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INTRODUCTION

Despite on-going research, metastatic melanoma survival rates remain low and treatment
options are limited. Researchers can now access a rapidly growing amount of molecular
and clinical information about melanoma. This information is becoming difficult to assemble
andinterpret due toits dispersed nature, yet as it grows it becomes increasingly valuable for
understanding melanoma. Integration of this information into a comprehensive resource to
aid rational experimental design and patient stratification is needed. As an initial step in this
direction, we have assembled a web-accessible melanoma database, MelanomaDB, which
incorporates clinical and molecular data from publically available sources, which will be reg-
ularly updated as new information becomes available. This database allows complex links
to be drawn between many different aspects of melanoma biology: genetic changes (e.g.,
mutations) in individual melanomas revealed by DNA sequencing, associations between
gene expression and patient survival, data concerning drug targets, biomarkers, druggabil-
ity, and clinical trials, as well as our own statistical analysis of relationships between mole-
cular pathways and clinical parameters that have been produced using these data sets. The
database is freely available at http:/genesetdb.auckland.ac.nz/melanomadb/about.html. A
subset of the information in the database can also be accessed through a freely avail-
able web application in the lllumina genomic cloud computing platform BaseSpace at
http://www.biomatters.com/apps/melanoma-profilerfor-research. The MelanomaDB data-
base illustrates dysregulation of specific signaling pathways across 310 exome-sequenced
melanomas and in individual tumors and identifies the distribution of somatic variants in
melanoma. We suggest that MelanomaDB can provide a context in which to interpret the
tumor molecular profiles of individual melanoma patients relative to biological information
and available drug therapies.
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THE GROWTH AND COMPLEXITY OF MELANOMA GENOMIC DATA

Melanoma researchers are faced with a rapidly growing amount
of useful molecular and clinical data, particularly gene expression
information. This rapid growth can be illustrated by surveying
the Gene Expression Omnibus (GEO) (1), an international repos-
itory that contains a large subset of the published gene expression
data (Figure 1). Largely based on genomic data, our understand-
ing of the genes involved in melanoma progression has advanced
from focused investigations of candidate genes to studies on a
whole-genome scale (2). The advent of next-generation sequenc-
ing (NGS) in particular has opened up a floodgate of data, from the
published sequence of the first melanoma genome in the beginning

than one hundred tumors (4, 5). Melanoma genomic data is poised
to grow rapidly with the advent of large-scale initiatives such as
Australia’s Melanoma Genome Project!, melanoma analysis in The
Cancer Genome Atlas (TCGA) project? as well as the melanoma
sequencing projects underway at several individual institutions.

LIMITATIONS OF CURRENT TECHNIQUES
Unfortunately, information pertinent to melanoma exists in a
diverse range of formats and locations. For example, relevant data

'http://www.melanoma.org.au/research/melanoma-genome- project.html
Zhttp://cancergenome.nih.gov
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FIGURE 1 | Growth of melanoma genomic data in the GEO database.
The GEO database was searched on a year by year basis, using the MESH
term “melanoma” and excluding records containing the phrase “cell line.”
By the end of January 2013 GEO contained 128 data series made up of
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2819 samples that match these search criteria. The cumulative number of
data series (submitted experiments) (A) and individual samples (B) are
plotted as black circles, overlaid by a red trend line fitted over this data
using the loess method.

about a single gene of interest may include information about
the encoded protein’s structure, cellular location, and function,
contribution to molecular pathways, drugs that target the protein,
the gene, or protein’s utility as a biomarker, genome-wide asso-
ciation studies, mutation frequency, chromosomal aberrations, as
well as RNA expression associations with metastasis, treatment
response and patient survival, clinical SNP associations, and the
results of literature mining. Even within the single data type of
tumor DNA sequencing, a variety of methods have been used
to implicate genes in melanoma initiation and progression, and
these different methods produce data in differing formats. Ideally,
all these diverse forms of data could be used by researchers in an
integrated fashion to triangulate in on clinically important genes.

As a further challenge, genomic information in melanoma
is particularly dense due to the high mutation rate found in
melanomas of sun-exposed skin (6). This is likely to be due
to both ultraviolet radiation-induced DNA damage and defects
in DNA repair mechanisms (3). In addition, sequencing studies
suggest that malignant melanoma is a relatively heterogeneous
neoplasia with a range of driver mutations (5). Despite its poten-
tial value, coherent analysis of melanoma genomic information
remains difficult for individual researchers. Data repositories such
as Oncomine (7), Ingenuity Pathways Analysis®, the Catalogue of
Somatic Mutations in Cancer (COSMIC) (8, 9), and the Broad
Institute’s Melanoma Genomics Portal (10) bring together a mas-
sive amount of useful melanoma data. However, these disparate
resources do not yet enable the full potential of integrated analy-
sis of molecular pathways across different types of data associated
with melanoma.

POTENTIAL CLINICAL USE OF MOLECULAR PATHWAY DATA ABOUT
INDIVIDUAL TUMORS

Tumor development involves multiple genes encoding pro-
teins and non-coding RNAs operating in molecular pathways.

