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INTRODUCTION

Natural products derived from plants, animals, and microorgan-
isms have traditionally been the main source of active medicinal
compounds without a deep understanding of their mechanism
of action. Emergence of resistance in different already known
pathologies (cancer, bacterial infections) (1, 2), but also the emer-
gence of other, yet incurable diseases (Alzheimer’s disease, Parkin-
son’s disease, AIDS .. .) (3), call for the discovery of novel thera-
peutic compounds and the improvement of efficiency of already
known molecules (4, 5).

The term “secondary metabolites” refers to molecules, which
are not directly involved in essential processes like development,
growth, and reproduction compared to the primary metabolism.
Synthesized by all living kingdoms (Archae, Bacteria, Protisae,
Plantae, Fungi, and Animalia), these non-essential metabolites are
different depending on the species and are classified according
to their method of synthesis. Structurally highly diversified and
complex and present in very small quantities, secondary metabo-
lites account for often less than 1% of the total mass of organic
carbon in the organism. Their level of synthesis can also depend
on the physiological and the developmental stage of the organism
but also environmental factors like the soil, climate, or weather.
Synthesis of secondary metabolites can be induced after stimu-
lation by stressors from diverse origins. Originally isolated from
plants, recent researches have shown that some secondary metabo-
lites are synthesized by symbiotic organisms like bacteria and not
by the host organisms themselves and that other have symbi-
otic origins. The role of secondary metabolites is to ensure the
survival of the organism in its environment. Some allow organ-
isms to protect themselves against predators or herbivores, insects,
pathogens but also to kill preys like snake and arthropod venoms
or against other organisms for access to resources (light, water,
and nutrients). Other metabolites can help to resist environmental

regulation, angiogenesis, or on processes involved in the development of metastases occur
naturally, especially in fruits and vegetables bur also in non-comestible plants. Carnivorous
plants including the Venus flytrap (Dionaea muscipula Solander ex Ellis) are much less inves-
tigated, but appear to contain a wealth of potent bioactive secondary metabolites. Aim of
this review is to give insight into molecular mechanisms triggered by compounds isolated
from these interesting plants with either therapeutic or chemopreventive potential.
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stress (drought, nutrient deficiencies), attract pollinating insects
(by color and odor), or to ensure symbiosis with other organisms.
To date, more than 200,000 different secondary metabolites have
been discovered and described. Some have been diverted from
their original use by human and are now used in commercial
preparations such as dyes, drugs, or insecticides (6—12).

“NON-FOOD" PLANTS ARE ALSO AN ATTRACTIVE SOURCE OF
MOLECULES WITH POTENTIAL CHEMOPREVENTIVE INTEREST

Various chemopreventive and therapeutic compounds have been
isolated from food plants. We can notably mention, flavonoids
(carrots) including chalcones, isothiocyanates (cabbage), lycopene
(tomatoes), indoles, organosulfides (garlic), and polyphenols
(curcumin) (13-19).

Many compounds can also be found in food preparations made
with fruits or vegetables like resveratrol from red wine (20-22) or
catechins and procyanidins and polyphenols from cocoa (23, 24)
or quercetin and kaempferol from honey (25).

However, many “non-food” plants from all around the World
are also attractive sources for molecules with potential chemopre-
ventive interests (26—29).

The underwater world is also rich in bioactive molecules with
chemopreventive and anti-tumor potential. Among these sec-
ondary metabolites discovered in animal, fungi, micro-organism,
or marine plants we can mention, for example heteronemin and
hemiasterlin (sponges), kahalalide F. (sea slug), naphthopyrones
(echinoderm), didemnin B (tunicate), and amphidinolides (algae)
(12, 18, 30-34).

THE VENUS FLYTRAP (DIONAEA MUSCIPULA SOLANDER EX
ELLIS)

Different populations used carnivorous plants for hundreds of
years in traditional medicine all around the World. In Europe

www.frontiersin.org

August 2013 | Volume 3 | Article 202 | 1


http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/10.3389/fonc.2013.00202/abstract
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/10.3389/fonc.2013.00202/abstract
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/10.3389/fonc.2013.00202/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FrancoisGaascht&UID=88272
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MarcDiederich_1&UID=87123
mailto:marcdiederich@snu.ac.kr
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive

Gaascht et al.

