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Since its discovery, 25 years ago, promyelocytic leukemia (PML) has been an enigma. Impli-
cated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering
cell death or senescence, controlled by and perhaps controlling SUMOylation. . . there are
multiple PML-related issues. Here we review the reciprocal interactions between PML,
senescence, and SUMOylation, notably in the context of cellular transformation.
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INTRODUCTION
Senescence is a permanent cell cycle arrest discovered in human
fibroblasts in culture, a process that limits their replicative poten-
tial (1). Today, senescence is considered as an important anti-
cancer mechanism, probably the first physiological defense against
cellular transformation. Moreover, senescent cells that have lost
the ability to divide are the underlying mechanism of aging (2, 3).
Different types of signals can initiate senescence. Replicative senes-
cence is principally caused by telomere shortening upon repeated
cells divisions (4). Beyond a certain point of telomere erosion, the
DNA damage response is activated and mediated through the p53
pathway, similarly to double strand breaks. As telomeres cannot
be repaired, senescent cells are characterized by persistent repa-
ration foci (5, 6). Premature senescence can also be provoked by
signals such as oncogene activation, tumor-suppressor loss, or sus-
tained stress conditions. Retinoblastoma protein (pRB) and p53
suppressor pathways are both major downstream effectors of this
stress-induced senescence (7–9).

SUMOylation is a post-translational modification consisting
of covalent binding of Small Ubiquitin related Modifier (SUMO)
onto a target protein. SUMOs belong to the Ubiquitin-like protein
(Ubl) family, and have a very similar three-dimensional struc-
ture compared to ubiquitin, while sharing only 20% of sequence
identity. In mammals, four SUMO paralogs have been identified.
SUMO-1 shares 50% sequence identity with SUMO-2/3, and 86%
with SUMO-4. SUMO-2 and 3 are usually pooled together as
SUMO-2/3 as they are 95% identical to each other and cannot
be separately identified. While SUMO-1 and SUMO-2/3 are ubiq-
uitously expressed, SUMO-4 expression was only found in the
liver and consequently its function will not be discussed here (10).
SUMOylation is a dynamic process consisting of rapid conjuga-
tion and de-conjugation cycles. Target proteins are usually very
transiently modified and their SUMOylated forms often consti-
tute only a very small fraction of the total protein pool. SUMO

conjugation is performed by specific enzymes in three steps:
the SUMO peptides are maturated by SUMO-specific proteases
(SENP family), activated by the E1 SUMO activating complex,
then transferred onto the E2 SUMO ligase Ubc9 which then conju-
gates SUMO onto lysine residues of target proteins (11). Substrate
interaction and modification can directly be performed by Ubc9
and usually depends on the presence of the short SUMOylation
consensus motif (ΨKxD/E) (12, 13). E3 SUMO ligases, which link
Ubc9 to the substrate proteins, can also improve target recognition,
notably in the absence of SUMOylation consensus sites. The first
E3 ligases described were the family of proteins Protein Inhibitor
of Activated STAT (PIAS) (14). SUMOs may be removed from
their targets by SENP enzymes, the same family of proteases that
performs SUMO maturation (15). SUMO conjugation can alter
protein–protein interactions, change protein intracellular local-
ization, or directly modify activities resulting in changes in tran-
scription, replication, chromosome segregation, and DNA repair.
Importantly, SUMO conjugation has been repeatedly associated
to stress response (16).

The promyelocytic leukemia (PML) tumor-suppressor is the
key organizer of PML Nuclear Bodies (NBs) (17, 18). These PML-
driven structures are characterized by the accumulation of a very
large number of nuclear partner proteins. NBs are implicated in
multiple cellular processes including virus defense, apoptosis, and
senescence. PML NBs are strongly associated with SUMOylation
process (19). SUMO was initially described as a PML binding
protein (20), SUMO paralogs accumulate in NBs and even NB-
biogenesis was proposed to rely on PML SUMOylation (21, 22).
PML directly interacts with Ubc9 (23) and may be SUMOylated
on three lysine residues. SUMOylation of K160 is essential for
PML ability to recruit nuclear partners into NBs (24). SUMOy-
lation state or presence of a SUMO Interacting Motif (SIM) in
protein partners were proposed to be the major signals driving
their recruitment into NBs (25, 26). Moreover, other key players
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in the SUMO-conjugation pathway were proposed to accumu-
late in NBs: several SENP and SUMO E3 ligases, as well as the
SUMO-dependent ubiquitin ligase RNF4 (27). Overall, PML NBs
are intimately associated with the SUMO pathway, although many
functional aspects remain unclear.