3http://ingenuity.com/products/pathways_analysis.html

Therefore, inference of molecular pathway activity from tumor
genomic data using methods such as gene set analysis (GSA) (11)
is useful in oncology (12, 13). Gene sets used for analysis may
consist of co-expressed genes downstream of a specific molecu-
lar pathway (14) or genes that share common transcription factor
binding sites (15). Statistical summaries of these gene sets have
been used to infer molecular pathway activity, and these gene sets
are frequently conserved across species (16). GSA has identified
several molecular pathways associated with melanoma (17, 18),
and can be used to identify the putative functional changes caused
by the mutation, DNA gain or loss, and/or altered expression of
genes in a particular patient’s tumor. Popular GSA tools include
GATHER (19), DAVID (20), GSEA (21), and GeneSetDB (22).

The number of clinically available targeted therapies for
melanoma remains limited compared to the diverse genetic dri-
vers of this tumor. Nevertheless, identification of drugs targeting
a small number of melanoma drivers has been a major advance.
For example, Vemurafenib targets the Mitogen Activated Protein
Kinase (MAPK) pathway molecule BRAF (23). However, Vemu-
rafenib is only indicated in BRAF V600E or V600K containing
tumors and the majority of treated patients show relatively short
term remission, with their relapse almost certainly caused by re-
activation of the MAPK pathway, commonly through mutations in
NRAS or PDGFRB (24). We propose that integration of molecular
pathway data at both the patient population scale and individual
tumor scale could help researchers better understand phenom-
ena such as Vemurafenib resistance, and permit identification of
rationally selected combinatorial therapies based on molecular
stratification of patients.

EXPERIMENTAL OBJECTIVES

In the work described here, we have amalgamated a diverse range of
genomic and clinical melanoma data, on the scales of both patient
population and individual tumor into a single resource. This
resource is provided as a downloadable file that can be searched
and filtered using any spread sheet application. To facilitate use
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of this resource in the context of molecular pathways, we also
provide a web-accessible SQL database named MelanomaDB,
through which researchers can perform GSA using integrated
melanoma data of several types. A subset of the information in
the database can also be accessed through a freely available web
application in the Illumina genomic cloud computing platform
BaseSpace. While other disease-specific databases exist for other
cancers such as lung (25) and ovarian (26) cancer, we know of
no other database similar to ours dealing with melanoma. Fur-
thermore, we believe that MelanomaDB’s breadth across sequence
and microarray data, biological and pharmacological gene sets,
and pathway information, in addition to its usability and its
melanoma focus, make it unique. In this paper, we use informa-
tion assembled in MelanomaDB in several downstream analyses
to demonstrate the utility of this resource for finding relationships
between molecular pathways and clinical parameters, including
the mutational patterns of members of molecular pathways (27)
in individual tumors. We hope this tool will prove increasingly
useful as it expands when new tumor data becomes available.
In particular, we hope that it will provide a context in which to
interpret the tumor molecular profiles of individual melanoma
patients.

MATERIALS AND METHODS

OVERVIEW OF THE CONSTRUCTION OF MELANOMA GENE SETS

To facilitate an integrative analysis of melanoma information we
combined a variety of melanoma data in the form of gene sets,
attempting to collect information for all genes in the genome.
These melanoma gene sets were groups of genes that shared bio-
logical or clinical relevance for melanoma, derived from five types
of publically available information: drug and biomarker informa-
tion, druggability, literature relationship strength, disease-specific
survival, and somatic mutation data. Drug information includes
information on compounds and the proteins they target, while
Druggability information comprises of estimations of the degree
to which proteins are amenable to targeting by drugs, and protein
characteristics relevant to this. A detailed description of this infor-
mation is available in Data Sheet 1 in Supplementary Material.

SOURCES OF SPECIFIC INFORMATION

Further explanations of the gene sets used are in the MelanomaDB
help page at http://genesetdb.auckland.ac.nz/melanomadb/help.
html

Drug and biomarker information

Drug information was taken from online databases DrugBank ver-
sion 3 (28), KEGG DRUG (27), Therapeutic Targets Database (29),
and ClinicalTrials.gov. Biomarker information was taken from
published papers by Gould Rothberg et al. (30), Schramm and
Mann (31), Utikal et al. (85), Mehta et al. (32), and from the data-
base KEGG BRITE (27). It should be noted that gene sets such as
those derived from DrugBank include all genes encoding proteins
to which each drug binds, including both intended and unintended
targets. However, metabolising enzymes, transporters and carrier
proteins are excluded. For example, targets of the drug Cetuximab
include the intended target (the human epidermal growth factor
receptor) but also compliment components and Fc receptors, as is

expected due to the nature of this drug as an antibody?. For fur-
ther explanations of the gene sets used see the MelanomaDB help
page at http://genesetdb.auckland.ac.nz/melanomadb/help.html

Druggability information

Druggability data was sourced from the Sophic Integrated Drug-
gable Genome Database (33), EBI’s DrugEBIlity database (34),and
published papers by Li and Lai (35) and Tiedemann et al. (36).
Data on protein characteristics relevant to druggability were taken
from Affymetrix annotations’, and online databases UniProt Con-
sortium (37), Secreted Protein Database (38), and KinBase (39).

Literature and genomic data relationship strength information
Information on Literature Relationship strength was derived from
the IRIDESCENT (40) and GAMMA (41) software packages.
IRIDESCENT searches every published MEDLINE abstract for
associations between objects, and creates a network of tentative
relationships between these objects. Objects encompass genes,
diseases, phenotypes, chemical compounds, drugs, and ontol-
ogy categories. The relative strength of association between two
objects is determined by the frequency in which they appear in the
same abstract or sentence. Here, this network is used to score the
strength of association between genes and the terms “melanoma”
or “metastatic melanoma.”

