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Despite the survival of pediatric patients affected by hematological malignancies being
improved in the last 20 years by chemotherapy and hematopoietic stem cell transplan-
tation, a significant amount of patients still relapses. Treatment intensification is limited
by toxic side effects and is constrained by the plateau of efficacy, while the pipeline of
new chemotherapeutic drugs is running short. Therefore, novel therapeutic strategies are
essential and researchers around the world are testing in clinical trials immune and gene-
therapy approaches as second-line treatments.The aim of this review is to give a glance at
these novel promising strategies of advanced medicine in the field of pediatric leukemias.
Results from clinical protocols using new targeted “smart” drugs, immunotherapy, and
gene therapy are summarized, and important considerations regarding the combination of
these novel approaches with standard treatments to promote safe and long-term cure are
discussed.
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INTRODUCTION
Current treatments of childhood hematological malignancies
are based on standardized regimens with poly-chemotherapeutic
drugs, developed over the last 40 years. Significant progress has
been achieved in this field, particularly as a result of the combina-
tion with hematopoietic stem cell transplantation (HSCT) which
led to an increase of more than 80% in survival rate of acute lym-
phoblastic leukemia (ALL) and to a greater than 60% remission
of the less common acute myeloid leukemia (AML) (Wayne et al.,
2008). Changes in the timing scheme together with dose scaling,
combination of different chemotherapeutic drugs, and modifica-
tions in their formulations resulted in multi-agent-chemotherapy
protocols, which allowed better disease management and increased
survival prognosis (Lee-Sherick et al., 2010). Immunotherapy with
HSCT in high-risk patients has decreased the risk of relapse due
to its strong graft-versus-leukemia (GVL) effects, even if it often
correlates with a higher incidence of treatment-related mortality
(Leung et al., 2011).

Along with cytotoxic treatments, high standards of supportive
care, particularly antimicrobial prophylaxis (Unguru, 2011), have
highly improved the quality of the current therapeutic approaches.
Further progresses have been reached also thanks to the transla-
tion of recent findings from bench to bedside, paving the way
for the development of novel randomized clinical trials involv-
ing patients with more aggressive diseases. Furthermore, patients
diagnosed with leukemia are treated with a step-by-step proto-
col based on the characteristics of the disease at onset and the
minimal residual disease (MRD) that is detected after first-line
drugs. Such a strategy of risk-oriented stratification is the first
step toward the concept of personalized medicine and is currently

leading to lower rate of relapse, particularly in ALL (Locatelli et al.,
2012).

Despite the important efficacy of the current treatments, relapse
still occurs and a significant number of patients falls back (Wayne
et al., 2008). Escalation of the current treatments seems not to add
any further advantage. In these cases, alternative treatments based
on targeted agents and advanced protocols of gene and adoptive
cell therapy (ACT) are strongly warranted.

In this review, we aim to summarize novel advanced drugs and
treatments that are available or are considered promising strate-
gies. In addition we provide proof of concept for future integration
of several novel approaches and standard treatments in a context
of “consolidative immunotherapy.”

NEW ANTIMETABOLITES, NUCLEOSIDE ANALOGS, AND
“SMART” DRUGS
Nowadays antimetabolites are considered one of the most effective
category of drugs available for treating hematological malignan-
cies. Clofarabine was synthesized as a next-generation purine
nucleoside analog (Montgomery et al., 1992; Kantarjian et al.,
2007). In 2004 this drug was approved by the FDA for the treat-
ment of pediatric relapsed or refractory ALL patients. Phase I and
II trials with clofarabine showed an overall response rate of 30% as
single agent for refractory pediatric ALL and AML (Jeha et al., 2004,
2006). Combination with cyclophosphamide/etoposide, evaluated
in phase I (Hijiya et al., 2009), phase II (Locatelli et al., 2009; Hijiya
et al.,2011),and phase III trials (NCT01406756)1, revealed encour-
aging overall response rates, near 50% for ALL and 100% for five

