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Telomeres are the terminal structures at the ends of linear chromosomes that represent a
solution to the end replication problem. Specific binding of the six-protein subunit complex
shelterin to telomeric, repetitive TTAGGG DNA sequences contributes to the stable archi-
tecture and maintenance of telomeres. Proteins involved in the DNA damage response are
also localized at telomeres, and play a role in the surveillance and maintenance of telomere
integrity.The enzyme responsible for telomere extension is telomerase, a ribonucleoprotein
with reverse transcriptase activity. In the absence of telomerase, telomeres shorten to a
length threshold that triggers the DNA damage response and replicative senescence. Here,
we will summarize the latest findings concerning vertebrate telomere structure and epige-
netics, and we present data regarding the impact of short telomeres upon cell signaling. In
particular, in murine embryonic stem cells lacking telomerase, we found that distribution
of cytosolic/nuclear β-catenin, a key component of the Wnt signaling pathway, changes
when telomeres become critically short. We discuss implications and future perspectives
of the effect of epigenetic modifications and/or conformational changes of telomeres on
cell metabolism and signaling networks. Such an analysis may unveil potential therapeutic
targets for pathologies like cancer, where the integrity of telomeres is altered.

Keywords: telomere, telomerase, shelterin,Wnt signaling, β-catenin, APC

INTRODUCTION
TELOMERE STRUCTURE IN VERTEBRATES
Telomeres are the structures at the ends of chromosomes that
protect them from end-to-end fusions and solve the problem of
end replication, i.e., the loss of genetic material due to inherent
limitations in the DNA replication process (Blackburn, 1991).
Telomeres consists of a repeated six-nucleotide G-rich sequence,
5′-TTAGGG-3′, that is folded into a telomeric loop (t-loop) (Grif-
fith et al., 1999). The telomere contains a double-stranded region
and a single-stranded overhang, also referred to as the G-strand
overhang, whose length is tightly regulated (Wright et al., 1997;
Sfeir et al., 2005; Wu et al., 2012). Telomeres are protected and
regulated by a specific hexaprotein complex, called shelterin (i.e.,
TRF1, TRF2, RAP1, TIN2, POT1, TPP1) (Figure 1A), and addi-
tional non-telomere specific proteins that are implicated in the
cellular DNA damage response (de Lange, 2005; Longhese, 2008).
Shelterin inhibits the ataxia telangiectasia mutated (ATM) and
ATM and Rad3-related (ATR)-dependent DNA damage response,
non-homologous end joining and homologous recombination
DNA repair pathways, and resection by 5′-exonucleases (Sfeir and
de Lange, 2012). Some of these activities are specific to shel-
terin whereas other activities that inhibit non-homologous end
joining and resection are supported by other telomere-associated
proteins such as Ku70/80 and 53BP1, respectively (Sfeir and de
Lange, 2012). As the enzyme responsible for telomere extension,

telomerase is a key factor that contributes to chromosome end
protection (Blackburn et al., 1989). Telomerase is a reverse tran-
scriptase that copies a stably associated RNA template into telom-
ere DNA (Greider and Blackburn, 1987, 1989; Shippen-Lentz and
Blackburn, 1990). In mice, the extension of telomeres occurs
during S-phase and telomerase extends the shortest telomeres
preferentially (Hemann and Greider, 1999; Samper et al., 2001;
Erdmann et al., 2004; Stern and Bryan, 2008).

TELOMERE EPIGENETICS
Telomeric DNA contains nucleosomes, although the nature of
telomeric chromatin is peculiar (Makarov et al., 1993) (Figure 1B).
Simplistically, nucleosomes and shelterin compete with each other
for the binding of telomeric DNA, hence it is not surprising that
TRF2 influences the positioning of the nucleosomes, i.e., the nucle-
osome abundance at telomeres is inversely correlated with the
amount of TRF2 (Benetti et al., 2008b; Galati et al., 2012). Nucle-
osome spacing by TRF2 occurs in S/G2 phase, which coincides
with the end of DNA replication and telomere replication (Galati
et al., 2012). Epigenetic marks, notably histone and DNA methy-
lation, in sub-telomeric and telomeric regions contribute further
to telomere maintenance and stability (Blasco, 2007) (Figure 1B).
A high degree of DNA methylation guarantees a closed chromatin
state that is associated with gene silencing in regions upstream
of the telomeres. This phenomenon, first described in Drosophila

www.frontiersin.org June 2013 | Volume 3 | Article 146 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/10.3389/fonc.2013.00146/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LauraGardano&UID=79050
http://www.frontiersin.org/people/ThierryLe_Bihan/96120
mailto:laura.gardano@univ-paris13.fr
mailto:lea.harrington@umontreal.ca
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gardano et al. Telomeres and cell signaling

FIGURE 1 | Structure of the telomeres. (A) The telomere folds into a
telomeric loop (t-loop) and binds the six-protein subunit complex shelterin.
TRF1 (in gray) and TRF2 (in blue) bind double-stranded telomeric DNA. POT1
(in light blue) binds to single-stranded telomeric DNA. RAP1 (in yellow) is
recruited to the telomere by an interaction with TRF2. TIN2 (in pink) serves as
a scaffold to recruit TRF1, TRF2, and TPP1 (in green), which in turn interacts
with POT1. The main functions of shelterin are listed in the figure and further

details are given in the text. HR, homologous recombination; NHEJ,
non-homologous end joining. (B) Epigenetic marks at the telomere (red dots
represent histone methylation and yellow dots represent DNA methylation).
The shelterin complex (green) regulates nucleosome spacing. The telomeres
are transcribed into TERRAs (red strings) that inhibit telomerase catalytic
activity, and shelterin inhibits telomerase access. TERC, the RNA component
of telomerase; TERT, the catalytic subunit of telomerase.