GAMMA conducts a meta-analysis of gene expression behav-
ior across 16,000 wide-ranging microarray experiments to identify
genes that are consistently and specifically co-expressed across het-
erogeneous experimental conditions. In this way GAMMA extends
the connections in IRIDESCENT’s association network to genes
without any published associations to melanoma by identifying
which of these genes are consistently co-expressed with multiple
known melanoma genes. To date, GAMMA has been used success-
fully to identify phenotypes and/or disease relevance for several
previously uncharacterized genes (42—-45).

Disease-specific survival data

Strength of statistical associations between RNA abundance and
melanoma-specific survival were gathered from several published
studies, and from our additional statistical analysis of two pub-
lished sets of linked microarray and clinical data. Associations
between gene expression in melanomas and patient survival were
taken directly from John et al. (46), Mandruzzato et al. (47), and
Journe et al. (48), and associations between gene expression and
metastasis were taken directly from Timar et al. (49). We per-
formed our own analyses on the microarray data of Bogunovic et
al. (50) and Jonsson et al. (51) based on patient survival data and
Affymetrix CEL files retrieved from GEO. The Bogunovic study’s
raw Affymetrix data was normalized using RMA normalization
performed using the affy package in the R statistical software
(52). The Illumina data from the Jonsson et al. study was obtained
in a normalized format, however, we removed three patients for
whom patient survival data was missing, and adjusted all microar-
ray values by adding the minimum value in order to eliminate
negative values. R was used to split the patients into two groups,

“http://www.drugbank.ca/drugs/DB00002
Shttp://www.affymetrix.com/support/technical/annotationfilesmain.affx
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create a survival object for each group and then compare these
two survival objects using a Log Rank test. For each probe set this
splitting was performed nine times, once at each RNA abundance
decile across the patient population. R was also used to fit a Cox
proportional hazards regression model for each probe set.

To facilitate the use of these data in exploratory analyses for
hypothesis generation, we also generated additional gene sets
in which we aggregated several different RNA associations with
patient survival to allow broader surveys. For example, four gene
sets were identified from the expression and survival data of
Bogunovic et al. (50) using different statistical criteria.

Somatic variant data

Multiple studies reporting melanoma variants were collated for
use with MelanomaDB. A literature review identified 11 exome
sequencing studies suitable for inclusion (4-6, 53—60). In addi-
tion, the Cancer Cell Line Encyclopedia (61), and the Sanger
Institute’s COSMIC (8, 9), and Matched Pair Cancer Cell Lines
(3) were searched for mutations detected in melanoma cell lines.
In total, we collected data on 58 established melanoma cell lines,
119 primary “short-passage” cell lines, 38 primary tumors, and 96
metastatic melanoma tumors. Non-silent variants were reported
in 16,488 genes. With the exception of the 10 samples from the
2010 study of Berger et al. (53), and some of the samples from
COSMIC, these samples have all been paired with matched nor-
mal samples to ensure that the variants reported are somatic.
In the current iteration of this database only non-synonymous
coding mutations, indels, splice-site mutations, and structural
rearrangements (including gene fusions and read-through tran-
scripts) are included. Synonymous coding mutations are not
included. Presently, this somatic variant data includes more than
35,000 non-synonymous coding mutations, and more than 3,500
structural rearrangements and indels. We have not provided this
somatic variant data as a supplementary file but instead invite
readers to contact us to obtain the links to this data. We do this so
we can ensure that access permission and ethical issues associated
with this individual patient data are adhered to.

AMALGAMATION OF ALL DATA INTO GENE SETS
To facilitate the construction of gene sets, all data described above
was combined into a single matrix, which is available as Data Sheet
2 in Supplementary Material. This matrix is gene-based and uses
Entrez Gene ID as a unique index for each gene®. Every gene is rep-
resented by one row, and each column contains data from a single
source. Columns annotating genes with references to other data-
bases were derived from NCBI’s Gene database FTP directory’ and
supplemented by Affymetrix annotations (see text footnote 5).
From this data matrix, a number of gene sets were derived. In
most cases, columns of the matrix were converted directly into
gene sets by including in that set every gene with an entry in that
column. In some cases, such as statistical associations between
RNA expression and patient survival, a cut-off was required for
defining gene set membership. For example, only genes encoding
proteins with positive DrugEBIlity ensemble scores were included

Shttp://www.ncbi.nlm.nih.gov/gene, accessed on 30/7/12
7 ftp://ftp.ncbi.nih.gov/gene/ DATA/

in the gene set “DrugEBllity: Positive ensemble scores.” A further
description of the melanoma gene sets is available in Data Sheet 1
in Supplementary Material.

SOL DATABASE GENERATION

To facilitate access, combination, and filtering of different types of
genomic data related to melanoma, and interpretation of this data
in terms of molecular pathways and functional categories, the data
matrix described above was used to generate a web-accessible SQL
database named MelanomaDB. The web interface is implemented
using Apache, PHP, Javascript, and HTML. The meta-gene set
database GeneSetDB (22) was accessed from within MelanomaDB
to identify the intersection between melanoma-specific gene sets
and gene sets related to biological functions and molecular path-
ways. The R framework was used for statistical calculations. GSA
was performed using the hyper-geometric distribution to calculate
the probability of overrepresentation, followed by multiple testing
correction using the Benjamini and Hochberg method (62).

