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While immune monitoring of tumor immunotherapy often focuses on the generation
of productive Th1-type inflammatory immune responses, the importance of regulatory
immune responses is often overlooked, despite the well-documented effects of regula-
tory immune responses in suppressing anti-tumor immunity. In a variety of malignancies,
the frequency of regulatory cell populations has been shown to correlate with disease
progression and a poor prognosis, further emphasizing the importance of characterizing
the effects of immunotherapy on these populations. This review focuses on the role of
suppressive immune populations (regulatoryT cells, myeloid-derived suppressor cells, and
tumor-associated macrophages) in inhibiting anti-tumor immunity, how these populations
have been used in the immune monitoring of clinical trials, the prognostic value of these
responses, and how the monitoring of these regulatory responses can be improved in the
future.
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INTRODUCTION
Recent years have seen several exciting advancements in the devel-
opment of active immunotherapy for the treatment of cancer.
Sipuleucel-T, an active immunotherapy comprised of autolo-
gous dendritic cells (DC) pulsed with a fusion protein composed
of granulocyte macrophage colony-stimulating factor (GM-CSF)
and prostatic acid phosphatase (PAP), was shown to provide a
significant increase in overall survival in patients with metastatic
prostate cancer (Kantoff et al., 2010). Additionally, ipilimumab,
an antibody blocking cytotoxic T lymphocyte-associated antigen
4 (CTLA-4) that facilitates T cell activation, was found to pro-
vide a benefit in overall survival in individuals with metastatic
melanoma (Hodi et al., 2010). While the success these agents had
in Phase III clinical trials represented a ground shift in our under-
standing of the potential of anti-tumor immunity, the results from
these trials also illuminated challenges with the clinical evalua-
tion of immunotherapies. As opposed to therapies with direct
cytotoxic effects, like chemotherapy or radiation therapy, immune-
modulating therapies require time to activate the immune system
and induce T-cell proliferation to sufficient levels where it can
achieve clinical benefit, a process which may take place over weeks
to months. As such, while randomized trials evaluating sipuleucel-
T and ipilimumab both achieved the clinical endpoint of increased

Abbreviations: CTLA-4, cytotoxic T lymphocyte-associated antigen 4; DC, den-
dritic cell; ELISA, enzyme-linked immunosorbent assay; ELISPOT, enzyme-linked
immunosorbent spot; GM-CSF, granulocyte macrophage colony-stimulating fac-
tor; ICCS, intracellular cytokine staining; IDO, indoleamine 2,3-dioxygenase; IL,
interleukin; iNOS, inducible nitric oxide synthase; iTreg, induced Treg; MDSC,
myeloid-derived suppressor cell; NO, nitric oxide; nTreg, natural Treg; PAP, pro-
static acid phosphatase; PBMC, peripheral blood mononuclear cells; ROS, reactive
oxygen species; TAM, tumor-associated macrophage; TGF, Transforming growth
factor; Treg, Regulatory T cell; tvDTH, trans vivo delayed-type hypersensitivity.

overall survival, they were not able to meet interim markers of effi-
cacy such as increased time to disease progression. This emphasizes
the importance of identifying short-term markers of efficacy that
can be used to identify individuals who are responding to ther-
apy, or those who would benefit from moving on to alternative
treatments.

As one of the central goals of tumor immunotherapy is to
elicit and/or augment cytotoxic T-cell responses that can recog-
nize and lyse tumor cells, the development of interim biomarkers
of immunotherapeutic efficacy have largely focused on assays that
measure these inflammatory, Th1-type anti-tumor responses. This
has led to the near universal use of assays such as enzyme-linked
immunosorbent spot (ELISPOT) assays, intracellular cytokine
staining (ICCS), and HLA-peptide multimer analysis. However,
as our understanding of the nature of the relationship between
the tumor and immune response has matured, tumor immunolo-
gists have come to appreciate that these effector responses are only
one aspect of the immune system that can impact anti-tumor
immunity. The immune system (and the tumor itself) is also
able to mount suppressive immune responses that target effec-
tor responses and can lead to the amelioration of anti-tumor
responses. These suppressive immune responses are predomi-
nantly composed of regulatory T cells, myeloid-derived suppres-
sor cells (MDSCs), and tumor-associated macrophages (TAM),
which are able to survey the tumor microenvironment for effec-
tor immune responses to inhibit, which leads to the avoidance
of anti-tumor immunity and further tumor growth. The moni-
toring of changes in regulatory immune responses, consequently,
could theoretically serve as an additional biomarker of response to
immune therapies, particular in the case of immune-modulating
therapies or whole tumor vaccines where a specific antigenic target
is unknown.
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While there has been interest in monitoring suppressive
immune responses following immunotherapeutic intervention,
this has been a challenge given the difficulty in defining a set of cel-
lular surface markers that can be used to easily identify and quan-
tify regulatory immune responses. Furthermore, when evaluating
antigen-specific vaccine approaches, there has been a noticeable
paucity in the evaluation of antigen-specific regulatory responses
following immunization. In addition, the intrinsic plasticity in reg-
ulatory immune function further complicates this analysis, as data
in preclinical models indicates that immune responses can gain
and lose suppressive activity depending on the microenvironment,
which is particular important in the case of lymphocytes that infil-
trate the suppressive tumor microenvironment. In this review, we
will describe these regulatory cell populations, how they can sup-
press anti-tumor immune responses, how they have been used in
the immune monitoring of clinical trials, and challenges associated
with the implementation of regulatory cell detection into clinical
trial immune monitoring.