melanogaster and yeast, is known as the telomere positioning effect
or TPE (Levis et al., 1985; Gottschling et al., 1990; Nimmo et al.,
1994). In humans, telomere length positively affects TPE through
a change in the conformation of chromatin (Baur et al., 2001).
Epigenetic defects at telomeres, such as those driven by the loss
of DNA methyl transferases or histone methyl transferases, lead
to telomere defects that result in aberrant telomere lengthening
attributed partially to an increase in homologous recombination
(Gonzalo et al., 2006; Benetti et al., 2007b, 2008a). In mice lack-
ing the telomerase RNA component (mTerc−/−), short telomeres
are associated with epigenetic changes at the telomeres, i.e., a
decrease of tri-methylated histone 3 and histone 4 and an increase

in histone acetylation (Benetti et al., 2007a). Thus, critically short-
ened telomeres show signs of an“open” chromatin state that favors
recombination events (Benetti et al., 2008a). It is reasonable to pos-
tulate that epigenetic changes in telomeric DNA and histones affect
the binding of shelterin and, in turn, affect telomere structure and
the recruitment of telomerase (Blasco, 2007).

The complex regulation of telomeric structure, maintenance,
and epigenetics has been underscored further by the discovery of
the transcription of telomeres into a telomere repeat-containing
RNA (TERRA) that contains UUAGGG repeats (Azzalin et al.,
2007; Schoeftner and Blasco, 2008) (Figure 1B). The length and
amount of TERRAs are directly correlated with telomere length
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Gardano et al. Telomeres and cell signaling

and vary with the cell cycle. Because of their ability to anneal
with the template sequence in the telomerase RNA component,
TERRAs are able to inhibit telomerase (Figure 1B) (Redon et al.,
2010). The precise role of TERRAs has not yet been established
fully, but TERRAs are proving to be an interesting regulator of
telomere dynamics.

TELOMERES, TELOMERASE, AND THE WNT SIGNALING PATHWAY
Telomere dysfunction is also linked to perturbation of other
cellular processes that include the Wnt/β-catenin signaling net-
work. The Wnt/β-catenin signaling cascade controls many aspects
of organism development, cell proliferation, and differentiation
(Valenta et al., 2012). In the absence of Wnt, β-catenin is phos-
phorylated and rapidly degraded by a destruction complex con-
taining Axin, APC, CK1, and GSK3β (Clevers and Nusse, 2012).
However, in the presence of Wnt, β-catenin is stabilized and
imported into the nucleus where, together with the transcrip-
tion complex TCF/LEF, it regulates the transcription of Wnt target
genes (Behrens et al., 1996; Molenaar et al., 1996). Cytoplasmic
β-catenin localizes to the cell membrane through an interaction
with E-cadherin and serves to stabilize cell adhesion (Ozawa et al.,
1989).

The first link between telomerase and Wnt signaling was sug-
gested from an analysis of transcription profiles of mouse and
human cells expressing catalytically active or inactive Tert (Choi
et al., 2008). Stem cells that express mTert, irrespective of its com-
petence for catalytic activity, exhibit transcriptional activation of
genes regulated by Wnt (Choi et al., 2008). In addition, mTert is
localized to the promoters of genes regulated by Wnt3a and β-
catenin (Park et al., 2009). In mESC over-expressing mTert, the
activation of Wnt signaling by LiCl leads to the transcriptional
activation of β-catenin (Park et al., 2009). However, another study
compared the transcriptional profile of cells from mTert−/− mice
with mTerc−/− mice, and observed no substantial difference in
gene expression (Vidal-Cardenas and Greider, 2010). In particular,
the Wnt signaling network was unaffected, and the authors sug-
gested that the link between telomerase and Wnt signaling might
be a neomorph due to telomerase over-expression (Strong et al.,
2011). More recently, it has been found that β-catenin can regulate
mTert transcription in mESC (Hoffmeyer et al., 2012). This regu-
lation involves Klf4, one of the four transcription factors required
to induce pluripotent stem cells. The control operated on mTert
by β-catenin may be direct because β-catenin occupies the mTert
promoter (Hoffmeyer et al., 2012). β-catenin also activates TRF2
transcription (Diala et al., 2013). Finally, c-myc, which is also under
the control of β-catenin/Wnt signaling, is a known regulator of
mTert transcription (Wang et al., 1998), thus implying a very tight
regulation of this gene and the involvement of multiple signaling
networks (Greider, 2012).

Telomere attrition triggers activation of the DNA damage
response and other changes that herald the onset of genome insta-
bility (Cimprich and Cortez, 2008; Schoeftner and Blasco, 2010).
To dissect the complexity of such processes, it is important to dis-
tinguish between the impact of telomerase loss versus the impact
on telomere length. In this regard, murine embryonic stem cells
represent a valuable model system and in ESC lacking mTert, we
show that critically short telomeres (and not telomerase presence

per se) can impact cell signaling cascades even in the cytoplasm.
We focused on β-catenin because of its known link to telom-
ere function and because its dynamic phosphorylation-dependent
regulation appeared a logical choice for a first examination of the
impact of DNA damage signaling at the telomere in the cyto-
plasm. Our data suggest that alteration of telomere structure or
epigenetic modifications elicited by telomere shortening impacts
cell signaling in extra-nuclear locations, which in turn may affect
cell adhesion, metabolism, and protein turnover.