BaseSpace APPLICATION PREPARATION

A subset of the information in MelanomaDB is also included in
a freely available Illumina BaseSpace application. This BaseSpace
application retrieves a tumor and corresponding normal germ
line sequence pair from the BaseSpace archive or the user’s own
BaseSpace account as vcf files. Then, variants present in the tumor
but the not normal germ line tissue of the patient are identi-
fied using the Genome Analysis Tool Kit’s SelectVariants java tool
(63). This list of tumor variant genes is identified. Then, the
molecular pathways these genes correspond to, along with any
statistically significant pathway enrichment within the list of vari-
ant genes and targeting drugs, are retrieved from the GeneSetDB
pathway analysis web tool (22). A diagram showing tumor vari-
ant genes in the context of molecular pathways is generated using
the KEGG, Reactome, and Biocarta pathways included in the R
graphite package (64), and a clustered heatmap showing how the
genetic variants in the sample tumor compare to variants in the
310 tumors cataloged in MelanomaDB is generated. This clustered
heatmap is generated: (i) using a modification of the heatmap.2
function from the R gtools package (see Data Sheet 5 in Supple-
mentary Material) (65), using the “binary” method for distance
calculation and the “single” method for clustering and (ii) as a
reverse-orientation waterfall plot to illustrate patterns of somatic
variant co-occurrence in melanoma.

ASSEMBLY OF INFORMATION FOR INDIVIDUAL TUMORS

From the exome and whole-genome sequencing information
assembled above, we constructed a tumor-based matrix in which
each row was a gene, each column was an individual tumor and
each cell described any somatic variants present in a certain gene
for a certain tumor. After duplicated tumors were removed, this
somatic variant data included 310 samples, 183, and 72 of which
had somatic alterations in the BRAF and NRAS genes, respec-
tively. When multiple sequenced tumors or cell lines from the same
patient were available, the union of somatic variants found in these
samples was used. Links to the papers and their supplementary web
sites used to construct this tumor-specific somatic variant data is
available in Data Sheet 3 in Supplementary Material. The authors

Frontiers in Oncology | Cancer Genetics

July 2013 | Volume 3 | Article 184 | 4


http://www.ncbi.nlm.nih.gov/gene
http://www.frontiersin.org/Cancer_Genetics
http://www.frontiersin.org/Cancer_Genetics/archive
ftp://ftp.ncbi.nih.gov/gene/DATA/

Trevarton et al.

MelanomaDB: integrative melanoma genomic analysis

can assist researchers with the precise sources of information used
to construct this resource.

VISUALIZATION
The statistical software R was used to construct a clustered
heat map of tumor variants for genes included in the KEGG
“Melanoma” signalling pathway with a modified heatmap.2 func-
tion of the R package “gplots,”® using the “binary” method for
distance and the “single” method for clustering. R was also used to
draw gene network diagrams. Molecular pathways were obtained
from the pathways included in the graphite R package’ and were
plotted using the graphite (see text footnote 9) R package.

The R scripts used to generate Figures 2A—C as well as the path-
way diagrams and heatmaps in Figures 4-7 are given in Data Sheet
5 in Supplementary Material.

RESULTS AND DISCUSSION
Here we describe the assembly and use of the MelanomaDB
database.

ASSEMBLY OF MELANOMA GENOMIC INFORMATION FROM DIVERSE
SOURCES INTO A MELANOMA DATA MATRIX

Firstly, a melanoma data matrix (Data Sheet 2 in Supplemen-
tary Material) was constructed, with genes (or genomic loci
in some cases) as rows. The columns of this matrix represent
diverse features of biological functions related to melanoma and
are described in Data Sheet 1 in Supplementary Material. This
melanoma data matrix can be utilized in a variety of ways. Most
simply, researchers can access a variety of data pertaining to their
particular gene of interest. The melanoma data matrix can also
be manipulated with spread sheet software to sort, find, and filter
information in order to generate gene lists useful for hypothesis
generation.

ASSEMBLY OF SOMATIC VARIANT INFORMATION FOR MELANOMAS OF
INDIVIDUAL PATIENTS

Next, we assembled as much information about somatic varia-
tion in individual exome-sequenced and genome-wide-sequenced
melanomas as possible. We gathered information about somatic
variations in 58 established melanoma cell lines, 119 primary
“fresh” cell lines, 38 primary tumors, and 96 metastatic melanoma
tumors, which was appended to the information matrix described
above (Data Sheet 3 in Supplementary Material, Tab “Tables
Used”). Information about non-synonymous coding mutations,
structural rearrangements, and indels was included (intronic and
synonymous coding mutations were excluded from the current
iteration of this data resource). The information contained in Data
Sheet 2 in Supplementary Material was read into the statistical
environment R and visualized, as described in the Section “Mate-
rials and Methods” and Data Sheet 5 in Supplementary Material.
Firstly, the distribution of somatic variations for individual genes is
shown in Figure 2A. The majority of genes showed somatic varia-
tions in only small numbers of tumors. Comparison of each gene’s
total exon length versus the number of tumors with a mutation in

8http://cran.r- project.org/web/packages/gplots/index.html
http://www.bioconductor.org/packages/release/bioc/html/graphite.html
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FIGURE 2 | (A) The distribution of the number of tumors with somatic
alterations in each individual gene. (B) Each gene's total exon length in base
pairs (y-axis) versus the number of the 310 tumors with a mutation in that
gene (x-axis). (C) The distribution of the number of genes with somatic
alterations in each individual tumor.

that gene using R (Figure 2B), revealed a statistically significant but
weak correlation between somatic variation frequency and total
exon length (Pearson’s correlation coefficient =0.47, p <0.001).
Although variations in large genes such as Titan (TTN) have been
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implicated as cancer drivers, these may also occur in so many
melanomas due to large gene size increasing the likelihood of pas-
senger mutations. However, the BRAF gene clearly stands out as
frequently mutated in melanomas despite its moderate length. The
distribution of the number of genes with somatic alterations in
each individual tumor was performed using R and is shown in
Figure 2C.