IMMUNE REGULATORY POPULATIONS AND THEIR EFFECTS
ON CANCER
REGULATORY T CELLS
Regulatory T cells (Tregs) are a subset of T lymphocytes identified
in the early 1970s (Gershon and Kondo, 1970) that have the ability
to suppress the activity of effector T cells. In healthy individu-
als, Tregs play a crucial role in maintaining peripheral immune
tolerance, preventing the generation of autoimmunity by limiting
T-cell activity. However, in the case of malignant disease, these
cells can act to limit anti-tumor immune responses and confound
the efforts of immunotherapeutic approaches. A variety of malig-
nancies have been shown to have increased frequencies of both
peripheral and tumor-infiltrating Tregs, including patients with
lung, pancreas, ovarian, breast, and prostate cancer (Woo et al.,
2001, 2002; Liyanage et al., 2002; Miller et al., 2006; Kiniwa et al.,
2007; Pages et al., 2010). Additionally, the detrimental impact Tregs
can have on anti-tumor responses is further suggested by their
prognostic value, as higher frequencies of Tregs correlate with dis-
ease stage and poor prognoses in a variety of malignancies (Curiel
et al., 2004; Beyer et al., 2005; Wolf et al., 2005; Betts et al., 2006;
Hiraoka et al., 2006; Kono et al., 2006; Kobayashi et al., 2007; Akin
et al., 2011; Katz et al., 2013).

These regulatory responses are broadly broken up into either
“natural” or “adaptive/induced” Tregs. Natural Tregs (nTregs) are
produced by the thymus and constitutively express CD25, CTLA-4,
and Foxp3 (a transcription factor that helps mediate the suppres-
sive activity of this regulatory population), and are able to suppress
both adaptive and innate immune responses (Read et al., 2000;
Takahashi et al., 2000; Mougiakakos et al., 2010). These cells are
generated in the thymus by the selection of thymocytes that have
T-cell receptors with high avidity for self-antigens – thus, nTregs
are responsible primarily for maintaining self-tolerance (Jordan
et al., 2001). They are able to maintain this self-tolerance through
a variety of mechanisms including the secretion of inhibitory
cytokines (such as IL-10, TGF-β, and IL-35), direct cytotoxicity,
disruption of T-cell metabolism, or targeting the activity of DC
through inhibitory surface molecules such as CTLA-4 or LAG-3
(Vignali et al., 2008).

As opposed to nTregs, induced Tregs (iTregs) enter the periph-
ery as naïve T cells. However, rather than gain an effector pheno-
type, these iTregs encounter their specific MHC-peptide complex
under conditions that promote the development of a regulatory
phenotype, such as high levels of suppressive cytokines (Lohr
et al., 2006). This is particularly relevant to tumor immunol-
ogy, as the tumor microenvironment is saturated with factors that
can promote the generation of iTregs, including factors that are
directly produced by tumor cells such as TGF-β, IL-10, IL-35,
and indoleamine 2,3-dioxygenase (IDO; Liu et al., 2007; Colli-
son et al., 2010; Heckel et al., 2011; Wang et al., 2013). This has
led to numerous reports of lymphocytes which infiltrate tumors as
effector cells, but are then converted to have a regulatory pheno-
type, further confounding the efforts of tumor immunologists to
generate productive anti-tumor immunity (Valzasina et al., 2006;
Liu et al., 2007; Shafer-Weaver et al., 2009; Collison et al., 2010).

Inducible Tregs are further subdivided into Tr1, Th3, and Tr35
cells, which are loosely divided based on their mechanisms of
suppression. Tr1 cells rely largely on IL-10 secretion to mediate
suppression, are developed in the presence of high doses of IL-10,
and express very low or no Foxp3 and CD25 (Groux et al., 1997;
Roncarolo et al., 2001; Levings et al., 2005). Th3 cells produce high
levels of TGF-β to mediate suppression, and contrary to Tr1 cells,
also express CD25 and Foxp3 (Chen et al., 1994; Weiner, 2001).
The final population, iTr35 cells, is a population of induced reg-
ulatory T cells that rely on IL-35, a suppressive cytokine that was
identified as having the ability to potently suppress T-cell prolifer-
ation and T-cell induced autoimmunity and anti-tumor responses
(Collison et al., 2007, 2010). One of the hallmarks of iTr35 cells
is that while they do not express Foxp3, their production of IL-35
has the ability to convert conventional T cells, nTreg, and other
iTreg populations into iTr35 cells, resulting in mixed expression
of Foxp3 and CD25 (Collison et al., 2010). As a result, while it
can be difficult to identify iTr35 cells based on surface molecule
expression, these iTr35 cells have a significant ability to propagate
infectious tolerance [the transfer of suppressive function from one
cell to another (Gershon and Kondo, 1971; Qin et al., 1993)].

