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Physical oncology is a growing force in cancer research, and it is enhanced by integrative
computational oncology: the fusion of novel experiments with mathematical and com-
putational modeling. Computational models must be assessed with accurate numerical
methods on correctly scaled tissues to avoid numerical artifacts that can cloud analy-
sis. Simulation-driven analyses can only be validated by careful experiments. In this
perspectives piece, we evaluate a current, widespread model of matrix metalloproteinase-
driven tissue degradation during cancer invasion to illustrate that integrative computational
oncology may not realize its fullest potential if either of these critical steps is neglected.
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INTRODUCTION
Physical oncology – the study of the physical biology of cancer,
the development of new physical measurement platforms, and the
use of mathematical and computational modeling to understand
complex cancer systems – has emerged as an important force in
cancer research (1). Key to this approach is integrative compu-
tational oncology: multidisciplinary teams of biologists, oncolo-
gists, physicists, engineers, and mathematicians working together
to generate novel platforms, where modeling informs experi-
ments, and experiments drive modeling. Mathematical modeling
can describe and simplify complex systems, facilitating analy-
sis. Accurate simulations assist the analysis of these systems,
yielding observations that drive biological hypotheses. Exper-
imental biology is necessary for validating and refining these
hypotheses and advancing our understanding of cancer. This
special issue discusses successful examples of applying integra-
tive modeling to cancer-related questions. However, neglecting
any of these key ingredients can be detrimental and may blind
teams to subtle modeling flaws, potentially resulting in misleading
model assessment, incorrect biological conclusions, or unverifiable
predictions.

In this perspectives piece, we will look at a widely used mathe-
matical model of tissue degradation by matrix metalloproteinases
(MMPs) in order to illustrate (1) the need for evaluation of
mathematical models by proper numerical techniques, applied
to biologically relevant space and time scales, and (2) that even
with proper numerical analysis, only experiments can truly val-
idate mathematical model predictions and help choose among
plausible explanations of model findings.

MMP-MEDIATED TISSUE DEGRADATION
Progression from in situ carcinoma – where growth is constrained
to a local site by a fully intact basement membrane (BM) – to inva-
sive carcinoma requires disruption of the BM and penetration into
the surrounding stroma. Once in the stroma, invading cancer cells
often degrade and remodel the extracellular matrix (ECM) and
later break through BM to enter blood vessels – a key step in metas-
tasis. A quantitative understanding of proteolytic degradation of
tissue is necessary in predicting (and disrupting!) cancer invasion
and metastasis. It is currently unclear whether tissue degradation
is primarily due to MMPs secreted by cancer cells or by stromal
cells in response to tumor signaling. Quantitative modeling could
help narrow down the possibilities to the most plausible models
of stromal invasion, which can then be experimentally tested and
validated.

Extracellular matrix is a 3-D cross-linked network of pro-
teins and polysaccharides that provides structural support to
cells; BM is a specialized form of ECM, although thinner (50–
100 nm) and more dense (2, 3). ECM (including BM) can be
degraded by MMPs secreted by tumor, stromal, and immune
cells (4–6). MMPs are secreted in an inactive form that must
be cleaved into an active form, and are further regulated by
inhibitors of metalloproteinases. MMPs may be soluble and diffuse
through tissue (e.g., MMP9), or membrane-bound (e.g., MT-
MMP1) (6).

The most widely used tissue degradation models focus on solu-
ble MMPs using reaction-diffusion equations [e.g., (7–9)], neglect
inhibitors and promoters, and assume the MMP is immediately
active. If E is the ECM density (or volume fraction) and M is the
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MMP concentration (both dimensionless), then

∂M

∂t
= ∇ · (D∇M )+ s (X, t )− rM EM − dM M (1)

∂E

∂t
= −rE EM . (2)

D is the diffusion constant, s is the source (tumor or other cells), rM

and rE are reaction rates,and dM is the MMP decay rate. These stan-
dard reaction-diffusion equations are typically solved with finite
differences on a Cartesian mesh [e.g., (7–9)]. The most clinically
oriented BM degradation model we know of simulated BM as
denser ECM on the same ECM computational mesh (10).

FUNCTIONAL FORMS AND PARAMETER VALUES
For this discussion, we assume D=D0 (1− E) for a constant D0.
We set D0= 8× 10−9 cm2/s (11), rM= rE= 1/200 s−1 (11), and
dM= 5× 10−5 s−1(12). This gives an (ECM-dependent) reaction-
diffusion length scale L of

√
D0(1− E)/(rM E + dM ) ∼10 µm

(“∼”denotes “on the order of”) for 0≤ E≤ 0.90. This matches our
biophysical expectations: MMPs are relatively large macromole-
cules diffusing through a tortuous ECM structure, so the length
scale should be significantly smaller than for oxygen (typically
∼100 µm). We initially set the E= 0.85.

MODEL EVALUATION REQUIRES GOOD NUMERICAL TECHNIQUES
Accurate numerical solution (and hence proper evaluation) of
the model and its ∼10 µm length scale requires an ∼1 µm mesh
size. To date, most published work has used small diffusion con-
stants on relatively large 10–20 µm meshes [e.g., (7, 8)]. We solve
Eqs 1 and 2 on a 1 µm mesh with standard centered finite dif-
ferences, using the ghost fluid method to implement boundary
conditions wherever the computational stencil intersects the BM
(zero flux, or Neumann condition) or a cell boundary (constant,
or Dirichlet condition for secreting cells; Neumann condition for
non-secreting cells) (13–15). We describe the BM position as in
D’Antonio et al. (16). Tumor cell sizes are set to the values in
Macklin et al. (17).

