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In the treatment of patients suffering from malignant glioma, it is a paramount importance
to deliver a high radiation dose to the tumor on the one hand and to spare organs at risk
at one the other in order to achieve a sufficient tumor control and to avoid severe side
effects. New radiation therapy techniques have emerged like intensity modulated radio-
therapy and image guided radiotherapy that help facilitate this aim. In addition, there are
advanced imaging techniques like Positron emission tomography (PET) and PET/CT which
can help localize the tumor with higher sensitivity, and thus contribute to therapy planning,
tumor control, and follow-up. During follow-up care, it is crucial to differentiate between
recurrence and treatment-associated, unspecific lesions, like radiation necrosis. Here, too,
PET/CT can facilitate in differentiating tumor relapse from unspecific changes. This review
article will discuss therapy response criteria according to the current imaging methods like
Magnet resonance imaging, CT, and PET/CT. It will focus on the significance of PET in the
clinical management for treatment and follow-up.
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TRACERS FOR BRAIN TUMORS
Positron emission tomography (PET) is a functional imaging
method that has gained widespread use in the assessment of
brain tumors. PET-tracers currently used for imaging of brain
tumors are mostly radio labeled amino acid (AA) tracers. These
AA are preferentially taken up by tumor cells (Derlon et al.,
1989; Heiss et al., 1999; Grosu et al., 2011) due to an over-
expression of amino acid transporters, while the uptake of the
normal brain tissue is relatively low. It has been demonstrated
that AA uptake in tumor tissue is almost entirely mediated by
type l-AA carriers (Heiss et al., 1999). It has been suggested in
a rat model that brain tumors can stimulate transporter expres-
sion, especially in their vasculature (Miyagawa et al., 1998). The
most common tracers for malignant brain tumors are 18Fluoro-
O-(2) fluoroethyl-l-tyrosine ([18F]FET) and [11C] Methionine
(MET).

[11C] Methionine (MET) is a physiologic amino acid labeled
with a carbon-11 isotope, which has a half-life time of 20 min. Its
uptake correlates with cell proliferation in vitro, Ki-67 expression,
nuclear antigen expression, and microvessel density in prolifer-
ating cells (Dhermain et al., 2010). First studies on AA tracers
were made with MET. 18Fluoro-O-(2) fluoroethyl-l-tyrosine
([18F]FET) is an amino acid labeled with fluorine-18 which has a
half-life of 110 min.

Due to the short half-life of a positron-emitting radioisotope
like carbon-11, the radiotracers labeled with carbon-11 require
a cyclotron in close proximity to the PET imaging facility. The
half-life of fluorine-18 is long enough that radiotracers labeled
with fluorine-18 can be manufactured commercially at off-site
locations and shipped to outlying facilities.

In clinical practice,FET and MET have been shown to be equally
sensitive and specific (Weber et al., 2000; Astner et al., 2005; Grosu
et al., 2011). In case of low-grade glioma FET can also reveal hot
spots and suspected regions of histological upgrading of the tumor
(Popperl et al., 2007).

[18F]2′-fluoro-2′-deoxyglucose (FDG), an analog of glucose
that is labeled with fluorine-18, is often used in extracerebral
tumors. FDG shows a high uptake in gray matter, resulting in
a poor tumor to background ratio, especially in low-grade glioma.
Thus, FDG is currently restricted to special situation like cerebral
lymphomas (Hoffman et al., 1993), where it is of prognostic value
(Kasenda et al., 2013).

68Ga-DOTATOC (DOTA0-Phe1-Tyr3-octreotide) or other
somatostatin analogs are very sensitive in the detection and delin-
eation of meningioma and its possible infiltration in sagittal sinus
or falx (Milker-Zabel et al., 2006).

18F-DOPA, a l-3,4-dihydroxyphenylalanine labeled with
fluorine-18 shows an increased uptake in malignant glioma and
have been shown to be comparable to MET (Becherer et al., 2003).

[18F]3′-deoxy-3′-fluorothymidine (FLT), a nucleoside, shows
an increased expression of thymidine kinase and cell prolifera-
tion (Ullrich et al., 2008) and correlates with Ki-67. It allows a
non-invasive assessment of tumor proliferation as well as early
response to chemotherapy by PET (Jacobs et al., 2005). Since 18F-
FLT does not cross intact brain-blood-barrier (BBB) it does not
show uptake in low-grade tumors or stable lesions but 18F-FLT
visualize high-grade (grade III or IV) tumors with a disrupted
BBB (Chen et al., 2005).

18F-fluoromisonidazole (18F-FMISO) has the ability to visual-
ize the hypoxic cell fraction of tissue (Cher et al., 2006) and makes
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it possible to achieve escalation of the radiation dose at these cru-
cial points. However, at this point, FLT and FMISO are not yet well
established in the clinical management.