RESULTS
SHORT TELOMERES AFFECT CELL ADHESION AND β-CATENIN
DISTRIBUTION
Murine ESC lacking the telomerase reverse transcriptase were gen-
erated and characterized previously and show an accumulation of
telomere signal-free ends at late passage (Liu et al., 2000; Erdmann
et al., 2004). We queried whether the abundance of key signal-
ing factors would be altered in the presence of short telomeres,
and focused our investigation on β-catenin, a critical component
of the Wnt signaling network that controls cell proliferation and
differentiation (Clevers and Nusse, 2012). β-catenin distribution
and post-translational modifications were compared in mTert−/−

at late passage (>60 passages) and wild-type ESC at a similar pas-
sage number (Figure 2A). We observed that cytosolic β-catenin
was significantly more abundant in mTert−/− ESC with critically
short telomeres compared to wild-type cells (Figure 2B, Student’s
t -test P = 0.003) while the total content remained unchanged
(Figure 2B, P = 0.968). Accordingly, higher levels of nuclear β-
catenin were observed in wild-type cells (Figure 2C, P = 0.027).
Taken together, these results indicate that the distribution of
β-catenin differed between the two cell types.

β-Catenin is a target of the GSK3β kinase which phosphorylates
the residues S33/37, and T41. The tri-phosphorylated form of β-
catenin is rapidly degraded by the proteasome (Liu et al., 2002). We
used an antibody specific for the triple-phosphorylated β-catenin
(S33/37, T41) to assess the phosphorylation status of β-catenin in
ESCs with or without short telomeres, and found no difference
in the levels of phosphorylated, cytosolic β-catenin (Figure 2E).
Since the degradation of phospho-β-catenin occurs very rapidly
and may mask subtle differences in abundance, we treated ESCs
with the proteasome inhibitor MG132. In the presence of MG132,
the difference in the phosphorylation status of cytosolic β-catenin
in wild-type cells compared to mTert−/− ESC achieved statistical
significance (Figure 2D, P = 0.0014). These results suggest that
β-catenin is degraded less rapidly in mTert−/− ESC with short
telomeres, or that there is a pool of β-catenin in cells with crit-
ically short telomeres that is immune to proteasome-dependent
degradation.

As GSK3β activity is inhibited by the phosphorylation of a
serine at amino acid position 9 (Sutherland et al., 1993; Desbois-
Mouthon et al., 2001; Fukumoto et al., 2001), we assessed the serine
9 phosphorylation status of GSK3β. We did not detect a signifi-
cant difference between wild-type and mTert−/− ESCs (Figure 2E).
GSK3β is phosphorylated by the kinase AKT, whose activity is reg-
ulated by the phosphorylation of serine 473 (Alessi et al., 1997;
Fukumoto et al., 2001). We did not observe a significant differ-
ence in the level of AKT phosphorylation between wild-type and
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Gardano et al. Telomeres and cell signaling

FIGURE 2 |Telomere shortening affects β-catenin cellular distribution and
its degradation. (A) Q-FISH analysis of wild-type (WT) and mTert−/− mESC
(KO) at passage 61 and 70 respectively (P < 0.001). (B) Immunoblot of total
and cytosolic cell extract of WT and KO mESC at passage >60. The
membrane was probed with an anti-total β-catenin antibody and anti-β-tubulin
antibody. Anti-lamin B antibody was used to assess the purity of the cytosolic
fractionation (10 and 5 µg loaded, respectively). The signal for cytosolic
β-catenin was quantified relative to the signal for β-tubulin (IRDye® Infrared
Dyes, LI-COR Biosciences). (C) Immunoblot of nuclear cell extract of WT and
KO mESC at a passage >60. The membrane was probed with an anti-total
β-catenin antibody and an anti-lamin B1 antibody. Anti-β-tubulin antibody was
used to assess the purity of the nuclear fractionation. The signal for nuclear
β-catenin was quantified relative to the signal for lamin B1. (D) Immunoblot of

phosphorylated β-catenin in cytosolic cell extracts treated with (+) and
without the proteasome inhibitor MG132 (10 µM) for 6 h. The signal for
cytosolic phospho-β-catenin was quantified relative to the signal for β-tubulin.
The histograms in (A–C) represent the data of the blot shown plus two other
independent data sets (average± standard deviation; Student’s t -test:
*P < 0.05, **P < 0.01). (E) Enhanced chemiluminescence immunoblot of
total cell extract of WT and KO mESC probed with anti-phospho-GSK (S9),
anti-total GSK, anti-phospho-AKT (S473), and anti-total AKT antibodies. The
blot shown is representative of at least three independent experiments. The
signal of p-GSK3β and p-AKT was quantified relative to the total
unphosphorylated protein, GSK, and AKT respectively. The histograms
represent the average of four independent analyses, P =0.057 for p-GSK3β

and P =0.39 for p-AKT. Error bars indicate standard deviation.
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mTert−/− cells (Figure 2E). These results suggest that downstream
effectors of Wnt signaling remain unaltered in mTert−/− cells with
critically short telomeres.