USE OF THE COMBINED MELANOMA INFORMATION

As an example of using the information assembled above, an
approach to identifying novel candidate novel drug targets for
melanoma using this melanoma data matrix (Data Sheet 2 in
Supplementary Material) can be performed by filtering and sort-
ing Data Sheet 2 in Supplementary Material in a spreadsheet
application and is described in Figure 3.

This process generates a short list of 129 genes that can be exam-
ined more closely in order to select a final list of genes that may
warrant investigation in the laboratory. A variant on this approach
may be to place more weight on particular data, for example, on
selected druggability measures. By using a spreadsheet application
to take the 987 genes in Data Sheet 2 in Supplementary Mater-
ial encoding proteins that have scored greater than 0.5 on either
DrugEBllity’s Ensemble score or Li and Lai’s druggability measure,
and eliminating proteins already targeted by existing drugs, we
have a list of 803 genes that are predicted to be probably druggable.
Of these, 21 also have high RNA expression significantly associated
with reduced disease-free survival in melanoma patients, making
them possible new drug targets. These genes are AKR7A2, AKR7A3,
ARIHI, ARPCIA, CD163, DCT, DHRS11, DUS4L, FAH, FSCNI,
HS3ST3A1, NRAS, NUP155, PANK2, PRMT3, QTRTI, RADI,
RAEI, SUV39H2, UPPI1, USP13. It is interesting to see NRAS on
this list, which is a potential melanoma drug candidate but has
proved remarkably resistant to drug development efforts to date
(66). CD163 expression on melanoma-infiltrating macrophages
has been suggested as a prognostic marker in melanoma (67).

Similarly, a list of putative melanoma tumor suppressor genes
or melanoma oncogenes can be generated using a spreadsheet
application from this melanoma data matrix (Data Sheet 2 in Sup-
plementary Material). For example, a list consisting of genes that
are mutated in more than 10% of melanoma metastases and have
shorter melanoma-free patient survival associated with their low
(putative tumor suppressor) or high (oncogene) RNA expression.
Known tumor suppressors and oncogenes that were identified
by this strategy (NRAS, KIT, and WNT family members) were
removed. This list of putative melanoma tumor suppressors and
oncogenes that remains is shown in Table 1.

Combined melanoma information with gene set analysis

Combining this assembled melanoma information with statistical
GSA can potentially provide additional insights. For example, with
aspreadsheet application we could generate a list of 245 genes from
Data Sheet 2 in Supplementary Material that have coding region
mutations in more than 10% of melanoma metastases, and subject
this list to gene set enrichment analysis in order to identify bio-
logical functions that may be commonly disrupted in melanoma.
When submitted to the web tool GeneSetDB (a meta-database of
biologically relevant sets of genes) for enrichment analysis (with

882 genes with RNA abundance associated with disease-
specific patient survival in metastatic melanoma

v

759 genes which also have high expression associated with poor survival or
metastasis (making their proteins good targets for an inactivating drug) or
have a coding mutation detected in a metastatic melanoma tumour

v

Of these, we keep 689 genes that encode proteins not
already targeted by an existing drug

v

Of these, we keep only 394 genes with proteins predicted to be
druggable based on sequence, structure and cellular localisation

v

147 of these genes encoding a protein kinase, a secreted
protein, or a transmembrane protein

v

Of these, we keep 129 genes with a published connection
to melanoma above a certain threshold according to
literature strength algorithms IRIDESCENT (known
strength) and GAMMA (predicted strength)

FIGURE 3 | An example of a process through which the melanoma
data matrix (Data Sheet 2 in Supplementary Material) can be used to
generate a short list of putative drug targets. The initial gene list consists
of those genes in the melanoma data matrix (Data Sheet 2 in
Supplementary Material) that have an entry in any of the columns
describing the data of the studies of Jonsson et al. (51), John et al. (46),
Mandruzzato et al. (47), Journe et al. (48), or Bogunovic et al. (50). (Please
note that this example is for use with the data matrix in Data Sheet 2 in
Supplementary Material, rather than for the MelanomaDB web tool).

false discovery rate set to 0.01), this list of 245 genes was found to be
significantly enriched for several gene sets including sets associated
with the extracellular matrix (ECM), cell adhesion, and collagen
fibril organization. We encourage users to use a spreadsheet appli-
cation and simple web tools such as GeneSetDB to perform their
own exploration of Data Sheet 2 in Supplementary Material.

ASSEMBLY OF MelanomaDB — A WEB-ACCESSIBLE GENOMIC
MELANOMA SOL DATABASE, AND OF A CORRESPONDING BaseSpace
APP

In order to make use of this assembly of melanoma information
and its regular updating easier, we converted this melanoma data
matrix (Data Sheet 2 in Supplementary Material) into a web-
accessible SQL database. This database, named MelanomaDB,
features melanoma gene sets derived from Data Sheet 2 in Supple-
mentary Material and directly links into a molecular pathway/GSA
meta-database previously generated by our research group named
GeneSetDB (22). Using MelanomaDB, a user can easily find the
union or intersection between any number of melanoma gene
sets (taken from the columns of Data Sheet 2 in Supplementary
Material) and also their own user-submitted gene lists (copied
and pasted, or uploaded from a file, using any of over 50 types of
commonly used gene identifier), then interrogate the molecular
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Table 1 | Four putative melanoma oncogenes and two putative tumor suppressor genes derived from the amalgamated data.