1http://www.clinicaltrials.gov
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AML patients, despite significant treatment-related adverse effects,
such as infections, neutropenia, and hepatotoxicity. Decitabine, a
DNA methyltransferases inhibitor (Pinto et al., 1984; Schafer et al.,
2010), has been used as epigenetic priming in combination with
chemotherapy in kids with AML (NCT01177540; NCT00943553).
Preliminary data demonstrated that the treatment is well tolerated;
however, clinical responses were similar to the control arm of the
study (Gore et al., 2012). Novel and advanced treatments against
hematological malignancies focus on targeted therapy, character-
ized by selection of specific molecular targets. Such drugs are
considered “smart” since they selectively target cancer signaling
pathways or expression of genes specifically overexpressed in can-
cerous and not healthy cells (Villanueva, 2012). Among them,
tyrosine kinase inhibitors (TKI), which act as signal transduc-
tion inhibitors, target enzymes overexpressed by malignant tumors
involved in uncontrolled cell proliferation, inhibition of apopto-
sis, and cell adhesion (Hunter, 1998; Arora and Scholar, 2005).
Early success of the first targeted agent Imatinib mesylate in CML
and Ph+ ALL treatment (O’Brien et al., 2003; Wassmann et al.,
2004) demonstrated the efficacy of inhibiting BCR/ABL1 (p210),
the constitutive active kinase protein produced by the abnormal
fusion of the two genes. These results were confirmed also in pedi-
atric patients with Ph+ ALL, improving 3-year event-free survival
(EFS) from 35% of the historical controls to 80% with no increased
toxicity (Schultz et al., 2009). However, the presence of mecha-
nisms of Imatinib resistance and transient responses (Walz et al.,
2006) encouraged the development of second generation TKI, such
as Dasatinib (Olivieri and Manzione, 2007), Nilotinib (Weisberg
et al., 2005), and Bosutinib (Redaelli et al., 2009). A pediatric phase
I trial on Ph+ CML and ALL patients carried out by the Children’s
Oncology Group (COG) revealed that the majority of children
with CML achieved a clinical response after oral administration of
Dasatinib (Aplenc et al., 2011). Two more phase II and one phase
III pediatric clinical trials are currently ongoing with the aim to
evaluate whether Dasatinib is safe and effective in the treatment
of Ph+ ALL and CML, alone or in combination with standard
chemotherapy (NCT00777036; NCT01460160; NCT00720109).
In this context, continuous dose Dasatinib has been shown to
be safe and feasible in combination with intensive chemotherapy
in pediatric Ph+ ALL (Slayton et al., 2012), demonstrating that
early introduction of TKI on day 15 of induction and substitution
of Dasatinib for Imatinib led to improved induction remission
rates from 89 to 98%, and induction negative MRD rates from 25
to 59%. Certainly, Dasatinib represents one of the most promis-
ing drugs in the context of small smart molecules for refractory
Ph+ ALL.

Another important molecule is represented by FMS-like tyro-
sine kinase 3 (FLT3), in which point mutations and internal
tandem duplications lead to the encoding of a constitutive active
kinase, both in childhood ALL and AML, which is associated
with poor prognosis (Levis and Small, 2003). Promising FLT3
inhibitors currently tested for childhood malignancies are Lestaur-
tinib (Levis et al., 2002), Sorafenib (Rubnitz, 2012), and Midostau-
rin (Fabbro et al., 2000). Sorafenib has been recently evaluated in
combination with clofarabine and cytarabine, showing response
in pediatric relapsed/refractory AML (Inaba et al., 2011). Trials
evaluating oral Lestaurtinib (phase III) in infant mixed lineage

leukemia-rearranged (MLL-R) ALL, Sorafenib (phase III) in
patients with AML, and Midostaurin (phase I/II) in relapsed pedi-
atric leukemia are currently recruiting patients (NCT00557193;
NCT01371981; NCT00866281).

CANCER IMMUNOTHERAPY: MONOCLONAL ANTIBODIES
AND CELL THERAPY
Over the last decades, significant progress in understanding the
complex involvement of the immune system in tumor surveillance
has been made. This has led to novel approaches that exploit both
the humoral and cell-mediated arms of adaptive immunity, such
as monoclonal antibodies (mAbs), cancer vaccines, and ACT. The
ultimate goal of immunotherapy is to decrease toxicity against nor-
mal tissues by eliciting specific responses against tumor associated-
antigens (TAA) and to bypass the tumor immune escape/tolerance
mechanisms (Dougan and Dranoff, 2009).