COMPARISON OF WNT SIGNAL TRANSDUCTION
LiCl is an inhibitor of GSK3β that triggers phosphorylation on ser-
ine 9 through an as yet unknown mechanism (Rao et al., 2005a).
Because inactivation of the kinase activity of GSK3β results in the
inhibition of phosphorylation of β-catenin and its stabilization,
LiCl treatment is often used to activate Wnt (Rao et al., 2005b).
To assess whether the different distribution of β-catenin was asso-
ciated with a difference in Wnt signaling, we treated mESC with
LiCl and, as expected, observed a stabilization of β-catenin levels in
both wild-type and mTert−/− ESCs (Figure 3A). We did not detect
a significant difference in the transcription of a specific target of
Wnt signaling, Axin2, in response to Wnt3a (Figure 3B). Similar to
Axin2, a reporter system containing three consensus TCF binding
sites upstream of the firefly luciferase gene did not exhibit a statis-
tically significant difference between WT and KO cells (Figure 3C)
(Korinek et al., 1998). Thus, two independent outputs of Wnt sig-
naling were not appreciably altered in mTert−/− ESCs with short

telomeres. The transcription of the cell cycle-regulated genes c-myc
and cyclinD1 are also regulated by Wnt and many other signaling
networks, but did not exhibit a statistically significant trend in
response to Wnt3a (Burdon et al., 2002; Jho et al., 2002) (data not
shown).

In order to identify factors responsible for β-catenin cytoso-
lic accumulation in mTert−/− ESCs with short telomeres, we
compared the profile of β-catenin interacting proteins using
mass spectrometry. Three independent β-catenin immunopre-
cipitations from total lysates were performed and only pro-
teins recovered in all three experiments were considered (152
proteins in total). We considered a protein interaction sig-
nificantly different between wild-type or mTert−/− ESC if it
exhibited a peptide intensity ratio of <0.667 or >1.5 with
an unpaired Student’s t -test P value < 0.05 (see Section Mate-
rials and Methods). Adenomatous polyposis coli (APC), was
enriched by approximately twofold, (P = 0.03) in mTert−/− ESC
relative to wild-type ESC (Table 1). APC interacts with β-
catenin and together with Axin1, constitutes the scaffold of the
destruction complex that regulates the stability of cytosolic β-
catenin (Rubinfeld et al., 1993; Hart et al., 1998; Hamada and

FIGURE 3 | Wnt signaling in telomerase knock-out mESC with short
telomeres and β-catenin interactors. (A) Immunoblot and
quantification of β-catenin detected in cytosolic cell extracts of mESC
treated with LiCl (30 mM) for 3 h. The intensity of β-catenin was
normalized to the intensity of β-tubulin. The histogram represents the
average (±standard deviation) of three independent experiments.
(B) qRT-PCR to measure the levels of Axin2 mRNA transcript. WT and
KO cells were treated with Wnt3a (100 ng/mL) for 3 days. The histogram

represents the average (±standard deviation) of three independent
qRT-PCR experiments, each performed with three replicates.
(C) Transcriptional output of β-catenin activity measured using a
TCF-driven luciferase reporter system. The histogram represents the
average (±standard deviation) of the ratio of Renilla normalized firefly
luciferase activity in Top versus Fop plasmid transfected cells of two
independent experiments. Using a student’s t -test, no difference was
noted in the presence or absence of Wnt3a (P =0.223).
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Gardano et al. Telomeres and cell signaling

Table 1 | Results of IP-MS of β-catenin in WT and mTert−/− mESC.

Accession ID Description Total

peptides

Peptides

quantified

Average

intensity

WT a.u.

Average

intensity

KO a.u.

P value Ratio

KO/WT

Gi|86262157|ref|NP_808386.2| Hypothetical protein LOC239796 4 3 0.00343 0.00155 0.00037 0.45091

Gi|124486588|ref|NP_001074475.1| Sickle tail protein isoform c 28 28 0.05906 0.02017 0.00154 0.34160

Gi|40254129|ref|NP_258435.2| Armadillo repeat protein deleted in

velo-cardio-facial syndrome homolog

17 17 0.06524 0.05290 0.01504 0.81088

Gi|6755368|ref|NP_035426.1| 40S Ribosomal protein S18 5 5 0.01326 0.00710 0.01607 0.53595

Gi|31982755|ref|NP_035831.2| Vimentin 11 8 0.00262 0.00749 0.01611 2.85760

Gi|31542151|ref|NP_038827.2| Arginyl-tRNA-protein transferase 1

isoform 1

8 8 0.03619 0.06278 0.02867 1.73447

Gi|112807186|ref|NP_766307.2| GCN1 general control of amino acid

synthesis 1-like 1

2 2 0.00068 0.00027 0.02990 0.40295

Gi|110225370|ref|NP_031488.2| Adenomatosus polyposis coli protein

(APC)

35 35 0.05596 0.09804 0.03139 1.75192

Gi|79750409|ref|NP_075025.2| Hamartin 7 7 0.00687 0.01120 0.03649 1.63012

Nine proteins were differently represented in β-catenin immunoprecipitations of WT and mTert−/− mESC.The stringency criteria used to determine hits are described

in Section “Materials and Methods.” Note that β-catenin was immunoprecipitated in WT and mTert−/− cells with a comparable efficiency [over 20 peptides in all IPs

and peptide intensity ratio (KO/WT) of 0.97].