While these natural and induced regulatory T cells are con-
ventionally viewed as CD4+ T cells, some of the earliest work into
suppressive T cells identified that CD8+ T cells could also mediate
the suppression of immunity in vivo (Gershon and Kondo, 1970).
This has been reinforced by research in the last decade, with the
identification of CD8+ T cells with potent suppressive activity
(Cortesini et al., 2001; Sarantopoulos et al., 2004; Wei et al., 2005;
Chaput et al., 2009; Olson et al., 2012). These CD8+ regulatory
T cells can also be divided into natural and induced regulatory T
cells, which can also mediate suppression by contact-dependent
and -independent mechanisms. However, our understanding of
the nature of these CD8+ regulatory T cells remains mercurial
and a topic of continued investigation.

While research characterizing regulatory cells has made signif-
icant progress, one of the challenges that have come to light from
these studies is the difficulty in defining a phenotype that can be
used to reliably identify a regulatory T cell. Common markers used
to identify Tregs are CD25, Foxp3, CD39, CD122, CD127, CTLA-4,
LAG-3, and GITR (Mougiakakos et al., 2010). The expression of
CTLA-4 is especially important, as therapies designed at blocking
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the activity of Tregs have been developed that specifically target
this molecule. However, each of these markers can be expressed
by other T cell subtypes, including activated effector T cells, pre-
venting them from being used as exclusive markers associated with
Tregs. Furthermore, CD4+Tr1 cells have negligible levels of CD25
and Foxp3, further complicating a complete analysis of Tregs.

While research studying regulatory T cells has focused on anti-
gen non-specific populations, emerging evidence has also shown
a role for antigen-specific regulation in cancer. These antigen-
specific Tregs require their cognate antigen to activate their sup-
pressive activity; however, once active, these cells can suppress
in an antigen non-specific fashion, so-called “bystander suppres-
sion” (von Herrath and Harrison, 2003). CD4+ regulatory T cells
have been identified that are specific for a variety of tumor anti-
gens, including antigens commonly targeted by vaccination such
as gp100, NY-ESO-1, HER2/neu, and CEA (Wang et al., 2004,
2005; van der Burg et al., 2007; Vence et al., 2007; Lehe et al.,
2008; Welters et al., 2008; Bonertz et al., 2009; Mougiakakos et al.,
2010). Additionally, antigen-specific CD8+ T cells with suppres-
sive function have also been identified (Andersen et al., 2009;
Olson et al., 2012). We recently identified CD8+ suppressor T cells
that were present in peripheral blood samples from patients with
prostate cancer that were specific for PAP (the antigen targeted by
sipuleucel-T), and prevented the detection of effector responses
following vaccination with a DNA vaccine targeting PAP (Olson
et al., 2012).

MYELOID-DERIVED SUPPRESSOR CELLS
Myeloid-derived suppressor cells are a diverse population of
myeloid cells which have been shown to have the ability to suppress
the proliferation and effector function of T cells. MDSCs con-
sist primarily of immature myeloid cells and myeloid progenitor
cells, cells which have not finished their differentiation into DCs,
macrophages, or granulocytes. In healthy individuals, MDSCs rep-
resent a very small fraction of total peripheral blood mononuclear
cells (PBMC), as these immature cells rapidly differentiate into
mature cells. In a variety of malignancies, however, this differ-
entiation process is blocked, leading to the generation of a sizable
fraction of MDSCs. This is true in patients with many types of can-
cer, including lung, breast, colon, and melanoma, where patients
have an increased frequency of peripheral and tumor-infiltrating
MDSCs, and in some cases these frequencies correlate with disease
grade (reviewed in Montero et al., 2012).

Studies in mouse models have identified two categories of
CD11b+ MDSCs based on their expression of the myeloid
differentiation antigen Gr1 (which recognizes the Ly6G and
Ly6C epitopes) – granulocytic MDSCs (CD11b+Ly6G+Ly6Clow)
and monocytic MDSCs (CD11b+Ly6G−Ly6Chi). However, as
humans lack a Gr1 homolog, the phenotypic characterization
of human MDSCs has proved more complicated. While sev-
eral surface molecules have been used to delineate MDSC sub-
populations, common markers used to identify these subtypes
include CD14 and CD15, with human granulocytic MDSCs being
CD11b+CD33+CD14−CD15+ and monocytic MDSCs being
CD11b+CD33+CD14+CD15−. Other markers that can be used
in combination to identify MDSCs include CD13+, CD34+,
IL-4Rα+, and HLA-DR− (Peranzoni et al., 2010).