Entrez gene Gene symbol Gene title Chromosomal Putative tumor
location suppressor or oncogene?

7373 COL14A1 Collagen, type XIV, alpha 1 8023 Tumor suppressor

387357 THEMIS Thymocyte selection associated 6g22.33 Tumor suppressor

6299 SALLT Sal-like 1 (Drosophila) 16912.1 Oncogene

5069 PAPPA Pregnancy-associated plasma protein A, pappalysin 1 9g33.2 Oncogene

26278 SACS Spastic ataxia of Charlevoix-Saguenay (sacsin) 13912 Oncogene

81832 NETO1 Neuropilin (NRP) and tolloid (TLL)-like 1 18g22.2 Oncogene

pathways for which the genes in these lists are enriched. Multi-
ple iterations are possible, so that a user might find the union
of some melanoma-associated gene sets and then find the inter-
section of this union with other gene sets, which can finally be
directly piped into the gene set meta-database GeneSetDB to iden-
tify enriched molecular pathways. MelanomaDB is available at
http://genesetdb.auckland.ac.nz/melanomadb/about.html

A subset of the information in MelanomaDB was also
included in a freely available Illumina BaseSpace applica-
tion, which can be accessed at http://www.biomatters.com/apps/
melanoma- profiler-for-research (click on “sample project” and
navigate using green tabs at top of screen). This BaseSpace appli-
cation performs variant calling against reference sequences for a
user-defined tumor, then uses information from MelanomaDB
to identify molecular pathways that genes which contain non-
synonymous variants constitute. These pathways are visualized
relative to targeting drugs and other clinically related information
using pathway diagrams, heatmaps, and waterfall plots, in com-
parison to the 310 melanomas described above. We hope that this
app may be of particular use to researchers involved in generating
new melanoma tumor sequences.

MelanomaDB FACILITATES ASSESSMENT OF FUNCTIONAL
RELATIONSHIPS INHERENT IN TUMOR SOMATIC VARIANTS

The tumor gene sequence information included in MelanomaDB
allows calculation of the proportion of melanomas that carry
somatic variations in each gene/loci on a genome-wide scale. For
example, by selecting gene sets using the MelanomaDB web tool,
we identified those genes in which over 10% of the 96 sequenced
metastatic melanomas currently in the database carried non-
synonymous somatic variations. This list of 245 genes included
genes that have been the focus of recent publications describ-
ing mutations in melanoma, such as PREX2 (6), GRM3 (57), and
ERBB4 (56) [other melanoma-associated genes such as MAP3K5/9
(58), MAP2K1/2 (54), and RACI (4—6) are included as mutated
genes in human tumors in MelanomaDB but fall outside this list
of 245 genes]. As would be expected, this composite list featured
genes also indicated as frequently mutated in melanoma by the
larger sequencing studies (4, 5) that were used in its construction,
for example, half of the genes identified by Berger et al. (6) as
“significantly mutated” appear on our composite list. By selecting
the option in MelanomaDB to pipe these 245 genes to the Gene-
SetDB web tool, we identified that these genes were significantly
enriched for a small group of biological functions including cell
adhesion, collagen fibril organization, and ECM. Cell adhesion is

briefly mentioned in some of the sequencing studies’ discussions
(4, 54), and the ECM is a focus for one study (55). However, other
pathways emphasized by these sequencing studies, such as the glu-
tamate pathway (60) or chromatin remodeling pathways (5), did
not feature in the results of our analysis.

ANALYSIS OF SPECIFIC SIGNALING PATHWAYS RELEVANT TO
MELANOMA

The information in MelanomaDB can be used to annotate the sig-
nalling pathways contained within the R graphite package (27).
This can be done either as a function of the MelanomaDB web
tool, or using R scripts supplied in Data Sheet 5 in Supplementary
Material. For example, Figure 4 shows the KEGG pathway named
“Melanoma” with nodes colored in shades of red according to
the frequency of non-synonymous somatic variations. Thirteen
nodes were plotted as boxes rather than circles to indicate that
the abundance of their encoded mRNA in melanoma metastases
was significantly associated with patient survival in our analysis
of the data of Bogunovic et al. (50) (Cox proportional hazards
model, p <0.05, no multiple testing correction applied). Signifi-
cantly more of the genes in the KEGG pathway named “Melanoma”
carried more somatic variants than expected due to chance alone
(Fisher’s exact test with right-tailed hyper-geometric distribution,
p <0.002), in agreement with the known importance of the sig-
naling events represented in this pathway to melanoma formation
and progression.