Bienz, 2004; Clevers and Nusse, 2012). Interestingly APC is also
implicated in the regulation of the nuclear export of β-catenin
and, therefore, influence the balance between nuclear and cyto-
plasmic β-catenin independently of Wnt signaling (Henderson,
2000). Eight other proteins were also identified as novel inter-
actors of β-catenin and have not yet been further characterized
(Table 1).

RESCUE OF CYTOSOLIC β-CATENIN WITH TELOMERE LENGTHENING
To address whether the reintroduction of telomerase and exten-
sion of telomeres could restore the level of cytosolic β-catenin,
we reintroduced mTert into mTert−/− ESCs under the control of
a tetracycline-inducible promoter and, after selection of mTert -
positive clones, cells were propagated under mTert induction
conditions (+Dox) for 70 days (Figures 4A,B). The reactivation
of telomerase upon addition of doxycycline was confirmed by
TRAP (telomerase repeat amplification protocol, data not shown)
and the extension of the telomeres verified by Q-FISH analysis
(Figure 4B). At this point, the culture was split in two and prop-
agated in the absence (−Dox) or presence (+Dox) of mTert for
an additional four population doublings (Figures 4A,B). Analy-
sis of the level of cytosolic β-catenin in ESCs with extended
telomeres, irrespective of mTert expression, revealed a rescue
of the cytosolic β-catenin to levels comparable to wild-type
ESCs (Figure 4C, P = 0.20). This result suggests that the dis-
tribution of β-catenin is dependent on telomere length rather
than telomerase activity. This result is similar to the finding
that mice or ESCs lacking telomerase activity do not exhibit
phenotypes until telomeres become critically shortened (Erd-
mann and Harrington, 2009; Strong et al., 2011). Instead, a

loss of tissue self-renewal is evident at generations above G4,
underscoring the dependence of the phenotype upon loss of
telomere integrity (Vidal-Cardenas and Greider,2010; Strong et al.,
2011).

DISCUSSION
Here, we discussed the impact of telomere integrity on cell signal-
ing. We show new data that mESC with short telomeres undergo an
accumulation of cytosolic β-catenin. Although the level of nuclear
β-catenin is higher in wild-type cells, this difference does not result
in an induction in the transcription of Wnt target genes. This
observation is in general agreement with the finding that acti-
vation of Wnt signaling leads to β-catenin nuclear import, but
there is no relationship between the level of nuclear β-catenin
and Wnt activation (Guger and Gumbiner, 2000). The higher
cytosolic content of β-catenin in mTert−/− ESCs might be the
result of an altered balance of β-catenin nuclear import/export
or of β-catenin degradation/stabilization. In support of the first
explanation, we observed an enrichment of APC in β-catenin
immunoprecipitates from mTert−/− cells. APC shuttles between
the nucleus and the cytoplasm independently from other factors
of the destruction complex (Henderson, 2000). The destruction
complex is not disassembled in the presence of Wnt; instead,
degradation of β-catenin by the proteasome is altered upon Wnt
stimulation (Hilger and Mann, 2012; Li et al., 2012). This find-
ing may explain why an increased level of APC-β-catenin complex
might not necessarily result in higher β-catenin degradation. Fur-
thermore, our finding that the phosphorylation of β-catenin is
increased in wild-type ESCs but not mTert−/− ESCs in the pres-
ence of the proteasome inhibitor MG132 supports the notion
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FIGURE 4 | (A) qRT-PCR to quantify mTert transcript in WT, KO, and KO
cells re-transfected with inducible mTert under a Doxycyclin inducible
promoter (see text for details). The histogram represents the average
(±standard deviation) of three qPCR replicates. (B) Q-FISH to evaluate
telomere lengthening in KO cells re-transfected with mTERT under the

induction of Doxycyclin for 70 days. (C) Rescue of the level of cytosolic
β-catenin in KO cells stably re-transfected with mTert under the control of
an inducible promoter. Doxycycline (Dox) was used to induce mTert
transcription. The results were verified with two independent protein
extractions.

that the activity of the proteasome is altered in mTert−/− ESCs
with critically short telomeres. Such an effect on the proteasome
may not be surprising as previous studies have demonstrated a
link between cellular aging and an alteration of the ubiquitin-
proteasome machinery (Grillari et al., 2006). These results support
the notion that the up-regulation of β-catenin occurs as result
of altered protein degradation in the presence of short telom-
eres. Further analysis of the complex composition, stoichiome-
try, and relative abundance of these complexes in the nucleus
and cytoplasm in response to critically short telomeres will be
informative.

It remains to be tested whether difference in β-catenin phos-
phorylation status in murine ESCs with critically short telomeres
also impacts Wnt signaling more generally. β-catenin intersects
several signaling cascades, not all of which are linked to Wnt
(Valenta et al., 2012). For example, in the presence of LIF,β-catenin
transcriptional activity is not required to maintain self-renewal; it
is mostly its role at the cell adhesion structures that is required to
allow differentiation (Lyashenko et al., 2011). On the cytoplasmic
side of the plasma membrane, β-catenin interacts with cadherins

and α-catenin to stabilize cell–cell adhesion structures but also to
regulate cytoskeleton dynamics (Yamada et al., 2005). The majority
of these interactions with its partners are regulated by phosphory-
lations at sites other than the S33, 37, T41 (Liu, 1999). In general,
the pattern of β-catenin phosphorylation regulates the transition
from a structural versus signaling role (Valenta et al., 2012). Thus,
the impact of critically short telomeres upon the phophoryla-
tion of β-catenin at sites other than S33, 37, T41 should also be
investigated.