Rituximab (anti-CD20) (Dworzak et al., 2008) is currently
applied for the treatment of CD20+ B-cell lymphomas; several
mAbs targeting different TAAs have been proposed for pediatric
patients in association with chemotherapy, such as anti-CD52
[Alemtuzumab (Law et al., 2012)] and CD22 [Epratuzumab (Scott
et al., 2012)]. Rituximab has demonstrated to be active as single
agent in pediatric B-NHL with 41.4% response rate (Meinhardt
et al., 2010) and combined with chemotherapy in CD20+ NHL
and leukemia with 60% response rate (Griffin et al., 2009). Alem-
tuzumab was evaluated as single agent in children with relapsed
ALL, showing limited response with only 1 patient in complete
remission out of 13-tested (Angiolillo et al., 2009). Thus, given
the limitations of using mAbs as single agents in rapidly prolifera-
tive diseases, mAbs conjugated with cytotoxic agents, including
antibody-drug conjugates (ADCs), immunotoxins, and radioim-
munoconjugates (FitzGerald et al., 2011; Sharkey and Goldenberg,
2011), have been developed and tested in clinical trials, show-
ing promising results in adults (Mackall, 2011; Orentas et al.,
2012). The anti-CD22 immunotoxin, Moxetumomab pasudo-
tox, achieved 29% response rate (Wayne et al., 2011), whereas
the anti-CD22 calicheamicin conjugate, Inotuzumab ozogam-
icin, showed 57% response rate (Kantarjian et al., 2012) in
relapsed/refractory ALL pediatric patients. The ADC Brentuximab
vedotin in Hodgkin’s lymphoma has been approved for commer-
cial use after it demonstrated significant activity in adults (Younes
et al., 2010) and it is currently evaluated in several pediatric clinical
trials. Notably, the novel bi-specific T-cell engager (BiTE) rep-
resents, among all, one of the most promising approaches. This
antibody simultaneously cross-links the CD19+ target and the
CD3+ T cells, recruiting the effector cells to the tumor. A multicen-
ter study involving Northern American and European institutions
is ongoing (May et al., 2012). Table 1 summarizes the use of mAbs,
ADCs, immunotoxins, and radioimmunoconjugates in pediatric
clinical trials.

The promise of eliciting specific memory response by active
immunotherapy using cancer vaccines has guided the development
of different approaches, including vaccines composed of tumor-
specific peptides, dendritic cells (DC) pulsed with peptides, and
whole tumor cells (Rousseau and Brenner, 2005; Wayne et al.,
2010). The results of the first three treated pediatric cases in the
phase II trial using WT1 peptide vaccination plus HSCT showed
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Table 1 |The list represents a selection of the main trials for each single agent for novel approaches in pediatric hematological malignancies in

the field of mAbs and derivates.

Target Malignancies mAbs,ADCs, immunotoxins,

radioimmunoconjugates

Published results Location Trial number

and references

CD19 Advanced

relapsed/refractory ALL or

CLL

Yttrium Y 90 anti-CD19

monoclonal antibody

BU12/111In-BU-12

Terminated due to slow

accrual

Masonic Cancer Center,

University of Minnesota

NCT00643240

Phase I

CD19+

CD3

Relapsed/refractory

precursor B-cell ALL

Blinatumomab

(BiTE = bi-specific antibodies)

Currently recruiting

participants

Amgen Research (Munich)

GmbH, Multicentric study

NCT01471782

Phase I/II

CD20 Recurrent/refractory NHL

and ALL

Rituximab (Rituxan®;

MabThera) associated to

chemotherapy

Completed, 20 patients,

CR/PR 12/20 (60%)

National Cancer Institute (NCI) NCT00058461

Phase II (Griffin

et al., 2009)

B-cell ALL and NHL Rituximab 87 patients, 41.4% ORR Kinderklinik, Aachen,

Multicentric study

NCT00324779

Phase II (Meinhardt

et al., 2010)