Myeloid-derived suppressor cells can mediate the suppression
of effector immune responses using a variety of mechanisms
(Gabrilovich and Nagaraj, 2009). One of the most common mech-
anisms of suppression is focused on disrupting T-cell metabolism.
This includes the production of arginase and IDO (which can
deplete arginine and tryptophan, each of which are required for
T-cell activity) (Mellor and Munn, 2004; Bronte and Zanovello,
2005). Additionally, MDSCs have been shown to express inducible
nitric oxide synthase (iNOS), which leads to the generation of
nitric oxide (NO), as well as producing reactive oxygen species
(ROS), both of which can target T-cell function (Mazzoni et al.,
2002; Kusmartsev et al., 2004). Research has suggested that the
production of these two molecules may demarcate subtypes of
MDSCs, with monocytic MDSC producing NO and granulocytic
MDSC producing ROS (Movahedi et al., 2008). MDSC can also
produce peroxynitrite, which can result in T-cell receptor nitration
and a decrease in T-cell activity (Nagaraj et al., 2007). In addition
to these mechanisms that directly target the activity of effector T
cells, MDSCs have also been shown to induce the expansion of
regulatory T cells, which may be due in part to their expression of
regulatory cytokines like IL-10 or TGF-β, or the inhibitory recep-
tor CTLA-4 (Huang et al., 2006; Yang et al., 2006; Serafini et al.,
2008).

TUMOR-ASSOCIATED MACROPHAGES
Macrophages are closely linked with the development of cancer-
related inflammation. In the context of cancer, these cells are
divided into either type 1 or type 2 macrophages. Type 1
macrophages (M1) have the ability to present antigens and activate
T-cell responses, as well as being able to directly kill tumor cells.
However, in the presence of Th2-biased cytokines such as IL-10,
macrophages can be diverted to gain a type 2 phenotype. These
immunosuppressive type 2 macrophages (M2) are marked by the
expression of CD163 (the scavenger receptor) and CD206 (the
mannose receptor), as well as traditional monocyte markers such
as CD14, HLA-DR, and CD11b (Mantovani et al., 2002; Biswas and
Mantovani, 2010). The tumor microenvironment promotes the
generation of type 2 macrophages,as tumor cells can secrete factors
(such as CCL-2) that recruit macrophages to the site of the tumor,
and once there the immunosuppressive tumor microenvironment
is able to drive these macrophage toward a type 2 phenotype (Bot-
tazzi et al., 1983; Heusinkveld and van der Burg, 2011). These TAM
are then able to contribute to the suppressive tumor microenvi-
ronment, expressing high levels of suppressive cytokines (such as
TGF-β and IL-10), promoting tumor angiogenesis, and inhibiting
anti-tumor immunity (Vasiljeva et al., 2006; Coffelt et al., 2009).
The detrimental impact of these type 2 macrophages is illustrated
by their elevated frequency in a variety of cancers and the corre-
lation between high frequencies and poor patient prognosis (as
reviewed in Heusinkveld and van der Burg, 2011).

REGULATORY CELL MONITORING WITH IMMUNOTHERAPY
CLINICAL TRIALS
REGULATORY CELL POPULATIONS – BIOMARKERS OF IMMUNE AND
CLINICAL RESPONSE TO TREATMENT
Given the importance of regulatory immune responses in the
development and progression of a variety of cancers, there
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has been interest in characterizing the effects of immunother-
apies on the frequency of suppressive immune populations.
Reports to date have predominantly focused on evaluating the
effects of these therapies on regulatory T cells (particularly
CD4+CD25+Foxp3+Tregs), though the effects of immunother-
apies on MDSC frequency has begun to be implemented in
clinical trial analyses. Most reports have focused on enumerat-
ing the frequency of Tregs following immunotherapy, with sev-
eral immunotherapeutic approaches being shown to decrease
the frequency of peripheral Tregs. This includes a report by
Pohla et al. (2013) evaluating both Tregs and MDSCs follow-
ing treatment with a allogeneic gene-modified tumor cell line in
patients with metastatic renal cell carcinoma. In this study, they
found that vaccination resulted in a decrease in Tregs in periph-
eral blood samples, which they identified using extensive phe-
notype analysis (CD4+CD25hiCD127−/loFoxp3+CD39+). How-
ever, when they looked for changes in MDSCs using a vari-
ety of cell phenotypes (CD14+CD124+, CD15+CD124+, Lin-
HLA-DR-CD33+SSChi, SSCimmCD14+HLA-DR-, and CD14-
CD15+CD11b+), they found that vaccination did not signifi-
cantly alter any of these populations. This illustrates that while
vaccination can certainly impact the frequencies of suppressive
immune populations, not all populations are uniformly affected
by treatment, highlighting the importance of analyzing multiple
regulatory populations to get a full picture of the immune response
following immunization.