Cancer prevention and therapy by Dionaea

and North America, butterworts (Pinguicula vulgaris, Pinguicula
alpina) were used for the treatment of wounds. Decoctions of but-
terworts and sundew (Drosera rotundifolia) were administered for
their expectorant and antitussive properties to people with res-
piratory diseases like pertussis, bronchitis, and asthma but also
to treat stomach pain and tuberculosis. Magic properties of sun-
dews were also used for their aphrodisiac effects and their ability
to promote delivery. Today this type of plant is used by the mod-
ern pharmaceutical industry in the preparation of syrups to treat
coughs. The fresh juice secreted by the leaves of sundew is used for
local application on warts or bunions (35-38).

In North America, roots and leaves of the purple pitcher plant
Sarracenia purpurea were used by the endogenous population for
its diuretic and laxative properties and also to treat fever, cough,
and diabetes. The plant was also used to treat other infectious
diseases like scarlet fever, smallpox, and measles. Plant decoctions
were also prescribed to pregnant women to ease labor, to prevent
sickness after childbirth and to treat absence of menstrual cycle
(35-37, 39, 40).

In South-East Asia and in India, natives from local tribes used
the pitcher plant Nepenthes khasiana as medical plant. They used
juice of young flowers and of unopened pitchers or crushed pitcher
powder to treat stomach pain and eye troubles (pain, cataract,
night blindness), urinary troubles but also skin diseases. Prepa-
rations were also given to malaria, leprosy, and cholera patients
(41-46).

The Venus flytrap (D. muscipula Solander ex Ellis), the only
species of the genus Dionaea, is a carnivorous plant that grows
in marshy areas of North and South Carolina states of the United
States (Figure 1). To survive in these environments that are poor in
nutrients, it has developed active traps to catch small prey (insects,
spiders) that serve as an additional source of nutrients. The plant
catches its prey with nectar produced by glands localized at the
inner side of the trap and exposing an UV pattern. When the
animal touches a sensitive trigger hair, a movement of ions is gen-
erated, producing an osmotic gradient that changes the size and
shape of specialized cells of the trap that result in trap closure (47—
49). Once the trap closes on the prey, other glands, also localized
at the inner part of the trap, secrete a digestive acid liquid contain-
ing a number of enzymes (proteases, nucleases, phosphatases, and
amylases) for digestion of the prey (50). Nutrients are released and
then reabsorbed by the plant through both digestive glands and by
endocytosis (51-53).

SECONDARY METABOLITES OF DIONAEA MUSCIPULA

Dionaea muscipula was also the subject of modern biomedical
research. The analysis of the various different secondary metabo-
lites (naphthoquinones, flavonoids, phenolic acids) isolated from
the plant and identified (Table 1; Figure 2) revealed that they
possess different interesting therapeutic properties (54-58).

NAPHTHOQUINONES

These pigment molecules are widespread in plants, lichens, fungi,
and microorganisms and these molecules derive from the phenol
synthesis pathway. In plants, they act as bactericide, insecticide,
fungicide, and allelopathic agents (substances that promote or
impede the growth of surrounding organisms) (70, 135, 136).

FIGURE 1 | Picture and illustration of Dionaea muscipula Solander ex
Ellis. (A) First drawing of Venus flytrap from the first botanical description
made by John Ellis and send to Carl von Linné around 1770. (B) Picture of
Dionaea muscipula trap, sensitive hairs are located on the inner face of the
trap. (C) Picture of D. muscipula cultivated by the first author in his own
greenhouse.

Plumbagin
Plumbagin (Figure 2) is a yellow naphthoquinone with anti-
bacterial, anti-fungal, anti-inflammatory, and anti-cancer prop-
erties. This molecule gets its name from the plant in which it was
discovered, Plumbago zeylanica (59) but is very common and is
present in others plants like Limonium axillare or walnut trees
(Juglans sp.) (60—63) but also in other carnivorous plants like N.
khasiana, Nepenthes gracilis, or Drosera binata (64, 137, 138). The
roots of P. zeylanica were already used for centuries in Indian
traditional medicine for their cardiotonic, neuroprotective, and
hepatoprotective properties (139). In the Venus flytrap, plumbagin
provides a protective role against predators and parasites (58).
Capable to generate reactive oxygen species (ROS) and to
induce DNA cleavage, plumbagin inhibits topoisomerase II in
HL-60 cells (65). It also has a cytotoxic effect on A549 cells
and is described as being able to disrupt the microtubular net-
work by interacting directly with tubulin (66). This particular
naphthoquinone is known to be an inhibitor of the activated
NF-kB (Nuclear Factor kappa B) signaling pathway induced by
carcinogens, inflammatory stimuli and TNF-a (Tumor Necrosis
Factor alpha). It blocks the expression of anti-apoptotic genes
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FIGURE 2 | Continued