In conclusion, global genomic changes driven by short telom-
eres have consequences on general gene expression and cell metab-
olism (Figures 5A,B). For example, critically short telomeres in
mESCs lacking Tert influence DNA and histone methylation at
the promoters of pluripotency regulators such as Nanog and Oct4,
thereby negatively affecting the stable differentiation of mESCs
(Pucci et al., 2013). In the nuclear compartment, β-catenin inter-
acts with several chromatin remodeling complexes, including the
histone acetylase p300/CBP and the helicases TIP49a/Pontin52
and TIP49b/Pontin52 and Brg1, the latter of which also inter-
acts with telomerase (Mosimann et al., 2009; Park et al., 2009).
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FIGURE 5 | Model of telomeres as platform for cell signaling. (A) In the
presence of telomerase, telomeres remain stable. In the absence of Wnt,
cytosolic β-catenin (β-ctn, green particle) associates with the APC (red particle)
and the kinase GSK3β (blue particle). Free β-catenin is rapidly degraded by the
proteasome. The majority of β-catenin is bound to the cell membrane in a
complex with E-cadherin (yellow element at the plasma membrane). (B) In
the absence of telomerase, telomeres shorten and the protective effect of

shelterin is eventually lost (yellow dots). Telomere shortening affects
epigenetics marks in sub-telomeric regions and at the global genome level
(small blue arrow). Signals emanating from telomeres, directly or indirectly,
can alter cell signaling. One sign of this influence is the accumulation of
β-catenin in the cytosol as result of proteasome impairment or higher nuclear
export by APC. Cell signaling changes may also affect proteins expressed at
the cell membrane and influence cell adhesion properties (larger blue arrow).

β-catenin increases H3K4 methylation at the c-myc promoter
through its interaction with the histone methyltransferase SET1.
Interestingly, this activity is counteracted by Apc, which dis-
places β-catenin from the chromatin remodeling complex (Sierra

et al., 2006). Furthermore, the involvement of β-catenin in the
control of telomerase transcription and the previous finding of
complexes containing both telomerase and β-catenin at pro-
moter sequences show that β-catenin and telomere integrity are

Frontiers in Oncology | Cancer Molecular Targets and Therapeutics June 2013 | Volume 3 | Article 146 | 8

http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gardano et al. Telomeres and cell signaling

connected (Park et al., 2009; Hoffmeyer et al., 2012). Hence, it is
reasonable to postulate that the alteration of binding of telomeric
proteins or epigenetic modifications can trigger signaling cas-
cades that might culminate in changes at the plasma membrane
and alter communication with the environment (Figures 5A,B).
Although the precise means by which short telomeres elicit
genome-wide changes in gene expression is unknown, one can-
didate mechanism is RAP1, a transcription factor that binds
extra-telomeric sites and in whose absence there are a number
of changes in gene expression in processes related to cell metab-
olism, cell adhesion, and cancer (Martinez et al., 2010; Martinez
and Blasco, 2011). Moreover, together with Trf2, Rap1 transcrip-
tion is directly regulated by β-catenin (Diala et al., 2013). Taken
together, these findings reinforce the notion that β-catenin and
telomere structure and function are interconnected. Clearly, the
future promises to uncover additional intriguing links between
the impact of critically short telomeres and cytoplasmic cell
signaling.

MATERIALS AND METHODS
CELL CULTURE
Wild-type and telomerase reverse transcriptase-deficient mESC
(E14) were cultured in GMEM, 15% v/v FBS (Hyclone,
UK), β-mercaptoethanol, penicillin/streptomycin, and leukemia
inhibitory factor (Sigma, UK), and split by a ratio of 1:8 every
3 days, as described in Erdmann et al. (2004). The absence or
presence of telomerase activity was assessed by the TRAP (telom-
erase repeat amplification protocol), performed following man-
ufacturer’s instructions (TRAPeze, Millipore, UK). Cells grown
in 6-well plates were lysed in 50 µL of CHAPS 1× buffer. Two
microliters of cell lysate were assayed in the TRAP.

CELL FRACTIONATION AND IMMUNOBLOTTING
Cells grown in 10-cm diameter plates were washed and scraped
in PBS. For cell fractionation, cells were pelleted for 5 min at
1500× g and re-suspended in hypotonic lysis buffer (50 mM
Tris, pH 7.8, 250 mM sucrose, 2 mM EDTA) supplemented with
Roche’s Complete Protease Inhibitor Cocktail and PhoSTOP Phos-
phatase Inhibitor Cocktail. Cells were homogenized with 20
strokes in a Dounce homogenizer and then centrifuged for 10 min
at 2800× g to precipitate the nuclei. The supernatant represented
the cytosolic fraction. The nuclear pellet was re-suspended in
buffer S1 (0.25 M sucrose, 10 mM MgCl2), layered over an equal
volume of buffer S3 (0.88 M sucrose, 0.5 M MgCl2), and cen-
trifuged at 2800× g for 10 min. The pellet was re-suspended in
RIPA buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% v/v NP-
40, 0.5% w/v deoxycholic acid) containing protease and phos-
phatase inhibitors. The nuclear extract was sonicated and cen-
trifuged at maximum speed 16,000× g for 10 min to obtain the
nuclear extract. The protein concentrations of the cytosolic and
nuclear lysates were measured using the Bradford method prior
to loading onto gels for SDS-PAGE. In all experiments, 10 µg
of cytosolic protein and 2 µg of nuclear protein were loaded.
For total cell extracts, cells were scraped and re-suspended in
RIPA buffer. Ten micrograms of total protein lysate, measured
by the Bradford method, were loaded onto gels for SDS-PAGE.
SDS-PAGE was performed with NuPAGE Bis–Tris 4–12% w/v