While many immunotherapies have been shown to alter the
frequency of regulatory cells, these changes alone do not provide
information on the immune and clinical efficacy of these ther-
apies. However, as immunotherapeutic clinical trials have begun
to elicit immune and clinical efficacy, it has become possible to
determine how changes in regulatory populations correlate with
the efficacy of these therapies, as shown in Table 1. In nearly all
these studies, it was found that a decrease in the frequency of regu-
latory cells (predominantly Tregs, but also a few reports evaluating
MDSCs) was found to correlate with enhanced clinical benefit. For
example, in two Phase II trials in patients with metastatic prostate
cancer, the investigators evaluated both Treg frequency and func-
tion following treatment with a viral vaccine (Gulley et al., 2010;
Vergati et al., 2011). In these studies, while there was not a sig-
nificant change in the frequency of Tregs (CD4+CD25hiFoxp3+)
following immunotherapy, they found that an increase in the ratio
of effector-to-regulatory CD4+ T cells (CD4+CD25− effector T
cells to CD4+CD25+CD127−Foxp3+CTLA−4+ Tregs) corre-
lated with enhanced prognosis. Furthermore, when they isolated
CD4+ Tregs and analyzed their ability to suppress autologous T
cell proliferation, they found that individuals with a decrease in
Treg function post-immunization had an enhanced clinical prog-
nosis (Gulley et al., 2010; Vergati et al., 2011). This illustrates a
problem common in immune monitoring, especially of regulatory
immune responses – the preponderance of immune monitoring
focuses on the quantity of regulatory populations rather than eval-
uating the quality of these suppressive populations. While the
enumeration of cell populations can provide some perspective as
to the efficacy of immunotherapeutic interventions, it is also possi-
ble that a smaller frequency of cells (but with more potent effector

activity) can be of greater significance than a high frequency of
cells with poor effector functions.

The observation that decreased regulatory cells following
immunotherapy correlates with enhanced clinical responses is
not wholly unexpected; as Tregs have been shown to correlate
with more advanced disease and poorer prognosis in many dis-
ease types, it would be logical to conclude that a decrease in
these Tregs would result in a better disease outcome following
immunotherapy. However, this trend is not uniform; in a clini-
cal trial report evaluating neoadjuvant ipilimumab in melanoma
patients, the authors found that this treatment resulted in an
increase in circulating Treg (both CD4+CD25hiFoxp3+ and
CD4+CD25hiCD39+ T cells), and that increases in these Tregs
correlated with enhanced progression-free survival (Tarhini et al.,
2012). Interestingly, this group also evaluated the presence of
circulating monocytic MDSCs (HLA-DRloCD14+), which they
found decreased following therapy. This could be a result of the
treatment with ipilimumab, which targets CTLA-4 and would thus
be expected to specifically target the Treg population and not
MDSCs. However, it again demonstrates the importance of fully
analyzing the immune response following these therapies.

Another challenge associated with regulatory cell immune
monitoring is that the techniques used to identify these popu-
lations can affect results. This is exemplified in the results from
three studies evaluating ipilimumab in early stage clinical tri-
als, each of which suggested different effects of ipilimumab on
Treg frequency. In a Phase I trial in prostate cancer patients, treat-
ment with ipilimumab was found to increase Treg frequency [as
measured by circulating CD4+Foxp3+ T cells (Kavanagh et al.,
2008)]. In another trial evaluating ipilimumab in a variety of
malignancies (colon, non-Hodgkin’s lymphoma, or prostate can-
cer), this treatment was found to induce a long-term decrease in
CD4+ Tregs (CD4+CD25+CD62L+) (O’Mahony et al., 2007).
And in yet another clinical trial in which bladder cancer patients
were treated with ipilimumab, it was found that treatment-
induced no consistent changes in Treg frequencies (CD4+Foxp3+,
CD4+Foxp3+ICOShi, or CD4+Foxp3+ICOSlo T cells) (Liakou
et al., 2008). The discrepancy in treatment-induced effects of Tregs
based on phenotype is not only seen in patients treated with
ipilimumab – in a study evaluating melanoma patients receiv-
ing a dendritic cell vaccine along with IL-2, the authors observed
that a decrease in CD4+CD25hi T cells correlated with a clinical
response; however, they also found that there was no correlation
between changes in CD4+CD25hiFoxp3+ T cells and disease sta-
bilization (Berntsen et al., 2010). This highlights the importance of
using well-defined and universally accepted parameters to identify
regulatory populations, as well as including functional analysis of
regulatory activity, to obtain the most accurate reflection of how
regulatory responses are being affected by immunotherapy. This is
especially important considering the plasticity of T cell function,
where an effector cell can gain suppressive activity (and vice-versa)
depending on the immune context (Bluestone et al., 2009; Addey
et al., 2011). While immune monitoring by its nature is only a
snapshot in time of this plasticity, it emphasizes that a compre-
hensive phenotypic and functional analysis will help provide the
most accurate interpretation of that moment in time.
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Table 1 | Clinical trials evaluating the effect of immunotherapy on regulatory cell frequency, and correlations with immune and clinical efficacy.

Disease type Immunotherapy Cell population Effects of immunotherapy

on regulatory cells and

responses

Reference

Glioblastoma DC vaccine Treg (CD4+CD25+CD127lo) Decreased frequency of Tregs

correlated with enhanced survival

Fong et al. (2012)

CD4+CTLA-4+T cells

CD8+CTLA-4+T cells

Decrease in CTLA-4 expression on

CD4+ and CD8+T cells correlated

with enhanced survival

Malignant glioma DC vaccine Treg (CD4+CD25+CD127lo) Decreases in Treg frequency

correlate with increased survival

Prins et al. (2013)

B-cell chronic

lymphocytic leukemia

DC vaccine Treg (CD4+CD25+Foxp3+) Patients with clinical responses had

a significant decrease in Treg

frequency

Hus et al. (2008)

Non-Hodgkin

lymphoma

DC vaccine Treg (CD4+CD25+Foxp3+) Decrease in Treg frequency

correlated with clinical responses

Di Nicola et al. (2009)

Renal DC vaccine+therapy Treg (CD4+CD25+Foxp3+) Non-responding patients had

significantly higher expansion of

Tregs compared to responding

patients.