including Bcl-2, Bcl-xL, and surviving and genes regulating cell
proliferation (cyclin D1) and angiogenesis like Matrix metal-
loproteinase 9 (MMP-9) or Vascular endothelial growth factor
(VEGEF). It thus leads to cell cycle arrest at the G2/M phase tran-
sition and an increase of the TNF-induced apoptosis (67, 68).
Described as an Akt pathway inhibitor, it also blocks the activ-
ity of GSK-3B (Glycogensynthase kinase 3 beta) protein kinase
in human breast cancer cell lines MCF-7 and MDA-MB-231
(140). In human melanoma A375.S2 cells, it induces cell cycle
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FIGURE 2 | Chemical structures of molecules present in Dionaea
muscipula Solander ex Ellis. Compounds are arranged according to the
following classification: phenolic compounds in blue, flavonoids in green,
and naphthoquinones in orange.

arrest in G2/M, which leads to apoptosis. The mechanistic analysis
showed that plumbagin activates JNK (c-jun-N-terminal kinase)
and ERK (Extracellular signal-regulated protein kinase) 1/2 but
had no effect on p38 (141). In H460 lung cancer cells, plumba-
gin increases the expression of p53 and p21, which leads to cell
cycle arrest in G2/M and triggers death by apoptosis. In addi-
tion, the authors showed that naphthoquinone activates both
JNK and p38 but at the same time inhibits the activity of Akt
(142). However in another study, plumbagin has been shown to
activate both Akt and ERK 1/2 in healthy pre-adipocyte 3T3-
L1 mouse cells (143). In vivo experiments performed on mice
have shown that plumbagin inhibits the growth of tumors and
the number of metastasis by an inhibition of the expression
of several markers like MMP-9, 2, and VEGF in ovarian and
prostate-cancer cells (144, 145). Due to its structure, plumba-
gin is also known as a ROS generator. In MCF-7 cells, increased
ROS accompanies a decrease of cell viability. Analysis of the
mechanism triggered by ROS suggests that plumbagin inhibits 1,
4-phosphatidylinositol 5-kinase (PI5K) expression. In K562 cells,
naphthoquinone up-regulates the membrane level of death recep-
tors (DRs) DR4 and DR5, which results in a higher sensitivity to
TRAIL (TNF-related apoptosis-inducing ligand) and a reduction
of cell viability. Results obtained by molecular docking showed that
plumbagin docks into the receptor ligand site of Tumor Necrosis
Factor-Related Apoptosis-Inducing Ligand (TRAIL)-DR 5 com-
plex that contributes to explain triggering of apoptosis via the
extrinsic pathway (146—149). Plumbagin is also known to act
as an inhibitor of multidrug resistance-linked ATP-binding cas-
sette drug transporter ABCG2, a protein responsible for the drug
efflux in cancer cells (150). Ex vivo and in vitro experiments
showed that plumbagin inhibits microtubule polymerization by
direct binding to tubulin at the colchicine binding site (66).
Pharmacokinetic studies have shown that plumbagin has an oral
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bioavailability of about 40% in conscious freely moving rat mod-
els and that plumbagin is detected in a micromolar range 1 h after
administration (151).

Plumbagin derivatives

Some others plumbagin derived molecules have also been isolated
from D. muscipula by several groups. A plumbagin-dimer, 8,8'-
biplumbagin also called maritinone (Figure 2) have also been
isolated from the carnivorous plant (57) but also from other
plants like P. zeylanica or Malaysian persimmon (Diospyros mar-
itima) (71, 72). Tested for its potent anti-tumoral effect on KB,
LNCaP, Lul, K562, Raji, Jurkat, Vero, Calu-1, HeLa, and Wish
cancer cell lines, maritinone has shown strong effects on the pro-
liferation of these cells (70, 71). Identified in other plants than
D. muscipula like Malaysian persimmon (Diospyros maritime)
and carnivorous plants Nepenthes sp., and Drosophyllum lusitan-
icum (73, 76, 137, 152) and isolated by Kreher et al. droserone
(Figure 2), 3-chloroplumbagin (Figure 2), and hydroplumbagin
4-O-B-glucopyranoside (Figure 2) (14) have not yet been studied
for their biological effects. Miyoshi et al. reported the isolation
of two other naphthoquinones, diomuscinone (Figure 2), and
diomuscipulone (Figure 2) together with plumbagin from roots of
Venus flytrap (77). Recently, diomuscinone has been isolated from
Diospyros wallichii (78) but none of these three compounds have
been tested to elucidate their biological effects out of the plant.

