SNC→ sMDS→ sAML transition. Another refinement would be
to use distributions of cell counts instead of expected values Nk(t ).
This would result in serious computational problems, arguably
without much impact on the results.

MODELING THE SNC → sMDS → sAML TRANSITION
Equations 1 and 2 allow generating realizations of times to suc-
cessive driver mutations under different values of mutation rates
and proliferative characteristics of the mutant clones. We make the
following assumptions:

1. Transition to sMDS requires one or two somatic driver muta-
tions, whereas the transition to sAML requires at least three
somatic driver mutations (cf. Table 1).

2. Diagnosis of sAML requires presence of 104 leukemic HSC. For
details of computations leading to this estimate, see further on.

3. Successive mutant clones have increasing proliferative poten-
tial. We assume a power law for the coefficients bi, which seems
to lead to fits that do not contradict data:

bi = min
(
0.5+ A

(
ε+ (i − 1)κ

)
, 1
)

, (7)

where coefficients A, ε, and κ are considered further on.
4. As it will be seen, it is necessary to assume that the coefficients A

be generated from a probability distribution instead of assum-
ing a constant value. We assume the distribution function FA(a)
selected so that the times of at diagnosis of sAML fit available
statistics (for details see further on).

ESTIMATE OF THE NUMBER OF LEUKEMIC CELLS
We carried out computations based on two literature sources and
then used rounding to the nearest order of magnitude to obtain
a working threshold number of the leukemic initiating cells (LIC)
(Bonnet and Dick, 1997). In both cases we assume that the vol-
ume of human bone marrow is equal to V = 1700 ml and that
LIC cells constitute a fraction ψ= 10−6 of leukemic bone mar-
row mono-nucleated cells (BMMNC). We also assume that in
sAML, fraction ρ= 0.8 of BMNNC is constituted by leukemic
cells.
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Estimate 1
Dedeepiya et al. (2012) provide an estimate of the number
of BNNMC per 1 ml B= 3.67× 106. This results in an esti-
mate of the number L of LIC cells in the entire bone marrow
L= ρ×ψ×V ×B= 4991 cells.

Estimate 2
Bender et al. (1994) provide estimates of B in the range from
3.02× 106 to 4.71× 106. This results in L= 4107÷ 5535 cells.
These estimates are remarkably consistent. Rounding to the near-
est order of magnitude results in a working estimate of L= 104

cells.

TIME AT DIAGNOSIS OF sAML AND DISTRIBUTION OF PARAMETER A
Under given values of parameters κ and ε as well as mutation rates
uk, the time at diagnosis of sAML, defined as the time T from
initiation of GCSF treatment such that∑

k

Nk (T ) = L

depends on parameter A according to an approximate power law

T = f (A) = exp (α) Aβ,

where β < 0. This dependence, which was obtained via simulation
studies (not shown), allows finding the distribution of A that leads
to a clinically observed distribution of the time of sAML diagnosis
according to the following expression for distribution tails

F̄A (a) = 1− F̄T
(

f (a)
)

,

where F̄T (t ) = Pr [T > t ] is the tail of the distribution of time
T. This in turn allows generating pseudo-random realizations of
A according to the expression

A = f −1 (F̄−1
T (R)

)
=
(
exp (−α) F̄−1

T (R)
)1/β

, (8)

where R is a pseudo-random number from the uniform distribu-
tion on the (0, 1) interval.

We need to approximate the tail of the distribution of the time
at diagnosis of sAML. A recent source is the paper by Rosen-
berg et al. (2010). These authors reported results of a prospective
study of 374 SCN patients, and included estimates of hazard rates
and cumulative probability of sMDS/sAML as a function of time
after GCSF treatment. Hazard rate grows for the first 5 years and
then plateaus. To simplify computations we adopted a piecewise
constant estimate of the hazard rate hT(t )

hT (t ) =

{
0.01 t ∈ [0, 3)

0.02 t ∈ [3,∞)

with time in years. Comparing with Figure 1A in Rosenberg et al.
(2010) we see that hT(t ) remains within the confidence band
computed based on the prospective study. Using the expression

F̄T (t ) = exp

(
−

∫ t

0
hT (τ) dτ

)
and inverting the tail function F̄T (t ) we complete the derivation
of expression Eq. 8 (elementary details not shown).

OVERVIEW OF PARAMETER ESTIMATION
The form of expression Eq. 8 and plausible estimates of parameters
κ and ε as well as of mutation rates uk, are difficult to be uniquely
determined with the data available at the present time. We used
the following heuristic procedure:

1. Driver mutation rates increase from the reference value by a
factor of 5, starting mutation 3, so that u1,2= u but u3,4,5= 5u.
The increase is needed for the later mutations to occur in quick
succession, so that mutation 3 occurs before

∑
k

Nk (T ) > L,

with L= 104 being a relatively low value.
2. Reference driver mutation rate had to be set equal to 0.00034,

10 times higher than the value estimated by Bozic et al. (2010).
This is required for enough mutations to accumulate before the
threshold time T.

3. Proliferation rate increases as power κ of the mutation number,
value κ= 2 provides sufficient acceleration to explain relative
rapidity of the AML stage. The offset parameter ε= 0.02 keeps
proliferation rate before mutation 1 sufficiently low.

4. Once estimates of parameters uk, κ, and ε are obtained, esti-
mates of the power law parameters α and β are determined by
a simulation study, and the generator of random parameter A
is obtained via expression Eq. 8.