Schwarzer et al. (2012)

Sarcoma DC vaccine+ irradiation MDSC (CD11b+CD14−

CD33+)

Higher frequencies of MDSC in

non-responders

Finkelstein et al. (2012)

Treg (CD4+CD25+Foxp3+) No correlation between changes in

Tregs and responder status

Melanoma Neoadjuvant ipilimumab Treg (CD4+CD25hiFoxp3+) Higher frequencies of Tregs

correlated with enhanced

progression-free survival

Tarhini et al. (2012)

Monocytic MDSC

(HLA-DRloCD14+)

No correlation between changes in

MDSC and survival

Melanoma DC Vaccine+ IL-2 Treg (CD4+CD25hi) Significant decrease in Tregs in

patients with clinical responses

Bjoern et al. (2011)

Treg (CD4+CD25hiFoxp3+) No correlation between changes in

Treg and clinical responses

Melanoma APC vaccines Treg (D4+CD25+) Expansion of Tregs correlated with

decrease in CTL frequency

Chakraborty et al. (2004)

Prostate Viral vaccine Treg (CD4+CD25hiFoxp3+) Decrease in Treg function

post-immunization correlated with

enhanced prognosis, and increased

Treg function correlated with poor

prognosis

Gulley et al. (2010)

Prostate Viral Vaccine Treg (CD4+CD25hiFoxp3+) Decrease in Treg function

post-immunization correlated with

increased overall survival

Vergati et al. (2011)

Effector:Treg ratio

(CD4+CD25−:

CD4+CD25+CD127-

Foxp3+CTLA-4+)

Increased effector:Treg ratio

post-immunization correlated with

enhanced prognosis

(Continued)
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Table 1 | Continued

Disease type Immunotherapy Cell population Effects of immunotherapy

on regulatory cells and

responses

Reference

Prostate Tumor cell vaccine+

ipilimumab

Treg (CD4+CD25hiFoxp3+) Increases in frequency of Tregs

correlated with decreased overall

survival

Santegoets et al. (2013)

Effector:Treg ratio

(CD4+CD45RO+:

CD4+CD25hiFoxp3+)

Increases in effector: regulatory T

cell ratio correlated with enhanced

survival

Lung, colorectal,

gastric, breast, uterine,

and renal cancer

Low-dose IL-2 Treg (CD4+CD25+) Patients with controlled disease

have a decline in number of Treg

cells

Lissoni et al. (2009)

Effector:Treg ratio

(CD4+:CD4+CD25+)

Patients with controlled disease

have an increase in effector:Treg

ratio

Breast Peptide vaccine Treg (CD4+CD25+Foxp3+) Decrease in Tregs correlated with

enhanced effector immune

responses

Gates et al. (2010)

REGULATORY CELL POPULATIONS – PREDICTIVE BIOMARKERS PRIOR
TO TREATMENT
While an increase in circulating regulatory cells following
immunotherapy is usually associated with a poor prognosis, and
increased frequencies of regulatory cells in untreated individuals
portends poor prognosis, the characterization of these popula-
tions as a prospective biomarker of immunotherapeutic efficacy
remains relatively untested. Some reports have found that pre-
existing Treg frequency does not correlate with vaccine efficacy
one way or the other (Gulley et al., 2010; Bjoern et al., 2011).
However, recent reports have found correlations between the fre-
quency of pre-existing regulatory responses and clinical responses
following immunization. In a report by Santegoets et al. (2013),
evaluating combined tumor cell vaccination with ipilimumab in
prostate cancer patients, the authors found that elevated frequen-
cies of CD4+CD25hiFoxp3+ Tregs prior to treatment correlated
with decreased overall survival following treatment. As with reg-
ulatory responses following vaccination, this is not necessarily
surprising; lower frequencies of Tregs in untreated patients corre-
late with enhanced prognosis. However, somewhat contradictory
to the other results obtained, the authors also found that increased
pre-treatment frequencies of CD4+CTLA−4+ T cells correlated
with enhanced survival. While CTLA-4 is expressed by activated T
cells, it is also constitutively expressed by nTregs,again illustrating a
potential dichotomy between results based on the phenotypic def-
initions of regulatory cells and necessitating additional methods
of detection.