Relapsed/refractory

precursor B-cell ALL and

lymphoma

Rituximab associated to

chemotherapy and

haploidentical NK cell infusion

Currently recruiting

participants

St. Jude Children’s Research

Hospital

NCT01700946

Phase II

Relapsed ALL Rituximab associated to

chemotherapy

The study has been

terminated

Emory University Multicentric

study

NCT01230788

Phase I

Refractory leukemia and

lymphoid malignancies

involving the central

nervous system

Intrathecal rituximab Currently recruiting

participants

M.D. Anderson Cancer Center NCT01596127

Phase I/II

B-cell ALL and NHL Rituximab associated to

chemotherapy

Currently recruiting

participants

Institut Gustave Roussy NCT01516580

Phase III

CD22 ALL, NHL Moxetumomab pasudotox

(HA22; CAT80-15)

Currently recruiting: 21

patients treated, 24%

CR, 1% PR

National Cancer Institute

(NCI) Multicentric study

NCT00659425

Phase I (Wayne

et al., 2011)

Relapsed/refractory ALL Inotuzumab ozogamicin

(CMC-544) with or without

rituximab

Ongoing, 49 patients

treated (range

6–80 years), 57% ORR

M.D. Anderson Cancer Center NCT01134575

Phase I (Kantarjian

et al., 2012)

Relapsed ALL Epratuzumab associated to

chemotherapy

Ongoing, but not

recruiting participants

National Cancer Institute

(NCI) Multicentric study

NCT00098839

Phase II

CD30 Anaplastic large-cell

lymphoma

mAbs SGN-30 associated to

chemotherapy

This study has been

completed

National Cancer Institute (NCI) NCT00354107

Phase I/II

HL anaplastic large-cell

lymphoma

Brentuximab vedotin

(SGN-35)

Currently recruiting

participants

Millennium Pharmaceuticals,

Inc. Multicentric study

NCT01492088

Phase I/II

Hodgkin lymphoma,

large-cell, anaplastic

lymphoma, non-hodgkin

Approved for sale to the

public

Seattle Genetics, Inc.

Multicentric study

NCT01196208

ALL, AML, CLL, MM, solid

tumors

Currently recruiting

participants

Seattle Genetics, Inc.

Multicentric study

NCT01461538

Phase II

CD33 Newly diagnosed AML Gemtuzumab ozogamicin Ongoing National Cancer Institute

(NCI) Multicentric study

NCT00372593

Phase III

CD52 Recurrent childhood acute

lymphoblastic leukemia

Alemtuzumab (Campath-1H)

associated to chemotherapy

Limited response: 8%

ORR

Children’s Oncology Group,

Arcadia, CA, USA

NCT00089349

Phase II (Angiolillo

et al., 2009)

CR, complete response; PR, partial response; ORR, overall response rate.
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improved GVL effect and increased percentages of WT1-specific
cytotoxic T-lymphocytes (CTLs) and no treatment-related adverse
events. Nevertheless, the treatment failed to achieve effectiveness
in patients with active disease (Hashii et al., 2010, 2012). A trial
with DCs pulsed with WT1 is ongoing at NIH (NCT00923910)
and adult as well as pediatric patients are being recruited. Unfor-
tunately, despite highly promising, antigen-specific vaccination
strategies have shown limited efficacy thus far, especially as single
therapies.

The approach of ACT using Tumor Infiltrating Lymphocytes
(TIL) (Rosenberg et al., 1986), allogeneic HSCT, or Donor Lym-
phocyte Infusions (DLI) (Weiden et al., 1981) comprises the pow-
erful features of adaptive immunity and provides GVL effect. In
the perspective of defining the best cell population to be infused in
patients, since DLI may cause graft-versus-host disease (GvHD),
different subsets of CTLs (Montagna et al., 2008), and natural-
killer (NK) (Locatelli et al., 2013) cells have been isolated and
studied to define their specificity, toxicity, and in vivo persistence
over time. Haploidentical NK cell infusions after an immunosup-
pressive regimen were well tolerated and resulted in successful
engraftment in a pilot study with children affected by AML (Rub-
nitz et al., 2010). Among novel effector cells, Cytokine-Induced
Killer cells (CIK), a peculiar natural-killer like population with a
basal anti-tumor activity, are under investigation in clinical trials2.
In 2007 our group demonstrated that the adoptive transfer of allo-
geneic CIK cells is feasible under clinical grade conditions and well
tolerated (Introna et al., 2007). Similar results were obtained for
haploidentical CIK cell infusions in pediatric patients (Rettinger
et al., 2013). An open-labeled, multicenter phase II study involv-
ing both adult and pediatric patients has been recently concluded
with promising results at the highest CIK cell dose infused, with
limited toxicity (Introna et al., 2011). Of particular relevance is

2http://www.cik-info.org/index.php?kat = ircc—international-registry-on-cik-
cells

the recent identification of the T-stem cell memory (TSCM) subset
with enhanced proliferative and anti-tumor activity. TSCM have
stem cell-like properties of self-renewal capacity and multipotency
(Gattinoni et al., 2011), they can be derived and expanded in vitro,
offering a promising platform of cellular production for future
translation in clinic (Cieri et al., 2013).