PHENOLIC ACIDS

The term “phenolic” or “polyphenol” is chemically defined as a
molecule, which possesses at least one aromatic ring (phenol)
or several (polyphenol) hydroxyl substituents. They have many
roles in plants like UV sunscreens, messengers, pigments, plant
growth factors and protection against fungi, bacteria, insects, and
nematodes (153).

Ellagic acid

Ellagic acid (Figure 2) is a polyphenolic molecule synthesized by
Venus flytrap and many other plants such as pomegranate (Punica
granatum), Terminalia chebula fruit (yellow myrobalan), berry
fruits (blueberry, blackberry, and strawberry), Vitis rotundifolia
(Muscadine grapevine), or black walnut (Juglans nigra)
(57, 79-82).

By their astringent taste, ellagic acid, and other tannins play a
role in plant defense against herbivores and pests as digestibility-
reducing compounds (154, 155) but also as anti-bacterial agent
(156, 157).

It is a chemopreventive agent that reduces cell prolifera-
tion, inhibits NF-kB by interfering with the binding of this
transcription factor to DNA. The compound triggers apoptosis
of pancreatic cancer cells by cytochrome ¢ release and activation
of caspase-3 (83). Ellagic acid decreases human prostate carcinoma
PC3 cells cell growth and viability in a dose-dependent man-
ner and triggers apoptosis. Authors observed poly(ADP-ribose)
polymerase (PARP)-1 cleavage, decrease of anti-apoptotic Bcl-2
protein and increase of pro-apoptotic Bax protein and activation
of caspase-3, 6, 8, and 9. Pre-treatment with pan-caspase inhibitor
(Z-VAD-FMK) has confirmed the caspase-dependent apoptosis
induced by ellagic acid (84). In vivo experiments performed on

rat models with inducible colon cancer have shown that ellagic
acid reduces expression of NF-kB, COX-2 (Cyclooxygenase-2),
iNOS (inducible nitric oxide synthase), TNF-a, and IL-6 (158).
Using human breast cancer MDA-MB-231 cells and human umbil-
ical vein endothelial cells (HUVEC), Wang et al. have shown
that ellagic acid inhibits proliferation, migration, and endothelial
cell tube formation. Inhibiting VEGFR-2 tyrosine kinase activ-
ity and the downstream signaling pathways including MAPK
(Mitogen-activated protein kinase) and PI3K (Phosphatidylinosi-
tide 3-kinases)/Akt, ellagic acid decreases MDA-MB-231 breast
cancer xenograft growth and p-VEGFR-2 expression. Further
in silico molecular docking simulations showed that ellagic acid
could bind within the ATP-binding region of the VEGFR-2 kinase
unit (159).

Gallic acid

Gallic acid (Figure 2) has been isolated from bitter orange
tree flowers (Citrus aurantium), Marrubium persicum, yellow
myrobalan fruit (T. chebula), Acalypha australis, Pleurotus sp.,
Vitis sp. seeds, rose myrtle (Rhodomyrtus tomentosa), Mysore rasp-
berry (Rubus niveus), white sorghum, or carrot (82, 86—88, 90, 118,
160-162).

This tannin that can be released by the aerial parts of the plant
is a nematicide but possesses also anti-bacterial and anti-fungal
properties (88, 163, 164).

Described in many papers as an anti-cancer agent that can affect
many cellular targets (89), gallic acid induces cell cycle arrest in
GO0/G1 in human leukemia K562 cells by down-regulating cyclin
D and E levels. Gallic acid induces cell death by apoptosis in K562
leading to PARP-1 cleavage, cytochrome c¢ release, and caspase
activation. Expression of COX-2, a molecule involved in cancer-
related inflammation and progression, is also reduced by gallic
acid treatment. Furthermore, this phenolic acid inhibits BCR/ABL
tyrosine kinase and NF-kB pathway activity (91). Moreover, this
vegetable tannin blocks Akt/small GTPase and NF-kB pathway
activity in human gastric carcinoma AGS cell line and inhibits
cellular migration via the expression of RhoB. Results have been
confirmed in nude mice models where gallic acid treatment leads
to decreased development of metastasis (165). In vivo experiments
using a mouse prostate TRAMP model fed with gallic acid showed
inhibition of prostate-cancer growth and progression. Western-
blot analysis performed on mice prostate tissues revealed decreased
cdc2,Cdk2, Cdk4, and Cdké6 expression as well as a reduction of the
proteins cyclin B1 and E (166). Two human osteosarcoma cell lines
U-20S and MNNG/HOS treated with gallic acid allowed demon-
strating inhibition of cell proliferation and induction of apoptotic
cell death. Results show that gallic acid increases p38 and ERK 1/2
activation and decreases of JNK. Moreover, pre-treatment with a
p38 inhibitor prevents gallic acid-induced growth inhibition but
not ERK 1/2 and JNK inhibitors that promotes proliferation. Inhi-
bition of tumor growth is confirmed by in vivo experiments in
a dose-dependent manner in nude BALB/c mice. Immunohisto-
chemistry shows a decrease of PCNA (Proliferating Cell Nuclear
Antigen) and CD31 expression in MNNG/HOS tumor tissues
(167). Pharmacokinetic studies have shown that gallic acid is
rapidly absorbed by the organism, metabolized in different forms
after 2h, and are detected at a micromolar range in plasma, a
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concentration lower than the concentration used for several bio-
logical studies. A study conducted on black tea drinkers showed
that after 3 h, the organism eliminates nine different metabolized
forms of gallic acid via the urinary tract (168, 169).