Both PML and SUMO overexpression induces senescence.
Here, we will discuss the potential links between these two
mechanisms.

PML INDUCES SENESCENCE
Promyelocytic leukemia NBs have been implicated in various cel-
lular processes. Importantly, PML expression and localization are
profoundly changed during oncogenic transformation. First evi-
dence came from the PML/RARA oncoprotein responsible of acute
promyelocytic leukemia (APL). PML/RARA oncogene activity
relies on its transcriptional repressive activity, but also on its domi-
nant negative action on PML NBs biogenesis (18, 28). Notably, the
two active drugs in APL, retinoic acid and arsenic, both allow the
reformation of PML NBs, as the result of PML/RARA degradation
(29, 30). Moreover, partial or complete loss of PML expression was
observed in multiple cancers (31). Several studies have investigated
the underlying mechanisms for NBs-loss during tumor progres-
sion and have implicated PML degradation, more than loss of PML
gene expression (32, 33). It was proposed that PML NBs could
prevent malignant transformation by promoting senescence (34).
Then, loss of PML NBs during tumor progression could reflect
loss of this senescence failsafe.

Promyelocytic leukemia plays a key role in senescence induction
as demonstrated after stress, DNA damage, oncogene activation,
or simply during replicative senescence. Initially, two key observa-
tions have directly implicated PML in senescence: Ras-induced
senescence is lost in a pml−/− context, while conversely, PML
overexpression induces premature senescence (35–37). Moreover,
PML protein level is increased in replicative or Ras-induced senes-
cent cells. Thus, PML expression is critical for the control of
cellular senescence and can be achieved both at transcriptional
and post-transcriptional levels. PML promoter contains inter-
feron (IFN) and p53 response elements and can thus be induced
by IFN signaling or p53 activation (38, 39). PML up-regulation
can be critical in senescence induction, since IFNβ treatment
can induce cellular senescence in a PML/p53 dependent manner
(40, 41). Genotoxic drug induced senescence was also shown to
increase PML transcription through JAK1/STAT1 pathway and
IFN production (42, 43). Indeed, senescent cells are character-
ized and entertained by secretion of multiple cytokines, IFN,
and pro-inflammatory factors. This condition has been called
senescence-associated secretory phenotype (SASP) (44).

At the protein level, multiple PML degradation pathways were
described, several enforced by oncogenic proteins. As an example,
proteins such as E6AP ubiquitin ligase, E2F transcription regu-
lator E2FBP1, or Pin1 isomerase promote PML degradation or
disrupt NBs formation. Loss or down-regulation of these proteins
causes PML stabilization and tumor suppression by senescence
induction in human primary fibroblasts or in cancer cells (45–47).
Casein Kinase 2 (CK2) and PIAS1 SUMO ligase also regulate PML
stability and senescence induction. PIAS1-dependent SUMOy-
lation of PML increases CK2-PML interaction leading to PML

phosphorylation at serine 517, ubiquitination, and degradation.
Down-regulation of PIAS1 or mutation of serine 517 stabilizes
PML and provokes cell cycle arrest (33, 48). Finally, in response
to Ras activation, PML is up-regulated through a selective trans-
lation initiation depending on PML mRNA 5′UTR and involv-
ing the MEK/ERK/mTOR pathway (49). All of these examples
demonstrate that PML levels are important in the fine-tuning of
senescence induction.