CURRENT MODELS PREDICT RAPID “TUNNELING” THROUGH ECM
We simulated MMP secretion by stromal cells, as one might expect
in response to tumor-secreted pro-inflammatory signals. To sim-
plify the analysis, we set M = 1 on the stromal cells and positioned
them at a fixed 10 µm from the BM (Figure 1: top left).

In the simulations, MMPs etch out a “hole” in the ECM whose
edge expands outward at ∼1 µm per minute. See Figure 1 for the
ECM distribution at 15, 25, and 40 min. This is consistent with
an order of magnitude estimate using a Fisher–Kolmogorov-type
traveling wave front speed:

ν = 2L (E) rM (E) ∼ 2
√

D0 (1− E) ErM

gives speeds of 0–3.75 µm/min ∼ 1 µm/min for 0≤ E≤ 0.90,
where L(E) is as above and rM(E)= rM E.

A 1 µm/min expansion rate of the degraded region is compara-
ble to experimentally measured motile tumor cell velocities [e.g.,
58.56± 1.62 µm/h for neuN cells in (7)]. The predicted expansion

speed is quantitatively consistent with localized ECM degradation
“keeping pace”with motile cells as they“tunnel”through the ECM.
The simple ECM-MMP model (with sufficient numerical resolu-
tion) can produce biologically reasonable results on small time
and spatial scales.

However, if extrapolated over long times, this model predicts
that a 10 cm diameter of tissue could be degraded in about a
month! This outpaces typical tumor expansion rates by over an
order of magnitude: brain tumors (among the fastest growing
tumors) typically expand at 80–100 µm/day (18), requiring at least
500 days to infiltrate a 10 cm tissue. The simple MMP model would
therefore predict an ever-widening gap between the advancing
tumor front and the edge of the degraded tissue, contradicting typ-
ical observations that MMP activity is localized near the boundary
of an advancing tumor.

This widely used model, once simulated accurately, does not
adequately describe MMP-mediated tissue degradation around
growing tumors. Neglected factors (e.g., activators and inhibitors)
may be needed to confine proteolytic activity near tumor bound-
aries; similar approaches have been used to model urokinase-type
plasminogen activators in tissue degradation (19). Alternatively,
non-diffusing membrane-bound MMPs may be more relevant.
New imaging technologies that dynamically capture ECM degra-
dation could help select among possible alternative models (20,
21). Recent integrative experimental-computational work showed
the critical role of MT-MMP activity during cancer cell invasion,
finding that MT1-MMP turnover could be a potent anti-invasion
therapeutic target (22). Ultimately, only carefully planned and
executed experiments can help choose between these and other
possible explanations.

ASSESSING DEGRADATION OF THE BASEMENT MEMBRANE
A 100 nm BM cannot be properly resolved on a 1 µm mesh. Solv-
ing (1)-(2) by finite differences (with correct physical dimensions)
requires a prohibitive 10 nm computational mesh. Some have
investigated this problem by solving on non-physiological base-
ment membranes [e.g., one cellular automaton mesh point, or
10 µm thick (10)], making it difficult to evaluate the models.

Let us instead analyze a simplified problem to estimate the
time scale to degrade a BM. Consider a small piece of BM of cross-
sectional area A, volume fraction F, and thickness T (t ). The total
amount of matrix E(t ) in the BM section is AF T (t ). If BM is
degraded as in (2), then dE/dt =−rE M (t ) E(t ). If M is constant,
then the time t B required to degrade the BM to some threshold
breaking amount EB is given by

tB = −1n
(
E (0)

/
EB
) /

rBM .

If rE= 1/200 s−1 and M = 1, then a 100 nm section of BM is
reduced to 10 nm thick [EB/E(0)= 0.1] in under 8 min, and to
1 nm thick (EB/E(0)= 0.01) in about 15 min.

This suggests several possibilities. (1) The cell “decision” of
when to secrete MMPs is the limiting factor to penetrating the
BM, rather than the proteolytic process itself. (2) Additional, non-
modeled promoters/inhibitors are rate limiting. Only follow-up
experiments can help determine the most plausible explanation,
but rapid penetration of the BM by “willing” cells seems consis-
tent with Boyden transwell migration assays (23) and known rapid
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FIGURE 1 |Top left: initial configuration of epithelium (white lumen and tumor
cells), a 100 nm basement membrane, stroma (orange), and stromal cells (red)
that secrete MMPs. Remaining plots: ECM volume fraction [ranging from

blue (0%) to red (85%)] at 15, 25, and 40 min using a widespread ECM-MMP
model with a biophysically reasonable reaction-diffusion length scale
(∼10 µm) and degradation rate (∼0.1–1 min−1).

(∼minutes) transmigration of leukocytes through endothelial and
epithelial layers and associated membranes (24, 25).

CLOSING THOUGHTS
Accurate models are needed to simplify, analyze, and assess com-
plex phenomena observed in cancer biology. In order to truly
assess a model’s underlying assumptions, evaluate its predic-
tive value, and study its potential clinical utility, one must use
proper numerical methods, reasonable geometries, and experi-
mental validation. As illustrated by the tissue degradation model
above, neglecting any of these key factors can lead to inac-
curate dynamics, and may potentially cause a team to prema-
turely accept biological hypotheses. Dynamic feedback between
experimental and computational biology systems is necessary to

drive and improve model development and refinement while
ensuring that any resulting integrative platform is clinically
relevant.
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