Vanillin

Vanillin (Figure 2) is probably one of the most famous flavor
molecules and the most used widely used by food, chemical and
perfume industries. Isolated in 1858 by Gobley as the main flavor
constituent of vanilla (Vanilla planifolia), but also present in other
plants (potatoes, Ficus microcarpa) (83, 93, 94), vanillin is today
mainly synthesized or produced by chemical or biotechnological
methods using fungi or bacteria (170-173). In addition to being
a flavor molecule, vanillin exerts anti-fungal, and anti-bacterial
properties (174, 175).

At non-toxic concentrations, vanillin inhibits growth of mam-
mary adenocarcinoma cell line 4T1 but also decreases MMP-9
activity and thus reduces cell migration and invasion. In vivo
experiments performed on 4T1 mammary adenocarcinoma cells
injected in BALB/c mice have shown that vanillin strongly reduces
the number of lung metastasis colonies. Similar experiments per-
formed with vanillic acid were not conclusive (95). Further exper-
iments performed by the same group have shown that vanillin
pre-treatment of Hela cells blocks TRAIL — induced phospho-
rylation of subunit p65 and transcriptional activity of NF-«kB
pathway and stimulates TRAIL-induced cell death through the
extrinsic apoptosis pathway (96). Vanillin also inhibits cell migra-
tion of human lung cancer cells induced by hepatocyte growth
factor (HGF). It prevents Akt phosphorylation but has no effect on
Met and ERK phosphorylation and inhibits phosphatidylinositol
3-kinase (PI3K). Chick chorioallantoic membrane assays showed
that vanillin inhibits also angiogenesis (97). Vanillin induces apop-
tosis in HT-29 human colorectal cancer cell line and NIH/3T3
normal cell lines with a concentration of 400 and 1000 jLg/mL,
respectively. Flow cytometry analysis showed that a low concen-
tration of vanillin induce cell cycle arrest in GO/G1 phase whereas
a high concentration stops cells in G2/M phase (176). Pharma-
cokinetic studies on rat models demonstrated that vanillin has a
relatively good bioavailability (7.6%). Others studies have revealed
that 24 h after ingestion, vanillin is mainly metabolized as glu-
curonide and sulfate conjugates and that after 48 h, 94% of the
initial dose of vanillin is found under different forms, including
vanillin itself (7%) (177, 178).

Protocatechuic acid
Described by many articles as therapeutic molecules active against
several diseases, protocatechuic acid (Figure 2) was identified in
plants like True roselle (Hibiscus sabdariffa), Rhizoma homalome-
nae, Spatholobus suberectus, and Alpinia oxyphylla (100-103, 179).
Protocatechuic acid inhibits AGS (human stomach adenocar-
cinoma) cell migration and proliferation at non-toxic concentra-
tions. It can also inhibit the NF-kB pathway and both MMP-
2 expression and activity by modulating RhoB/protein kinase
Ce (PKCe) and Ras/Akt cascade pathways. Using in vivo mice
models (B16/F10 melanoma cells), anti-metastasis proliferation
of protocatechuic acid has been confirmed (104). Phenolic acid
induces cell death of HepG2 hepatocellular carcinoma cells and

stimulates c-Jun N-terminal kinase (JNK) and p38. Further exper-
iments have shown that pre-treatment of HepG2 with N-acetyl-
L-cysteine (NAC) blocks the cytotoxic effect of protocatechuic
acid (180). Protocatechuic acid doesn’t exert genotoxic effects
toward Drosophila melanogaster wing spot assay. However it shows
antigenotoxic effects against hydrogen peroxide inhibits tumorici-
dal activity and moreover triggers cell death by apoptosis in HL-60
leukemia cells (105).