THERAPY OF MALIGNANT GLIOMA
Standard treatment for malignant glioma is based on surgery fol-
lowed by combined radio-chemo therapy up to 60 Gy and adjuvant
chemotherapy with temozolomide (Stupp et al., 2005). Never-
theless, there are additional therapy approaches with radioactive
seeds, other chemotherapy agents like irinotecan or antiangiogenic
agents like bevacizumab.

Frequently used radiation therapy (RT) techniques in patient
with malignant glioma are: 3-D conformal RT and, especially in
cases of re-irradiation, stereotactic fractioned RT. Furthermore,
intensity modulated RT, rapid arc techniques and image guided
RT are also frequently used (Narayana et al., 2006; Hermanto et al.,
2007).

RESPONSE MONITORING
During and after treatment, therapy response should be evalu-
ated. Currently, most protocols use conventional imaging tech-
niques like CT and Magnet resonance imaging (MRI) for this
purpose. It is, however, important to differentiate between
regression, treatment related changes and true recurrence. In
this situation, AA-PET has become of great value due to
its superior sensitivity for vital tumor tissue (Popperl et al.,
2005).

LIMITATIONS OF MRI
Magnet resonance imaging with its high spatial resolution is an
inexpendable tool in diagnosis, RT planning, and follow-up in
patients with malignant glioma. However, there are pitfalls since
this imaging method is not tumor specific (Table 1).

Diagnostic criteria in routine MRI tumor imaging are generally
based on the extent of contrast enhancement, which is caused by
a breakdown of the BBB (Wen et al., 2010). However, a disruption
of the BBB can also occur as a result of recent surgery or RT. On
the other side, there can be tumor parts where the BBB is not yet
affected. Furthermore, the contrast enhancement is in many cases
smaller than the real tumor dimension, leading to an underesti-
mate of tumor dimensions. This phenomenon is very common in
low-grade glioma.

In addition, new emerging therapies like VEGF-inhibitors can
reduce disturbance of the BBB, causing a decrease of contrast
enhancement on MRI without an influence of the tumor dimen-
sion, which is referred to as “pseudo-regression.” It is also seen

after application of corticosteroids, which can also reduce leakage
of blood vessels (Jacobs et al., 2005).

After RT, brain lesions may remain avid to contrast agents like
Gadolinium but may become negative on AA-PET, which is indica-
tive of good local tumor control. For example, if post-treatment
changes like radio necrosis occurs, it is frequently associated with
an increase of contrast enhancement which can mimic tumor
progression (Giglio and Gilbert, 2003).

Such phenomenon occurring after treatment are called pseudo-
progression and pseudoresponse (Brandsma and van den Bent,
2009). They point at a problematic discrepancy between morpho-
logical MRI imaging and true tumor behavior.

In case of pseudoprogression, increase of the contrast enhance-
ment on MRI is not associated with real tumor growth (Taal
et al., 2008). In such situations, AA-PET as a functioning imag-
ing modality can help differentiate between real tumor progress
and treatment related changes. Table 2 gives an overview of studies
evaluating PET in the follow-up of glioma and its abilities to dif-
ferentiate between recurrence of tumor, pseudoprogression, and
radiation necrosis.

Sophisticated MR techniques, like MR spectroscopy and perfu-
sion (Rock et al., 2004) are not standardized until now and their
reproducibility between different facilities is difficult. In addition,
MRI spectroscopy has multiple methodological limitations that
impede its use in clinical practice; these limitations are, however,
beyond the scope of this article.

ADVANTAGES OF AMINO ACID – PET
AA-PET (FET and MET) is often used when a recurrence of
the tumor is assumed on MRI after treatment. In this situation
AA-PET has been shown to be superior to MRI regarding discrim-
ination of true tumor growth from treatment related changes.
Reported sensitivity rates of AA-PET range from 75 to 100% and
specificity from 60 to 100% (Pauleit et al., 2005; Tripathi et al.,
2012), respectively. It helps to confirm the diagnosis of recurrence
and is used for treatment planning in case of re-irradiation, as it
enables better tumor delineation.

18F-FET has been also shown to predict treatment response
after radiotherapy. PET-responders showed a significant longer
overall survival than non-responders (Piroth et al., 2011). Reduced
AA uptake in brain tumors under therapy correlates with treat-
ment response (Nariai et al., 2005).

It was shown that the target volume delineation for re-
irradiation according to MRI can vary extremely (Grosu et al.,
2005a). In this situation an AA-PET should be used. Target
volume delineation according to AA-PET is much more reliable

Table 1 | Studies showing limitation of conventional MRI.

Author Evidence Reference

Taal 18 out of 36 patients, (50%) were diagnosed with pseudoprogression 4 weeks after radiation therapy and

concomitant temozolomide.

Taal et al. (2008)

Mullins Individual patterns of enhancement are not enough to distinguish necrosis from predominant tumor progression. Mullins et al. (2005)

Rachinger For patients with glioma undergoing multimodal treatment or various forms of irradiation, conventional follow-up

with MRI is insufficient to distinguish between benign side effects of therapy and tumor recurrence

Rachinger et al. (2005)
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Table 2 | Studies evaluating the role of AA-PET in the follow-up of glioma and in the differentiation between recurrent tumors and

pseudoprogression/radiation necrosis.