While this report found that elevated levels of CD4+CD25hi

Foxp3+ Tregs predicted for poor prognosis, other clinical trials
have found opposing results. In a report by Correale et al. (2010),
the authors evaluated Treg frequencies in patients with colorectal
cancer who received chemoimmunotherapy. In these individu-
als, the authors found that increased frequencies of Foxp3+ T
cells prior to treatment correlated with enhanced overall survival

and progression-free survival following treatment. However, this
report differs from that of Santegoets and colleagues (and most
reports monitoring the effects of immunotherapy on regulatory
cell populations) in that rather than measuring circulating levels
of Foxp3+ T cells, they instead measured the frequency of tumor-
infiltrating cells that expressed Foxp3+using pre-treatment biopsy
samples from patients. Interestingly, another report by Hamid
et al. (2011) evaluating ipilimumab in patients with melanoma
also found that increased expression of Foxp3 and IDO in pre-
treatment biopsy samples correlated with enhanced clinical bene-
fit. These studies demonstrate the importance of not only evaluat-
ing the frequency of circulating regulatory cells, but also quantify-
ing the frequency of these suppressive cells that infiltrate the tumor.
As immune monitoring efforts focused on measuring peripheral
effector responses have been shown to not necessarily correlate
with effector responses at the site of tumor, immune monitoring
efforts focused on regulatory responses should perhaps also aim
to evaluate the effects of immunotherapy on tumor-infiltrating
suppressive cells.

METHODS OF REGULATORY CELL DETECTION FOR CLINICAL TRIAL
ANALYSIS – BEYOND ENUMERATION
While the enumeration of suppressive cell populations has been
the central focus of regulatory immune monitoring, quantification
alone may not be sufficient, as illustrated above. Immune mon-
itoring efforts aimed at analyzing effector immune responses do
not rely solely on quantifying the frequency of effector T cells –
rather, they include functional analysis to determine the activity of
these responses with respect to proliferation, cytokine expression,
expression of cell surface molecules, and cytolytic activity. Sim-
ilarly, immune monitoring of regulatory immunity should also
include functional analysis of suppressive activity. This is particu-
larly relevant to the analysis of regulatory immune responses, given
the lack of distinct phenotypic markers that can be used to identify
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regulatory cells. The importance of analyzing regulatory function
is clearly illustrated by the previously described reports evaluating
a viral vaccine in prostate cancer patients, where immunization
did not induce changes in Treg frequency that were associated
with clinical responses, but decreases in Treg function were associ-
ated with an enhanced prognosis (Gulley et al., 2010; Vergati et al.,
2011).

To evaluate the function of Tregs, most of the studies to date
have largely focused on one of two aspects of Treg activity: sup-
pression of T-cell proliferation and Treg expression of immuno-
suppressive cytokines. To measure Treg suppression, peripheral
blood cells are sorted to isolate a purified Treg population (usu-
ally based on CD4+CD25+ expression), and these cells are then
co-incubated with autologous CD4+CD25− conventional T cells
that are non-specifically activated. T-cell proliferation can then be
measured using standard techniques, including thymidine uptake,
or by dilution of cell-labeling dyes such as carboxyfluorescein suc-
cinimidyl ester or PKH26, in CD4+CD25− cells. These assays can
also be combined with assays measuring the effect on expression
of cytokines by the effector T cells, collecting supernatants and
measuring cytokine secretion by enzyme-linked immunosorbent
assay (ELISA).

In addition to measuring the effect of Treg on the prolifera-
tion and cytokine secretion of effector T cells, another common
assay of Treg function is measuring the cytokine expression by
Tregs themselves. This has typically been performed by ELISA
(where isolated Treg populations are stimulated non-specifically
and cytokine release into the supernatant is measured) or ICCS.
Intracellular cytokine staining has the benefit of not requiring
isolation of Tregs, as whole PBMC can be isolated and stimu-
lated, following by surface staining to identify the population of
interest. Furthermore, ICCS also has the benefit of permitting con-
current staining for Foxp3, helping to identify Treg populations.
While suppression assays and cytokine expression are most com-
monly used to evaluate Treg function, other methods employed to
monitor Treg function in clinical trials include evaluating serum
cytokine levels, evaluating tumor biopsies for expression of sup-
pressive factors such as IDO, or evaluating the methylation status
of the Foxp3 promoter as a surrogate for Treg activity (Polansky
et al., 2008; Wieczorek et al., 2009).

A fairly comprehensive clinical characterization of regulatory
T cell activity was reported by François and colleagues, in which
melanoma patients were immunized with a MHC class II pep-
tide (Francois et al., 2009). Patient PBMC samples were sorted
for CD4+Tetramer+ cells, which were then cloned by limiting
dilution and expanded. They found that 5% of these CD4+ T-
cell clones also expressed CD25 and Foxp3, and were able to
suppress the proliferation of naïve T cells in vitro as well as the
secretion of IFNγ, IL-2, IL-10, and TNFα by effector T cells.
These CD4+CD25+Foxp3+ T-cell clones expressed TGF-β, and
had unmethylated Foxp3 promoters, consistent with the patterns
observed in Tregs (Polansky et al., 2008). While this report did not
observe any correlations between Treg frequency and responses to
immunization, it exemplifies the type of functional analysis that
can shed light on Treg activity.