A SINGLE ISOFORM CONFERS PML-INDUCED SENESCENCE
Promyelocytic leukemia is expressed as a number of 3′ splice vari-
ants that encode C-terminal distinct isoforms named PML I to
PML VII. Only PML IV isoform overexpression induces senes-
cence in primary cells (37). The mechanism by which PML IV
isoform elicits this irreversible growth arrest remains controver-
sial and is believed to involve both p53/p21 and p16/Rb pathways.
PML IV overexpression stabilizes and activates p53 by inducing
its phosphorylation and acetylation (35–37, 50). Since all PML
isoforms are able to recruit p53 into NBs, PML IV ability to
stabilize p53 is not due to a specific recruitment of p53, but
rather of critical partners implicated in p53 modification. Dur-
ing Ras-induced senescence, CBP is recruited to NBs to acetylate
p53 (36). Yet, CBP is recruited into NBs by all isoforms and not
only PML IV, making it unlikely that CBP is the key limiting
factor that allows p53 activation upon PML IV overexpression
(37). MORC3 (microrchidia3)-ATPase and the TGF-β negative
regulator SnoN both favor senescence, p53 stabilization, and are
located in NBs. Moreover, SnoN induced senescence and p53 sta-
bilization are abrogated upon PML extinction (51, 52). Following
cellular stress, MOZ acetyltransferase is similarly recruited to NBs,
acetylates p53, and enhances p21 expression leading to premature
senescence (53). It has also been proposed that specific targeting
of HIPK2 into NBs by PML IV would phosphorylate p53, thus
facilitating CBP action (54–56). On the contrary, SIRT1 deacety-
lase is recruited in NBs upon PML IV or Ras expression, to bind
and deacetylate p53. Accordingly, overexpression of SIRT1 in MEF
cells antagonizes PML IV induced senescence (57). This is also the
case for MageA2 overexpression, which interferes with p53 acety-
lation at NBs and with PML IV-dependent activation of p53 (58).
These studies point out the surprising number of p53 regulators
recruited to NBs and question the respective importance of each
one. The use of HPV oncoprotein E6 and E7, which disrupt p53
or Rb pathway respectively, has rather favored a Rb-dependent
mechanism. Indeed, E7 expression completely overcomes PML IV
induced senescence while E6 expression has a lesser effect (59, 60).
pRB and E2F are sequestered in NBs after enforced PML IV expres-
sion thus inhibiting E2F dependent proliferation and DNA repair,
leading to p53 activation and senescence (34). This raises the issue
of the respective roles of p53 and Rb in enforcing PML-driven
senescence (Figure 1).

Altogether, these data demonstrate a front seat role of PML
in cellular growth control. PML has clear suppressive function,
but whether senescence loss in cancer is due to general PML
decrease or only to PML IV specific loss remains an open ques-
tion. Intriguingly, senescence induction by PML IV was suggested
to be a NB-independent function. Indeed, the Cytomegalovirus
oncoprotein IE1 disrupts NBs, but does not prevent PML IV
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FIGURE 1 | PML induces senescence. PML may play a crucial role in
senescence induction in a NBs-dependent (left) or independent (right)
manner. PML (red) recruits partners (dark blue) through SUMOylation of the
key K160 residue. SUMO and SIM motifs are indicated. PML IV could also
recruit specific partners into NBs, through a specific binding domain (light
blue). This may ultimately favor post-translational modifications of proteins

controlling senescence, which converge on E2F and p53. Alternatively, PML
IV can act independently of NBs structures, for example, as a transcriptional
modulator of specific target genes. As disruption of NBs is a consequence of
PML-RARA expression, this model could explain the lack of senescence in
APL cells by both the loss of these modification platforms, and loss of PML
C-terminal tails and hence defects in specific partners recruitment.

from triggering senescence (37). In that respect, a last mecha-
nism, which does not require PML NBs formation for PML IV
function, was recently described. TBX2 is a transcription factor
known to bypass senescence through induction of ARF (CDKN2A
locus product p14ARF) and p21 repression and to be amplified in
several types of cancer (61, 62). TBX2 interacts with PML pro-
tein but is not present in NBs (63, 64). However, only PML IV
down regulates TBX2 transcription by direct association to its
promoter, which leads to senescence. Conversely, TBX2 overex-
pression inhibits PML IV induced senescence (64). PML IV can
also bind to nEGFR, a nuclear form of EGF receptor that exhibits
transcriptional activity toward proliferation genes like Cyclin D1
gene, and represses their transcriptional activity. EGF receptor is
frequently overexpressed or constitutively activated in non-small
cell lung cancer and PML IV isoform expression specifically can

repress the growth of these cells (65). Collectively, studies impli-
cating PML IV overexpression have demonstrated a critical role of
p53 activation, but the actual molecular mechanism(s) implicated
somehow remain(s) under study.