gradient gels (Invitrogen, UK). After electrophoresis, the proteins
were transferred onto an Immobilon-FL membrane (Millipore)
at a constant 100 V for 1 h. The membrane was blocked in 5%
w/v skimmed milk powder (non-fat) in TBST. Primary anti-
bodies were incubated with the membrane overnight at 4 °C in
2.5% w/v skimmed milk powder in TBST. The primary antibod-
ies used were as follows: rabbit polyclonal anti-β-catenin (1:4000;
Bethyl Laboratories, Inc., USA); rabbit monoclonal anti-β-catenin,
clone E247 (1:4000; Millipore); rabbit polyclonal anti-phospho-
β-catenin (Ser33/37/Thr41) (1:2000; Cell Signaling UK); anti-
E-cadherin (1:4000; BD Biosciences UK); rabbit anti-phospho-
GSK3β (S9) and mouse anti-GSK3β total (both at 1:1000; Cell
Signaling); rabbit anti-phospho-AKT (S473) and rabbit anti-
AKT total (both at 1:2000; Cell Signaling). Mouse anti-β-tubulin
(1:4000; Sigma) was used as a loading control for the total pro-
tein extracts and cytosolic fractions, whereas rabbit anti-lamin
B1 (1:2000; a gift from Dr. Eric Schirmer) was used for nuclear
fractions. Secondary antibodies were HRP-conjugated anti-mouse
and anti-rabbit (1:10000 and 1:5000, respectively; GE Health-
care). For quantification of the immunoblot bands, secondary
antibodies were donkey anti-mouse (IRDye 800) and donkey anti-
rabbit (IRDye 680) (1:10000 and 1:5000, respectively; LI-COR
Biosciences, UK). For Wnt3a treatment, 100 ng/mL of recombi-
nant mouse Wnt3a (Millipore) was added to the culture medium
for 3 days. For LiCl treatment, 30 mM LiCl was added to the
culture medium for 4 h. For the inhibition of the proteasome,
cells were treated with 10 µM of MG132 (Sigma, UK, dissolved
in DMSO) for 6 h. Cells were collected by scraping and lysed
as previously described for cell fractionation and western blot
analysis.

WESTERN BLOT QUANTITATIVE ANALYSIS
Images of membranes probed with secondary IRDye antibod-
ies were acquired with an Odyssey scanner and analyzed with
Odyssey software (Licor Biosciences). Excel and GraphPad Prism
v.5 were used for statistical analysis. Briefly, two rectangles of the
same size were placed over β-catenin and the relevant control (β-
tubulin or lamin B1 for cytosol or nuclear extract, respectively).
The intensity of β-catenin was normalized to the value of the
loading control within the same lane and averaged against at least
three independent replicates. The Student’s t -test was used to eval-
uate the statistical significance of the comparison (Gardano et al.,
2011).

QUANTITATIVE FLUORESCENCE IN SITU HYBRIDIZATION
The Q-FISH protocol was carried out as described (Liu et al.,
2000). Metaphase spreads were captured using Metafer 4 software
and analyzed using Isis software. Statistical analysis of telom-
ere intensity distribution was performed using Welch’s unpaired
t -test.

qRT-PCR
RNA was extracted from cells grown in 6-well plates using
Qiagen’s RNeasy Mini Kit. The RNA was treated with
DNase for 1 h prior to the reverse transcription reaction.
One microgram of RNA was retrotranscribed with ran-
dom primers (Invitrogen) using SMART MMLV reverse tran-
scriptase (Clontech Laboratories, Inc., USA). The cDNA
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mixture was diluted 20 times in water containing RNase
before proceeding with the qPCR (Lightcycler 480, Roche,
UK). The sequences of the primers used were as fol-
lows: Axin2 forward 5′-AGCGCCAACGACAGCGAGTT-3′; Axin2
reverse 5′-TCCCCATGCGGTAAGGAGGGAC-3′; GAPDH for-
ward 5′-AGGTCGGTGTGAACGGATTTG-3′; GAPDH reverse
5′-TGTAGACCATGTAGTTGAGGTCA-3′mTERT forward 5′-
TTCTAGACTTGCAGGTGAACAGCC-3′; mTERT reverse 5′-
TTCCTAACACGCTGGTCAAAGGGA-3′. Data were analyzed
with Excel and GraphPad Prism v.5.