Author Title Reference

Tripathi M Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain

tumors

Tripathi et al. (2012)

Langleben, D. PET in Differentiation of recurrent brain tumor from radiation Injury Langleben and Segall (2000)

Pöpperl, G. Value of O-(2-[18 F] fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma Tripathi et al. (2012)

Hein, P. A. Diffusion-weighted imaging in the follow-up of treated high-grade glioma: tumor recurrence versus

radiation injury

Hein et al. (2004)

Terakawa, Y. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from

radiation necrosis after radiotherapy

Terakawa et al. (2008)

Grosu, A. L. l-(methyl-11C) methionine positron emission tomography for target delineation in resected

high-grade gliomas before radiotherapy.

Grosu et al. (2005a)

Tsuyunguchi, N. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation

necrosis after stereotactic radiosurgery in malignant glioma

Tsuyuguchi et al. (2004)

Dhermain, F. G. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas Dhermain et al. (2010)

and less variable between different observers (Grosu et al.,
2005a).

Current European guidelines have determined cut-off values
for semiquantitative PET analyses (SUV of tumor compared to
SUV of healthy brain tissue) to be applied in various clinical set-
tings depending on the tracer that is used (Vander Borght et al.,
2006). For example, the current cut-off value of the tumor to
background uptake-ratio for differentiating neoplastic brain tis-
sue from healthy surrounding tissue with [18F]FET has been set
at 1.6. This makes it especially useful for integration into RT plan-
ning, since it enables semi-automated tumor delineation based
on threshold values for FET-uptake and sets a vantage point for
prospective studies.

Consequently, preliminary studies show a significant longer
overall survival in patients who were irradiated on the basis of
PET or SPECT in contrast to patients who were treated on the
basis of MRI-based RT planning alone (Grosu et al., 2005b). Fur-
ther studies are needed, but these data suggest that AA-PET might
contribute largely to improvement of patient care.

LIMITATION OF PET
Numerous disadvantages of PET must be taken into account: while
the method itself is not associated with adverse effects due to the
use of only trace amounts of physiologic amino acids, it leads
to a certain radiation exposure to the patient. However, radia-
tion dosage received from modern PET imaging (ranging from
2 to 6 mSv), is negligible against the background of the RT dose
delivered for the treatment and the poor prognosis of the disease
at hand.

Furthermore, low spatial resolution of PET-studies is a lim-
itation. Current scanners achieve about 4–8 mm compared to
1 mm on MRI. This can lead to false negative findings as
PET might not detect very small lesions. On the other hand,
the clinical relevance of lesions smaller than 5 mm remain
debatable.

Positron emission tomography-tracers labeled with carbon-11
have a short half-life and a cyclotron is needed for its manufac-
ture. With the introduction of 18F-fluorine marked tracers, this
disadvantage has, however, been eliminated.

Expertise is needed for interpretation of PET data. The diagnos-
tic value of amino acid uptake in brain tissue depends on multiple
factors: the tumor to brain ratio for system L transport sub-
strates can be relatively low, like mentioned above (Vander Borght
et al., 2006). Unspecific uptake is possible shortly after opera-
tion or biopsy. Hence, due to the functional and not anatomical
nature of PET-studies, specificity is generally low as PET does not
allow to differentiate pathologic amino acid uptake (tumor) from
unspecific uptake. For example [18F]FET signal is physiologically
increased in vascular malformations or the venous sinuses, which
can mimic tumor extension to the contralateral hemisphere in the
case of sinus sphenoidalis. [11C]MET signal is increased, e.g., in
the lacrimal gland. Thus, MRT imaging will remain inexpendable
for tumor diagnostics and interpretation of AA-PET.

Much hope lies therefore in the upcoming of combined
MR/PET scanners that will allow for superior diagnostic power
in only one study, minimizing time consumption, and patient
discomfort (Judenhofer et al., 2008).

SUMMARY
In brain tumors, PET is currently recommended when MRI is
inconclusive especially in the setting of post-therapeutic care.
PET shows a greater specificity in differentiation between tumor
and post-treatment changes, while MRI is inexpendable in the
evaluation of morphological features.

Positron emission tomography has become an important imag-
ing technique to improve the definition of the target volume for
irradiation and to decrease the inter-observer variability (Grosu
et al., 2005a). There is also evidence that using PET for RT planning
improves overall survival (Grosu et al., 2005b). This has yet to be
evaluated in larger randomized studies.
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Positron emission tomography is more and more established
as imaging tool in assessment of treatment response, recurrence,
and follow-up of malignant glioma patients.

Combination of PET and MRI imaging into one study
(PET/MRI) could further improve patient care and facilitate
therapy management.
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