CANCER IMMUNOTHERAPY WITH GENE TRANSFER: TCR
AND CAR
Unmanipulated T- or NK-cells have proven to have several limi-
tations after infusion both in terms of limited activity and poor
long-term survival. Therefore, in the last years, there has been
considerable interest in the development of fine strategies of gene
transfer to genetically manipulate immune cells and improve their
anti-tumor immune responses in vivo. In this context, artificial
T-cell receptors (TCR) and Chimeric Antigen Receptors (CARs)
have been generated to redirect effector immune cells specifically
against TAAs (Gross et al., 1989; Clay et al., 1999).

Transfer of engineered T cells with artificial high-affinity TCR
derived from α and β chains isolated from patients has been used
in successful clinical trials by Rosenberg and collaborators, target-
ing MART1 (Morgan et al., 2006) or NY-ESO-1 (Robbins et al.,
2011) for the treatment of melanoma and synovial cell sarcoma.
However, since this approach is limited by tumor escape mecha-
nisms, scientific efforts were taken for optimizing the functionality
of the artificial TCR. Notably, an emerging technical advance con-
cerning this strategy has been recently reported: TCR editing was
optimized by zinc-finger nucleases that eliminate the risk of TCR
mispairing with endogenous α and β chains, which would other-
wise cause an unpredictable and thus not safe specificity (Provasi
et al., 2012).

Chimeric antigen receptors are chimeric TCR that are artifi-
cially constituted by an antigen-recognizing extracellular domain
derived from an antibody, linked to a T-cell triggering domain
and are introduced in effector T cells to redirect their activity

Table 2 | Ongoing pediatric clinical trials using CARs.

Target Malignancies Intervention Results Location Trial number

and references

CD19 ALL Anti-CD 19 CAR donor

EBV-CTL post-HSCT with

EBV-CTL vaccine

Currently recruiting participants University College of

London Multicentric study

NCT01195480

Phase I/II

CD19 ALL Anti-CD 19 CAR donor

EBV-CTL post-HSCT

Currently recruiting participants,

three patients treated without

GvHD after infusion

Memorial Sloan–Kettering

Cancer Center

NCT01430390

Phase I (Curran

et al., 2012)

CD19 B-cell malignancy: ALL,

B-cell lymphoma, leukemia

large-cell lymphoma, NHL

Anti-CD 19 CAR

autologous PBL

Currently recruiting participants,

one CR pediatric ALL patient

after a mild CRS

National Cancer Institute NCT01593696

Phase I (Lee

et al., 2012b)

CD19 B-cell leukemia, B-cell

lymphoma

Pedi CART-19: anti-CD 19

CAR second generation

(4-1BB) autologous PBL

Currently recruiting participants,

two CR pediatric ALL patients

Children’s Hospital of

Philadelphia/University of

Pennsylvania

NCT01626495

(Grupp et al.,

2013)

CD19 B-cell leukemia Anti-CD 19 CAR first

generation autologous PBL

Currently recruiting participants Seattle Children’s Hospital NCT01683279

Phase I
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toward TAA (Gross et al., 1989). In contrast to artificial TCR strat-
egy, target recognition by CAR molecules is non-HLA restricted
and independent of antigen processing, bypassing HLA-molecule
down-regulation. Although the first clinical trials with CAR
demonstrated the feasibility of this approach to target hemato-
logical malignancies in terms of safety and tolerability, they also
highlighted the need to improve the in vivo persistence of the
transferred T cells (Till et al., 2008). Therefore, second and third
generation CARs have been developed, by addition of one or two
co-stimulatory molecules (Lee et al., 2012a).