TOP-FLASH EXPERIMENTS
Cells were seeded at a concentration of 2.5× 104 mL in 12-
well dishes and, 24 h later, Extreme Gene 9 (Roche, UK) was
used to transfect 0.5 µg DNA (in total) consisting of Top-firefly
luciferase plasmid or the negative control Fop-firefly luciferase
(Millipore) and 0.05 µg of Renilla plasmid transcribed with a
SV40 promoter, pRL (Promega). Cell lysis was performed 48 h
after transfection with the Passive Lysis buffer supplied by the
Dual luciferase assay (Promega, UK). Firefly and Renilla luciferase
activities were monitored following manufacturer’s instructions.
Luciferase activity was recorded using an Infinite 200 instru-
ment (Tecan group Ltd.). Wnt3a treatment was performed as
previously described. Top-firefly luciferase signals were normal-
ized to renilla luciferase values and then normalized to Fop-
luciferase activity for each respective treatment, i.e., with or
without Wnt3a. Graphpad Prism v.5 was used for statistical
analysis.

mTERT CELL TRANSFECTION AND PLASMIDS
The plasmid pTRE-Bi-Tert -IRES-EGFP-Hygro was constructed by
amplification of Tert cDNA by PCR and insertion into pTRE-
Tight-Bi (Clontech) following digestion with EcoRI and SalI.
IRES-EGFP sequence was obtained from pCAGMKOSiE (kindly
provided by K. Kaji) and inserted into pTRE-Tight-Bi (follow-
ing digestion with SalI and EcoRV) using SalI and HpaI sites
and then inserted into pTRE-Bi-Tert using Not I sites. Finally,
the hygromycin resistance gene was cloned by PCR into the
XbaI restriction site of pTRE-Tight-Bi and pTRE-Bi-Tert -IRES-
EGFP vectors to create pTRE-Bi-EGFP-Hygro and pTRE-Bi-Tert -
IRES-EGFPHygro. The pCAG-rtTA-advanced vector was con-
structed by removal of the MKOS ORFs from CAGMKOSiE with
EcoRI and BamHI and replacement with the advanced tetra-
cycline reverse transactivator sequence (Clontech) (Pucci et al.,
2013).

IMMUNOPRECIPITATION AND MASS SPECTROMETRY
Wild-type and mTert−/− ESC were propagated in three 15-cm
diameter plates for each immunoprecipitation. Three indepen-
dent immunoprecipitations were performed contemporaneously
on wild-type and mTert−/− ESC. Cells were lysed in 1 mL of
lysis buffer (50 mM Tris, pH 7.5, 5 mM EDTA, 5 mM NaF, 10%
v/v glycerol, 0.1% v/v NP-40, 1 mM DTT) supplemented with
Roche’s Complete Protease Inhibitor Cocktail. Following cen-
trifugation at 16,000× g for 10 min, the amount of total pro-
tein in all the samples was assessed by the Bradford method.
Ten micrograms of rabbit monoclonal anti-β-catenin antibody

(clone E247, Millipore) were added to each lysate and incubated
for 2 h at 4 °C with rocking. Magnetic Dynabeads Protein A
(Invitrogen) was equilibrated in the lysis buffer prior to addi-
tion to cell lysates (10 µL beads added to each immunopre-
cipitation). The bead/lysate mixtures were then incubated for
40 min at 4 °C. Following four washes with a washing buffer
(lysis buffer without glycerol), the beads were re-suspended in
20 µL washing buffer. The samples were boiled in Laemmli buffer
and loaded onto a NuPAGE Bis–Tris 4–12% v/v gradient gel
for SDS-PAGE. The gel was stained with SimplyBlue SafeStain
(Life Technologies, UK). Each entire gel lane was sliced into six
pieces, then processed according to an in-gel protocol for trypsin
digestion.

Capillary-HPLC-MS/MS analysis was performed on an on-line
system consisting of a micro-pump (1200 binary HPLC system,
Agilent, UK) coupled to a hybrid LTQ-Orbitrap XL instrument
(Thermo-Fisher, UK). MS/MS data was searched using MASCOT
(Matrix Science Ltd, UK) against the Mus musculus subset of the
NCBI protein database using a maximum missed-cut value of
2. Variable methionine oxidation, ST and Y phosphorylation, and
N-term acetylation were used and fixed cysteine carbamidomethy-
lation were used in all searches; precursor mass tolerance was set to
7 ppm and MS/MS tolerance to 0.4 amu. The significance thresh-
old (p) was set below 0.05 (MudPIT scoring). A peptide Mascot
score cut-off of 20 was used in the final analysis, which corresponds
to a global false discovery rate of 3.6% using a decoy database
search. LC-MS label-free quantification was performed using Pro-
genesis (Non-linear Dynamics, UK). For label-free quantitation,
the total number of Features (i.e., intensity signal at a given reten-
tion time and m/z) was reduced to MS/MS peaks with charge of
2, 3, or 4+ and only the five most intense MS/MS spectra were
retained per “Feature.” The subset of multicharged ions (2+, 3+,
4+) was extracted from each LC-MS run. Protein quantification
was performed as follows; for each protein, the associated unique
peptide ions were summed to generate an abundance value and
normalized by dividing the protein intensity by the bait intensity
(β-catenin). The within group means were calculated to determine
the fold change and a t -test was used between the two groups.
Regarding quantitative cut-off thresholds, proteins were consid-
ered a hit if two or more peptides were detected with an absolute
ratio of at least 1.5 (i.e., 1.5 fold increase, or 0.667 decrease) and a
significance of p < 0.05. Nine proteins met this threshold criteria
(Table 1).
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