Caffeic acid
Present in Vitis sp. seeds, pomegranate (P. granatum), coffee beans,
honey, common daisy (Bellis perennis), and hyssop (Hyssopus offic-
inalis), caffeic acid (Figure 2) is a secondary metabolite that exerts
anti-bacterial and anti-fungal properties (90, 106, 181, 182).
Caffeic acid is a ROS generator inducing oxidative DNA damage
and alters mitochondrial membrane potential in HT-1080 human
fibrosarcoma cells. It stimulates lipid peroxidation and decreases
activities of enzymatic anti-oxidants superoxide dismutase (SOD),
catalase (CAT), as well as glutathione peroxidase (GPx), and glu-
tathione (GSH) levels. Observations by fluorescence microscopy
showed that caffeic acid induces cell death by apoptosis (107). This
molecule is known to act as an inhibitor of DNA methylation due
to its ability to inhibit human DNA methyltransferase 1 (DNMT1)
and to partially inhibit retinoic acid receptor (RAR) b promoter
in MCF-7 and MAD-MB-231 cells (183). Caffeic acid is an anti-
inflammatory agent by decreasing expression of IL-8 and NF-kB
pathway activity by triggering TNF-alpha-induced IxB degrada-
tion that lead to a reduction of NF-kB target genes expression
which are regularly involved into carcinogenesis (108). Caffeic
acid decreases HCT 15 colon cancer cells in a time dependent
manner. It induces cell cycle arrest that leads to accumulation
of cells in sub-Gl. Inducing also ROS production and reduc-
tion of the mitochondrial membrane potential, flow cytometry
analysis confirmed cell death by apoptosis (109). Among sev-
eral small phenolic acids tested for their anti-proliferative effect
on T47D human breast cancer cells, caffeic acid exerts is most
potent. Further experiments showed that all compounds induce
apoptosis via the Fas/FasL pathway and that caffeic acid is able to
inhibit aryl hydrocarbon receptor-induced CYPIAI gene expres-
sion (120). However it is important to underline that chlorogenic
acid (Figure 2), a caffeic acid analog and a Venus flytrap sec-
ondary metabolite, can be hydrolyzed to caffeic acid in the intestine
and can be well absorbed by intestinal cells. In vitro and in vivo
studies showed that in Caco-2 cells, caffeic acid exerts stronger
anti-oxidant properties compared to chlorogenic acid. This dif-
ferential efficiency can be explained by the fact that caffeic acid
uptake is superior to chlorogenic acid uptake. Caffeic acid is a
molecule known to be metabolized by intestinal bacteria, how-
ever studies have shown that caffeic acid can be detected in rat
blood 6 h after ingestion together with different other metabolites.
Another study demonstrated that 95% of caffeic acid is absorbed
and that 11% of the ingested caffeic acid was excreted in urine
(182, 184-187).

Chlorogenic acid
Chlorogenic acid (Figure 2) has been isolated from a huge diver-
sity of plants like prune (Prunus domestica), japanese honeysuckle
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(Lonicera japonica), apple, plum, Eucommia ulmodies, and coffee
beans (110-112, 188—190).

In plants, chlorogenic acid is a secondary metabolite involved in
plant defense against pests, herbivores, fungi, or virus (191-194).

Human adenocarcinoma Caco-2 cells treated with chlorogenic
acid present a reduced proliferation rate and light microscopy
observation reveals an abnormal morphology compared to
untreated cells (195). Chlorogenic acid induces apoptosis by
inducing ROS generation and reduces the mitochondrial mem-
brane potential in U937 human leukemia cells. Further results
obtained by Western-Blot show that chlorogenic acid promotes
caspase-3 activity and expression of caspase-3, 7, 8, and 9 in U937
cells (113). Chlorogenic acid can induce DNA damage in both
normal lung MRC5 fibroblasts and A549 lung cancer cells and
increases the levels of topoisomerase I- and topoisomerase [I-DNA
complexes in cells although cancer cells were the most sensitive to
chlorogenic acid treatment (196). This compound also acts as an
anti-oxidant reducing free radical DNA damages like DNA-single
strand breaks (110, 197).