ANALYSIS OF MELANOMA SIGNALING PATHWAYS IN INDIVIDUAL
TUMORS

As an example of how this pathway-specific information can be
used to place the tumors of individual patients into the context
of tumors from the patient population, as well as into the context
of other information within MelanomaDB, we used the infor-
mation assembled here to draw a clustered heat map for genes
encoding molecules of the KEGG “Melanoma” signaling pathway
(Figure 5). This clustered heatmap is annotated with gene-survival
associations, druggability indices, current drug targets, COSMIC
census genes, known melanoma driver mutations and somatic
variant frequency in melanoma. This can be done either as a
function of the MelanomaDB web tool, or using R scripts sup-
plied in Data Sheet 5 in Supplementary Material. In this analysis,
somatic variants in genes drive the tumor clustering and poten-
tially stratify patients into those with common biological changes,
which may be susceptible to particular pathway-targeted thera-
pies. For instance, there is a cluster of tumors with BRAF as the
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FIGURE 4 | Somatic variations in genes encoding proteins of the
KEGG “Melanoma” signaling pathway. The color of each gene’s node
indicates the number of melanomas in which at least one
non-synonymous somatic variation has been identified; white indicates no
melanomas with reported somatic variation in the gene, while the degree
of red saturation indicates the number of melanomas containing somatic
variations in that gene (refer to color key in lower left). Square nodes
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indicate RNA expression in melanoma metastases significantly associated
[p <0.05 no multiple testing correction applied, Cox proportion hazards
model, Bogunovic et al. (50) datal, with patient disease-free survival, while
circular nodes indicate the absence of any significant association between
RNA abundance and patient survival. This graph was generated using the
pathwayGraph function to access the KEGG pathway information
contained within the R graphite package.

only somatic variant in this pathway (middle horizontal block in
Figure 5). Of these 51 BRAF-variant only melanomas, 42 carry
the BRAF V600E mutation and may putatively be tumors for
stratification to Vemurafenib therapy, given their lack of somatic
variants in genes encoding other proteins in this signaling pathway
that could potentially contribute to Vemurafenib resistance. Some
tumors carry only NRAS mutations, while others have either more
complex mutational patterns, or no somatic mutations in this
pathway. This is in accordance with previous studies reporting
that mutations in NRAS and BRAF tend to be mutually exclu-
sive but collectively occur in approximately 90% of melanomas
(68). To assist interpretation of the different mutations seen in
each tumor and in clusters of genetically similar tumors, the
heatmap has been annotated with information about inferred
melanoma driver mutations, known drug targets, and potentially
druggable proteins. This type of heat map can be generated for
any molecular pathway or combination of pathways. Extending
this analysis, a new patient’s mutation profile could be added to
an established clustering analysis of large numbers of melanomas

in order to identify which previously studied tumors were sim-
ilar in mutation complement, which may assist prognostication
and treatment stratification. In the future it will be interesting to
use MelanomaDB to investigate the genomes of multiple samples
from single melanomas to assess the intra-tumoral heterogeneity
seen in this disease (69).

In addition, using a function in the MelanomaDB web tool of
the R scripts supplied in Data Sheet 5 in Supplementary Material,
somatic alteration of genes in specific molecular pathways can be
drawn on a patient-by-patient basis (Figure 6). This allows visual-
ization of protein-altering gene sequence variants in the context of
the encoded protein’s position in molecular pathways relevant to
specific targeted therapies. For instance, using a well-known exam-
ple from other tumor types, the position in pathway diagrams of a
genetic variant known to be activating (e.g., mutant KRAS), down-
stream of a drug (e.g., cetuximab) target (e.g., EGFR) may indicate
potential for resistance to the drug.

We then used an R script (Data Sheet 5 in Supplementary Mate-
rial) to perform gene set enrichment analysis using the GATHER
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FIGURE 5 | Clustered heatmap for genes encoding proteins of the
KEGG “Melanoma” signaling pathway. Gene names are on the
horizontal axis, individual melanoma tumor names are on the vertical axis.
Blue blocks at the intersection of a gene and a tumor indicates the presence
of a protein-altering somatic variant in that gene in that tumor. Clustering of
genes and tumors using single linkage clustering with binary distance was
performed based on this variant information. The clustered figure was then
annotated with additional information above the heatmap. In the first row
above the heatmap red blocks mark genes encoding known drug targets
according to version 3 of the DrugBank database. In the second row yellow
blocks mark genes encoding potentially druggable proteins, as indicated by
the MelanomaDB gene set “Druggability: Sophic ENSEMBL list” (33). In
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the third orange and red blocks indicate genes mutated in >1 or >5% of
the 310 melanomas in our database, respectively. In the fourth row blue
blocks mark genes that encode RNAs with a significant association
between expression and patient survival [p < 0.05 no multiple testing
correction applied, Cox proportion hazards model, Bogunovic et al. (50)
datal. In the fifth row brown blocks indicate genes that are members of the
Wellcome Trust Cosmic “Cancer Gene Census” gene set, as on 1st March
2013 (http://cancer.sanger.ac.uk/cancergenome/projects/census/). In the
sixth row, purple blocks mark genes thought to be melanoma drivers when
mutated [MelanomaDB gene set “Melanomagenesis Drivers” (84)]. This
graph was generated using a modification of the heatmap.2 function of the
gplots package in R.

web tool'® (19) to identify any KEGG pathways for which genes
somatically altered in each tumor were significantly enriched
(Data Sheet 4 in Supplementary Material). KEGG pathways that
appeared as significantly enriched in individual tumors included
the “ECM receptor interaction” and “Neuroactive ligand-receptor
interaction” KEGG pathways. To illustrate this, we selected one
sequenced metastatic melanoma, ME029 from the Berger et al.
(6) cohort, and drew these two pathways along with the KEGG
“Melamoma” pathway for this single tumor (Figure 7). Two of

Ohttp://gather.genome.duke.edu

these pathways are drawn for all 310 tumors included in this study
in: Presentation 1 (“Melanoma”) and Presentation 2 (“Neuroactive
ligand-receptor interaction”).