As a measure of antigen-specific regulation not requiring
in vitro amplification, an alternative methodology that can be

used is the trans vivo delayed-type hypersensitivity (tvDTH) assay.
This assay has been commonly used to evaluate antigen-specific
tolerance in transplant recipients, but has rarely been used to
evaluate regulation in tumor immunotherapy clinical trials (Car-
rodeguas et al., 1999; VanBuskirk et al., 2000; Cai et al., 2004;
Olson et al., 2012). For this assay, peripheral blood samples from
patients are injected into the foodpads of SCID mice along with a
recall antigen (such as tetanus toxoid or inactivated Epstein-Barr
virus) and an experimental antigen being evaluated for regula-
tory immune responses. As with other antigen-specific regulatory
immune responses, the experimental antigen-specific regulatory
cells require their cognate antigen for activation, but once acti-
vated can suppress in a non-specific fashion (thus suppressing
the tetanus bystander immune response). Twenty-four hours later,
footpad swelling can be measured as an indicator of an inflamma-
tory immune response, which can be suppressed by the activation
of antigen-specific regulatory responses. Thus, this assay does not
rely on measuring any single metric of suppressive activity, but
rather measures how all of these mechanisms act in concert to
suppress inflammation in vivo. However, by including blocking
antibodies specific to particular suppressive functions (such as
antibodies blocking TGF-β, IL-10, or IL-35, or surface molecules
such as CTLA-4 or PD-1), it is possible to identify mechanisms
that contribute to suppression. Furthermore, by conducting the
assay with particular T-cell subsets, it is possible to identify the cell
population that mediates suppression.

The tvDTH assay is also useful in that it can be used to
detect effector responses that are suppressed by concurrent reg-
ulatory responses. As we have described in a report evaluating
a DNA vaccine in patients with prostate cancer, we found that
we were not able to detect antigen-specific effector responses in
peripheral blood samples from multiple patients when the anti-
gen of interest was injected into the footpads of SCID mice alone.
However, when we blocked regulatory responses using antibod-
ies specific to CTLA-4, we were able to uncover antigen-specific
effector responses that were otherwise undetectable (Olson et al.,
2012). These suppressed effector responses can also be detected
using standard in vitro techniques using peripheral blood samples
that have been depleted of regulatory cells, as has been reported –
however, these assays still only measure particular aspects of Treg
activity (Gnjatic et al., 2009; Hadaschik et al., 2012). However, the
masking of effector responses by concurrent regulatory illustrates
one of the most important reasons to include analysis of regu-
latory populations in clinical trials evaluating immunotherapies;
given the interaction between effector and regulatory populations,
it is possible that ignoring one population could compromise the
analysis of the other.

CONCLUDING REMARKS
As immunotherapies for the treatment of cancer begin to show
clinical benefit and become approved for use in the clinic, it
is of crucial importance to identify biomarkers of efficacy that
can also be incorporated into the clinic, both to identify which
patients may optimally respond to therapy, as well as to deter-
mine whether individual patients are responding to therapy. This
is particularly relevant because most immunotherapy clinical tri-
als have relied on measuring overall survival as a primary clinical
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endpoint, and while overall survival remains the gold-standard
for determining clinical efficacy, it is an impractical endpoint for
making clinical treatment decisions. In addition, many treatments
rely on repetitive administration (vaccines, for example), and it is
conceivable that tolerance/regulation may be elicited that can pre-
vent the generation of productive anti-tumor effector responses.
As such, it is critical to monitor for these regulatory responses
to determine if/when additional booster immunizations or other
immune-modulating agents should be employed.

As our understanding of immune suppression has expanded
from the identification of regulatory cell populations to cur-
rent research aimed at elucidating the plastic nature of immune
function and the interplay between effector and regulatory immu-
nity within the tumor microenvironment, it has become evident
that regulatory cells play a central role in the development and
progression of cancer, and can influence the outcome of tumor
immunotherapies. Therefore, it is important to include analysis of
these regulatory populations in the immune monitoring of clinical
trials, as it can complete the picture of how immune responses are
affected by immunotherapeutic intervention. Furthermore, as our
understanding of how these regulatory responses are affected by
immunization develops, it will be possible to design more optimal
combinatorial approaches that seek to activate effector responses
as well as inhibit or deplete these suppressive cells.

However, as our understanding of regulatory cells continues
to expand, it is important that immune monitoring efforts track-
ing these cell populations continue to grow as well to address

the current challenges associated with the monitoring of reg-
ulatory populations. This includes identifying combinations of
phenotypic markers that can be used to more reliably track sup-
pressive populations, or alternatively using multiple definitions of
regulatory cells to confirm results obtained by examining a sin-
gle phenotype. It will also be important to incorporate the use
of functional analysis of regulatory cell function as is done with
effector cells, as this can provide a more complete picture of both
the quantity and quality of suppressive responses. Additionally,
as our knowledge of the plastic nature of suppressive activity in
nominally non-regulatory immune cells expands, it will be impor-
tant to incorporate this information into immune monitoring,
which can help expand this monitoring from defining a single
moment in time to generating a more complete understanding
of the suppressive potential of the immune response following
immunotherapeutic intervention. Equally important, it will be
crucial to gain a better understanding for how pre-existing reg-
ulatory responses affect the ability to respond to immunotherapy,
as this can be used to prospectively identify individuals who are
most likely to respond to therapy.
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