SUMOYLATION AND SENESCENCE
SUMO overexpression also triggers senescence. Indeed, in HEK
and MEF 3T3 cells, overexpression of SUMO-2/3 induces pre-
mature senescence (66). In contrast, non-conjugable mutants
of SUMO-2/3 failed to induce senescence, suggesting that the
increase of SUMO-2/3 conjugation on target proteins is respon-
sible for senescence and not the increase of free SUMO-2/3 in
the cell (66). In old rats and senescent fibroblasts in culture,
SUMO expression increases with aging and hyper-SUMOylated
protein forms become more abundant (67–69). Overexpression
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of SUMO-1 or SUMO-2 in Caenorhabditis elegans led to short-
ened life span and reproduction disorder (70), while loss of
SUMOylation process resulted in severe zebrafish development
defects (71) or misdifferentiation and microtumors development
of hematopoietic progenitors in Drosophila (72). Altogether, these
experiments confirm the crucial role of SUMO in development
and tumor suppression. SUMO-induced senescence also impli-
cates p53 and pRB, the two major tumor suppressive pathways.
Indeed, down-regulation of p53 or pRB by RNA interference
counteracts the senescent phenotype induced by SUMO-2/3 over-
expression (66). These two proteins are themselves subjected
to SUMOylation by both SUMO-1 and SUMO-2/3 paralogs
(73–75). Little is known about the functional consequences of
SUMO-modified pRB, apart from the fact that pRB SUMOyla-
tion mutant seems to be more efficient in E2F repression (75).
Two other partners of the pRB pathway have been reported to
be SUMOylated. Retinoblastoma binding protein 1 (RBP1) and
Stra13 proteins are two transcriptional repressors implicated in
cell cycle regulation. In both cases, SUMOylation enhances their
repressor activity, leading to cellular arrest and senescence (76,
77). For p53 regulation, SUMOylation clearly acts as a tran-
scriptional modulator, but whether this modification is activat-
ing or inhibiting is still under debate, and probably depends
on the target genes and the cellular context (78, 79). However
a recent in vitro study analyzed DNA binding and transcrip-
tion properties of purified SUMO-1-p53 (80). SUMOylation
inhibits binding and transcription of the p21 promoter, and pre-
vents p53 acetylation, arguing that SUMOylation would have an
inhibitory effect on p53. In a second study, a gene expression pro-
file was performed by micro-array after expression of wild-type
p53 or of a SUMO-1-p53 fusion (81). SUMO-1 modification
of p53 can stimulate the expression of a few target genes,
but its principal effect seemed to alleviate the trans-repression
activity of p53.

SUMOYLATION ENZYMES MODULATE SENESCENCE
Complete loss of SUMOylation is embryonic lethal as shown by
E1 activating enzyme knockout in Drosophila and E2 ligase Ubc9
knockout in mice or its homolog SAE2 in plants (82–84). Par-
tial loss of SUMO machinery enzymes activity or expression level,
including SENP proteases and E3 ligases, also triggers many cellu-
lar defects. Some situations linking SENP1 and SENP2 repression
to senescent phenotype have been observed. Acute repression of
SENP1 by shRNA retroviral infection induces Human Foreskin
Fibroblast (HFF) cells premature senescence correlated with a
strong accumulation of high molecular weight SUMO-1 conju-
gates (85) located in PML NBs. This phenotype has also been
described with SENP2 and SENP7 repression and SUMO-2/3
consecutive accumulation. In another study, the silencing of the
nuclear pore protein Tpr is responsible for senescence of HeLa
and U2OS cells through reduction of SENP2 level (86). Interest-
ingly, the Tpr-induced senescence is reversed by SUMO-1 siRNA
extinction, emphasizing the importance of SUMO pathway in
senescence. It worth mentioning that SENP depletion induced
senescence is dependent on p53 activity, and it would be interesting
to evaluate the role of SUMOylated p53 in this context. Overex-
pression of the SUMO E3 ligase PIASy has been associated with