LIMITATIONS OF OUR APPROACH

The approach we have described, while already functioning in
a useful way as a melanoma-focused integrated genomic data-
base, provides a template for further development to address the
limitations below: (i) It will be important to identify the likely
effects of specific somatic variations in the sequenced tumors (e.g.,
loss of function, altered function, or activation of the encoded
protein). In future iterations of MelanomaDB, based on larger
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FIGURE 6 | Somatic variations in individual tumors of molecules in
the KEGG “Melanoma” signaling pathway. Yellow nodes indicate
that the gene has a somatic variation in that particular tumor. Red node
borders indicate that there is a drug available to target that gene’s
encoded protein. Blue node text indicates that this gene's RNA
abundance is associated with patient survival in metastatic melanoma,
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in the data of Bogunovic et al. (50). Four individual tumors with different
mutation profiles are shown as examples: (A) ME049 from Berger et
al. (6); (B) 01T from Wei et al. (60); (C) melanoma reported by Turajlic et
al. (59); (D) YUKLAB from Krauthammer et al. (5). This graph was
generated using the pathwayGraph function and KEGG information
contained within the R graphite package.

numbers of tumors, we will include capacity to dissect the type
of genetic alteration such as deletions, coding region mutations,
promoter mutations, etc. The database may also be expanded
to include the results of analyses from software that predict the
effects of coding variants on protein function, such as SIFT (70),
PolyPhen (71), or PROVEAN (72), as well as the known effects
of specific mutations using resources such as COSMIC (8). (ii)
Data on naevi and synonymous mutations can also be added.
(iii) Information from model organisms such as mouse could also
be added. (iv) Results from the ENCODE project (73) could be
added along with whole genome sequencing of melanomas will
allow inclusion of numerous additional functional genetic loci
[e.g., ncRNAs, both general (74) and melanoma specific (75)] in
the database. The ENCODE project suggests that mutations in
regulatory regions such as distal enhancers can affect the expres-
sion of genes located hundreds of kilobases away (76); a way to
include this in MelanomaDB could be to take a gene network
approach to identify distant genes that have expression correlated
with these mutations, as well as methods such as chromatin con-
formation capture (77). (v) Future additions to the database will

also aim to incorporate data concerning the role of epigenetics,
including methylation, in melanoma (78-80). (vi) There is also
room to expand upon melanoma drivers, such as those highlighted
in GISTIC (81), JISTIC (82), and CONEXIC (83). (vii) There is
an inherent risk in any assembly or meta-analysis of data from
several sources that errors in the original data are perpetuated.
While it is possible that the intersection of multiple independent
sources of similar types of information may reduce the change of
propagating random errors, systematic errors co-occur in inde-
pendent data sources. This risk affects any project of this sort and
is difficult to control. Here we have attempted to minimize this
risk by selecting constituent databases that are extensively used
and have been peer reviewed, and on which we could perform
spot checks. We consider these data sources to be the best possible
choices, within our ability to assess them. (viii) The final limitation
is that the molecular pathways used when assembling this database
are limited by current knowledge, and overlap with one another.
The database will be updated with new pathway information as it
becomes available. Identifying the pathways that are not affected
can be as useful as identifying those that are. The data we have
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FIGURE 7 | (A) Venn diagram showing the overlap of genes between these
three pathways used in this figure, generated using the Venny web tool
(http://bioinfogp.cnb.csic.es/tools/venny/index.html). “Melanoma,” “Neuro
Lig-RI,” and “ECM RI" indicate members of the “Melanoma,” “Neuroactive
ligand-receptor interaction,” and “Extracellular matrix (ECM) receptor
interaction” KEGG pathways, respectively, contained in the R graphite
package; (B) The KEGG “Neuroactive ligand-receptor interaction” pathway;
(C) The KEGG "Extracellular matrix (ECM) receptor interaction pathway”; (D)
The KEGG “"Melanoma” pathway. Yellow fill color in nodes indicate genes with
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protein-altering somatic variations in this sample. Nodes with red borders
represent genes that encode targets of existing drugs according to version 3
of the DrugBank database. Nodes with blue text indicate genes that encode
RNAs with a significant association between expression and patient survival
[p <0.05 no multiple testing correction applied, Cox proportion hazards
model, Bogunovic et al. (50) data, see Materials and Methods]. This graph
was generated using the pathwayGraph function and KEGG information
contained within the R graphite package. Similar graphs can also be
generated using the MelanomaDB web tool.
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generated using literature relationships with the IRREDESCENT
and GAMMA methods has not been experimentally verified and
is intended primarily for hypothesis generating.

CONCLUSION

We have brought together a large collection of melanoma genomic
data of several types from published studies and publicly available
datasets into an easily utilized data matrix that can be analyzed
using a spread sheet application. We also assembled data on tumors
from individual patients. We then incorporated this informa-
tion into a web-accessible SQL database, MelanomaDB, which
researchers can use to perform molecular pathway and GSA of
melanoma genomic data, and into a BaseSpace application. By
way of illustration, we used this information to analyze the muta-
tional and expression patterns of genes encoding proteins in spe-
cific directional signaling pathways within individual tumors, and
annotated these visualizations with information about existing
drugs, druggability, associations between RNA expression and sur-
vival, and driver mutations. We hope that this resource will prove
increasingly useful when it expands as new tumor data becomes
available. In particular, we hope it may provide a context in which
to interpret the melanoma molecular profiles of new patients as
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