Chlorogenic acid has a very low bioavailability but is always
present in the small intestine. It can only be detected in rat plasma
with other metabolites in trace amounts 6 h after absorption.
Another study has given the same result, chlorogenic acid has a
rate of absorption of 33% and is detected only in trace amounts in
rat urine. Studies showed that chlorogenic acid is not well absorbed
by the organism compared to structurally related caffeic acid. Caf-
feic acid metabolism produces caffeic and ferulic acid, two other
secondary metabolites of D. muscipula (184-186).

Ferulic acid
Ferulic acid (Figure 2) has been identified mainly in seeds like
Vitis sp. seeds brown rice, but also wheat flour, pineapple, creosote
bush (Larrea divaricata). Ferulic acid is an allelopathic agent that
acts as seed germination inhibitor (98, 99, 90, 198-202, 222).
Ferulic acid pre-treatment protects against y-radiation-
induced DNA damage in hepatocytes and significantly increases
anti-oxidant enzymes, GSH, vitamins A, E, and C (203). In vivo
studies have shown that mammary carcinogenesis induced in
Sprague—Dawley rats fed with ferulic acid prevent tumor devel-
opment in 80% of animals even if the exact protection mech-
anism remains unclear (204). Further animal experimentations
on induced skin carcinogenesis mice model highlighted that oral
ferulic acid administration completely prevented skin tumor for-
mation but that topical application does not (205). Ferulic acid
delayed cell cycle progression of Caco-2 colon cancer cells. cDNA
microarrays showed that ferulic acid up-regulates centrosome
assembly genes, such as RABGAPI and CEP2 and S phase check-
point protein SMCILI (206). Moreover, ferulic acid acts as an
anti-oxidant that can reduce DNA strand breaks induced by y-
irradiation in peripheral blood leukocytes and bone marrow cells
of mice. It promotes mice survival up to 6 Gy of y-radiation (114,
207). Ferulic acid is absorbed by the intestine and can be detected
in the blood of rat and human patients. Further studies showed
that ferulic acid can be absorbed very quickly all along the gas-
trointestinal tract, can be detected in plasma already after 10 min
and less than 1% of ingested ferulic acid can be found in rat feces. It
can be metabolized under different forms including glucuronides,

sulfates, and sulfoglucuronides conjugated forms, formed in the
liver by different phase II enzymes reduce bioavailability (202,
208).

Salicylic acid

Already used by the Greeks and the Egyptians to treat aches and
pains, this compound was initially isolated from willow tree bark
by Buchner (Figure 2) in 1898. The isolated active principle was
named from the Latin word “Salix” which means willow tree.
Salicylic acid has been identified as the main metabolite of acetyl-
salicylic acid, the active principle of aspirin. Salicylic acid is a
phytohormone that plays important roles in plant immune sys-
tem, thermogenesis (heat production), root nodule formation but
also more essential process like metabolism, flowering, and seed
germination. Due to its important role, salicylic acid is found in
almost all plants (115,209-213).

Salicylic acid has no effect on CaCo-2 (colon carcinoma cells)
proliferation under normoxic conditions but increases caspase-3/7
activities and increases phosphorylation of ERK 1/2 under hypoxic
conditions: salicylic acid increases caspase-3/7 activities but also
decreases cell proliferation but has no effect on ERK 1/2 phos-
phorylation (116). In vitro assays have shown that salicylic acid
reversibly inhibits 6-phosphofructo-1-kinase, an enzyme respon-
sible for the glycolysis. It dissociates the quaternary structure of
the enzyme into inactive dimers. Tested on MCF-7 cells, salicylic
acid inhibits 6-phosphofructo-1-kinase that leads to a decreased
cellular glucose consumption and viability (117). Anacardic acid, a
derivative of salicylic acid and an inhibitor of histone acetyltrans-
ferase, is an anti-inflammatory compound like its precursor. It
blocks the NF-kB pathway by abrogation of phosphorylation and
degradation of IkBa and by inhibiting acetylation and nuclear
translocation of its p65 subunit. Inhibition of the NF-kB pathway
leads to down-regulation of target genes involved in cell prolifer-
ation (cyclin D1, COX-2), survival (Bcl-2, Bcl-xL), and invasion
(MMP-9) (213, 214). Several clinical trials analyzed the effect of
salicylic acid on colorectal cancer patients. Results show thata dose
of 75 mg of aspirin per day during several years reduces colorectal
cancer incidence and mortality (215).