senescence induction in human fibroblasts (87). Direct interaction
of PIASy with pRB and p53 promotes pRB transcriptional repres-
sion of E2F target genes and p53 SUMOylation and transcrip-
tional activation (87). The ubiquitin ligase TRIM32, mutated in
limb-girdle muscular dystrophy 2H disease (LGMD2H), normally
targets PIASy for degradation. TRIM32 deficient mice harbor
PIASy and SUMOylated proteins accumulation leading to prema-
ture senescence of muscle satellite cells (88). Nevertheless, PIASy
induced senescence may strongly depend on cellular context since
two other studies point out its proliferative effect and cell cycle
re-entry capacity (89, 90).

ARF, a key regulator of p53 pathway, was also shown to play a
role in SUMOylation. If ARF tumor-suppressor activity is mainly
mediated through p53,ARF also exerts p53-independent functions
since its overexpression in p53-null MEFs triggers proliferation
arrest (91). One of these p53-independent roles could link ARF to
SUMO modifications, as ARF overexpression induces an increase
of global SUMOylation in 293T, U2OS, and 8054 human colon
cancer cells expressing His tagged SUMO-1. ARF also promotes
the SUMOylation of various specific targets, among them Hdm2,
p53, p63, NPM, E2F1, Werners Helicase (WRN), and others (92–
96). To note, ARF-induced SUMOylation of Hdm2 seems not to
interfere with p53 signaling, and would be part of another cellu-
lar process (95). Finally, ARF was shown to specifically interact
with the E2 SUMO ligase Ubc9 making the link with the target
proteins, thus arguing that ARF may be an effective E3 SUMO
ligase (94).

A CONNECTION BETWEEN PML AND SUMOs FOR
SENESCENCE CONTROL?
Taken the key roles of SUMO and PML in promoting senescence
and the profound effects of SUMOs on PML biology and NB-
organization, it is tempting to propose that the two pathways could
be connected. Many reciprocal interactions exist between SUMO
and PML. Global increase of SUMOylated proteins provoked by
SENP1 repression induces NBs enlargement (85). PML IV was sug-
gested to behave as an E3 SUMO ligase for p53 and HDM2 (97).
The other PML isoforms, ineffective at inducing senescence, do
not enhance p53 SUMOylation, suggesting that this modification
may contribute to the senescent phenotype. PML overexpression
could increase recruitment of SUMO machinery and consequently
enhance global SUMOylation, provoking premature senescence.
Indeed, NBs concentrate a large amount of SUMOylated pro-
teins compared to other cellular compartments (19). Then, the
tumorigenic switch observed in cancer after loss of PML NBs
might either be explained by primary alterations of SUMOyla-
tion homeostasis leading to secondary defects in NB-assembly or,
alternatively, to altered global SUMOylation as a consequence of
PML loss (Figure 2).

Finally, SUMO modification participates in cellular senescence
through modulation of oxidative stress responses (Figure 2). In
this context, it has been shown that SUMOylation of HIPK2 (98)
or key enzyme such as NADPH oxidase 2 (99) can inhibit their
functions and consequently may control redox status (Figure 2).
Interestingly, the fact that PML is sensitive to oxidative stress,
through the formation of disulfide bridges that trigger NB-
biogenesis (100), could contribute to stress-induced SUMOylation
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FIGURE 2 | Crosstalk between SUMOylation machinery and PML
pathway controls senescence induction. SUMOylation process and PML
NBs functions are highly cross-connected. Increase of both SUMO and PML
levels induces senescence. SUMOylation enzymes regulate NBs formation

and partners’ recruitment. Conversely, NBs could potentiate SUMOylation
process and partners modification. Finally, senescent cells express specific
cytokines (IFNs or IL-6) that, in a positive feedback loop, enhance PML
expression and also induce oxidative stress further enforcing NBs formation.

and cooperate to mediate senescence. Taken the rising importance
of senescence, SUMOs, and PML in cancer genesis and also therapy
response, exciting future developments are to be expected in this
rapidly moving field.
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