RESULTS
SIMULATED COURSE OF DISEASE
Figure 3 depicts the impact of successive driver mutations on
the natural course of the SCN→ sMDS→ sAML transition.
Figure 3A depicts counts Ni(t ) of cells in successive mutant
clones as a function of time, under model as in Eq. 7 with
A= 0.005, ε= 0.02, and κ= 2. Straight lines with increasing slopes
are counts of cells in successive mutant clones. We observe that
the time intervals separating the origins of successive clones are
decreasing with each mutation event. Thick dashed line repre-
sents the total mutant cell count. It is also interesting to observe
that clones with increasing numbers of mutations dominate tran-
siently, until they are replaced by other clones with higher pro-
liferative capacity (selective value). Figure 3B depicts relative
proportions ni(t )=Ni(t )/ΣjNj(t ) of cells belonging to successive
mutant clones.

TIME AT sAML DIAGNOSIS
It is somewhat surprising that under any combination of coeffi-
cients A and k, the range of simulated times at sAML diagnosis is
rather narrow. Figure 4B depicts ranked simulated times at sAML
diagnosis under model as in Eq. 7 with A= 0.005, ε= 0.02, and
κ= 2. Spread of these values is narrow, with interquartile range
between 15 and 21. Systematic simulation experiments demon-
strate that this is the case for a wide range of A and κ parameter
values. This outcome is in contrast to the wide spread of times
at diagnosis summarized in Table 1 and that based on Rosenberg
et al. (2010).

Simulation-estimation experiment outlined in the Methods
demonstrates that distribution of simulated times (counting form
initiation of CGSF treatment) at sAML (Rosenberg et al., 2010)
is reproduced by our model. Figure 4A cumulative distribution
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FIGURE 3 | Summary of successive driver mutations in the natural
course of the SCN → sMDS → sAML transition. (A) Counts Ni(t ) of cells
in successive mutant clones, under model as in Eq. 7 with A=0.02, ε=0.2,
and k =2. Straight lines with increasing slopes: counts of cells in
successive mutant clones. Thick dashed line: Total mutant cell count. (B)
Relative proportions ni(t )=Ni(t )/ΣjNj(t ) of cells belonging to successive
mutant clones. Further details as in the Section “Mathematics of the
Model.”

FIGURE 4 | Cumulative distributions of the model-generated times at
diagnosis of sAML. (A) Simulations under model as in Eq. 7 with A
generated using Eq. 8, ε=0.2, and k =2. (B) Simulations under model as in
Eq. 8 with A=0.02, ε= 0.2, and k =2.

of the times at sAML diagnosis under model as in Eq. 7 with
κ= 2, ε= 0.02, and A generated from the distribution in Eq. 8
with α=− 0.655 and β=−0.912.

CONCLUSION
The process of development and replacement of leukemic clones
is influenced by the processes of genetic drift and selection (Wal-
ter et al., 2012). These forces are usually analyzed by geneticists
in the framework of the Wright–Fisher or coalescent model (see
Discussion and references in Cyran and Kimmel, 2010). However,
in the case of expanding cell clones, the more appropriate popula-
tion process seems to be one of the types of branching processes;
in our case, the Galton–Watson process (Kimmel and Axelrod,
2002). In the particular version of the multitype Galton–Watson
process that we use, genetic drift’s mechanism is the loss of vari-
ants through extinction and selection is embodied in the principle
that each next surviving clone is proliferating faster (has greater
fitness).

A characteristic feature of human cancers is very wide het-
erogeneity with respect to extent of involvement, genotype and
rate of progression, and spread (Michor et al., 2004; Hanahan
and Weinberg, 2011). This is in contrast to induced animal
tumors, which are relatively uniform. Secondary AML, result-
ing from a transition from SCN via myelodysplastic syndrome,
is not an exception, with onset varying from 1 to 38 years of age
and with wide variability of mutational background (Table 1).
It is interesting, and we consider it a major result, that such
spread of the age of onset is not due solely to stochastic nature
of mutation-driven transitions, but it requires a large variabil-
ity in proliferative potential from one disease case to another.
Also, this distribution of coefficient A, which parameterizes
the proliferative potential, is right-skewed, with slowly evolving
(low-A) clones prevailing. This provides a testable hypothesis
about distribution of proliferating rates in leukemic stem cell
clones.

The model presented in this paper addresses certain aspects
of the SNC→ sMDS→ sAML transition. Among other, although
we might derive an expression relating the number of driver
(selective) mutations to the corresponding count of accumulated
passenger (neutral) mutations (similarly as it was done in Bozic
et al. (2010), we do not have at our disposal sequencing data to
validate such an expression. Also, we do not attempt here to fit the
distribution of the age at diagnosis of the sMDS, since we are miss-
ing data on individual life histories, which would involve somatic
mutation as well as sequencing data.

From the mathematical point of view, the current model is also
somewhat simplified. It considers each new mutation to provide
more selective advantage to the arising clone. This is in appar-
ent disagreement with the recent observation of Beekman et al.
(2012), of mutations which appear at the sMDS stage and disap-
pear at the sAML stage. The linear structure of mutation confers
desirable simplicity to modeling but is not necessarily realistic.
In the framework of multitype branching processes and special
processes such as Griffiths and Pakes branching infinite allele
model (Griffiths and Pakes, 1988; Kimmel and Mathaes, 2010),
more complicated scenarios can be gaged.
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