To enhance the survival and activity of modified T cells, expres-
sion of CAR or TCR was performed in Epstein Barr Virus (EBV)-
specific CTLs. Due to their dual specificity longer cell survival and
enhanced tumor regression were achieved, as a result of the contin-
uous engagement of the native (EBV-specific) TCR on professional
APCs (Pule et al., 2008). However, these approaches still need to
be implemented in terms of efficacy and safety (Park et al., 2011)
since serious adverse events due to “on-target but off-organ” toxi-
city occurred in two clinical trials with CARs targeting HER2 and
CD19 (Heslop, 2010). The introduction of suicide genes, such as
inducible Casp9, within the engineered T cells could be an addi-
tional back-up control in case of adverse effects (Di Stasi et al.,
2011) and a clinical trial is ongoing to treat patients developing
GVHD after HSCT (NCT00710892).

Nowadays we are witnessing a new era of ACT, when recent
successes in clinical trials with CAR reinforced the potential
therapeutic benefit of this approach. Several clinical trials are
ongoing in pediatric patients, starting from evidence of tumor
regression in four out of eight patients belonging to studies
with EBV-specific CTLs expressing GD2-specific CARs for the
treatment of neuroblastoma (Pule et al., 2008) (NCT01460901).
Table 2 summarizes the main pediatric clinical trials with CAR
for the treatment of hematological malignancies that are actu-
ally ongoing. A trial with CD19-targeting CAR EBV-specific T
cells showed important preliminary results suggesting the fea-
sibility of this approach without infusion-related toxicity (Cur-
ran et al., 2012). Notably, Grupp and collaborators recently
reported induction of remission followed by B-cell aplasia and
Cytokine Release Syndrome (CRS) in two pediatric patients with
relapsed, refractory pre-B-cell ALL treated with CD19-specific
CAR T cells. In one patient CRS was controlled by administra-
tion of the IL-6 antagonist Tocilizumab and remission is still
ongoing whereas the other patient relapsed with the emergence
of CD19-negative blasts (Grupp et al., 2013). Our group has
been involved in the “CHILDHOPE” program, a translational
research project focused on the treatment of childhood ALL, lym-
phoma, and AML with CD19- and CD33-specific CARs, respec-
tively3. Furthermore, for the treatment of AML, we are currently

3www.childhope.eu

investigating the targeting of CD123 antigen in order to improve
the specificity and safety of the CAR approach (Tettamanti et al.,
2013).

FUTURE PERSPECTIVES
The recent efficacy of targeted therapies has changed our per-
spective of leukemia treatment. New-generation small molecules,
such as Dasatinib and lately designed mAbs, such as Inotuzumab
or BiTe represent major progress toward cure, but their success
is partially eclipsed by the drawbacks of resistance or transient
response to therapy (Walz et al., 2006). Advanced protocols of
gene and ACT may help to overcome these limitations. Actually,
these approaches should promote long-term efficacy, maintain-
ing specificity with reduced toxicity. Moreover, improvements
in novel technologies of drug delivery, such as nanoparticles
(Acharya and Sahoo, 2011), or easier and more efficient meth-
ods of gene transfer, such as transposons (Izsvak et al., 2009),
should further ameliorate the range of applications of these
novel therapies. Indeed, a new phase I clinical trial with geneti-
cally modified human T cells expressing anti-CD19. CAR using
the Sleeping Beauty transposon system is actually ongoing in
patients with high-risk B-lymphoid malignancies (Kebriaei et al.,
2012).

The scenario that we expect to see in the next future is the
development of advanced protocols in the context of “consol-
idative therapy.” Immunotherapy by gene-redirected immune
cells will provide the potential of controlling MRD in patients
following initial chemotherapy or HSCT, behaving as a “long-
lasting living” drugs, contrarily to standard chemotherapy agents
or mAbs. Phase I and II clinical trials are currently com-
bining chemotherapy and HSCT with targeted therapy or
immunotherapy for patients who failed standard treatments.
These studies will assess safety, efficacy, and feasibility in apply-
ing such combined approaches. The next step will be the
definition of the best timing schedule and dosing regimen
in patients that will truly benefit from these immuno-gene-
therapy approaches. Over the next decade, clinicians and sci-
entists will have the unique chance to witness the effects of
advanced treatments in pediatric patients affected by hematolog-
ical malignancies.
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