FLAVONOIDS

Flavonoids are secondary metabolites of the polyphenol family
with a backbone composed of 15 carbon atoms organized into a
common phenyl benzopyrone structure (C6-C3-C6). This group
of molecules is divided into several sub-groups according to their
chemical formulations including flavonols (quercetin, myricetin,
and kaempferol), flavones, flavanones, flavanols, anthocyanins,
dihydroflavonols, isoflavones, and chalcones. Their roles within
plants are very diverse. Some have a protective role against UV, but
also toward parasites, pathogens (insecticides, fungicides, vermi-
cides) and herbivores. Other molecules act as signal molecules or
help the plant to survive under stress conditions (drought period,
nutrient-poor environment) (216).

Quercetin

Quercetin (Figure 2) is a molecule with anti-bacterial properties
present in bitter orange tree flowers ( Citrus aurantium), Epilebium
species, Nepenthes gracilis, Leucaena leucocephala, S. purpurea,
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caper (Capparis spinosa), and chili peppers (Capsicum sp.) (64,
86,121,217-221). In plants, quercetin acts as a host defense mole-
cule and a growth stimulatory agent, it is a nematode repellant, an
anti-microbial agent, a root nodules inducer, an allelopathic agent,
and a hyphal branching attractor for symbiotic fungus (223).
Concerning its biological properties as anti-cancer agent,
quercetin has been the object of many studies (224). For example,
this flavonol has been described as an anti-proliferative agent by
inducing cell cycle arrest in G2/M and as an apoptotic agent due
to its ability to inhibit the transcriptional activity of the Wingless
pathway (Wnt) by reducing the amount of transcriptional co-
activator B-catenin in the nucleus in SW480 colon cancer cells and
by reducing the level of cyclin B1 and surviving (122, 123). In vitro
experiments have shown that a concentration of 2 uM of quercetin
is sufficient to decrease 80% of the activity of 16 kinases, which
are mostly involved in the control of mitotic processes (225). This
secondary metabolite is also responsible for the induction of cell
death by apoptosis of hepatocellular carcinoma cells after activa-
tion of caspases 3 and 9 (226). Quercetin used in combination
with 5-fluorouracil (5-FU) on EC9706 and Ecal09 esophageal
cancer cells increased the cytotoxic effect and the percentage of
apoptotic cells compared to quercetin or 5-iFU alone. These com-
bined effects were explained by a decrease of p-IkBa expression
induced by quercetin treatment (227). Quercetin is also known
to induce cell cycle arrest in G2/M and to induce cell death in
human HeLa cervical cancer cells by mitochondrial apoptosis
through a p53-dependent mechanism. These results also showed
that quercetin can inhibit the NF-kB pathway by modulating the
expression of NF-kB p50 and p65, IKKB, p-IkB, and ubiquitin.
Other results obtained by Western-blot have shown an increase
of pro-apoptotic Bcl-2 family proteins (Bax, Bak, and Bad), an
up-regulation of Apaf-1 and cytoplasmic cytochrome ¢ and a
down-regulation of anti-apoptotic Bcl-2 family proteins (Bcl-2,
Mcl-1) (124). Moreover Spagnuolo and collaborators demon-
strated in addition, in U937 cells, a down-regulation of Mcl-1
by quercetin acting directly or indirectly on its mRNA stability
and protein degradation (228). A study performed on HeLa cells
showed that quercetin has the ability to interact with DNA and to
generate ROS. This flavonol triggers a cell arrest in G2/M, followed
by mitochondrial membrane depolarization, externalization of
phosphatidyl-serine, release of cytochrome ¢ into the cytoplasm,
decrease of Akt and Bcl-2 expression and cell death by apoptosis
(125). A large Swedish population-based case-control study has
shown that quercetin uptake decreases the risk to develop gastric
adenocarcinoma. This protective effect was very strong for female
smokers (229). Quercetin has been tested in several clinical trials
on cancer patients. It has been tested in a chemoprevention pur-
pose on 130 colon cancer patients treated with quercetin, rutin, or
with sulindac (NCT00003365). Phase I clinical trials have shown
that quercetin inhibits protein tyrosine phosphorylation in patient
lymphocytes, is able to decrease CA-125 (Carbohydrate antigen
125) level in patients with ovarian cancer refractory to cisplatin
and serum alpha-fetoprotein (AFP) levels in hepatocellular carci-
noma patients (230). Quercetin is also actually undergoing clinical
trials with genistein to evaluate their effects on prostate-specific
antigen level on prostate-cancer patients (NCT01538316). Phar-
macokinetic analysis performed on humans and rats have shown

that quercetin has a very low bioavailability. In human, after an
ingestion of about 87 mg of quercetin, average plasma concentra-
tion is 344 nM after 3 h. Results have also shown that quercetin is
no longer present in the aglycone, free form but is metabolized, and
can only be detected as conjugated derivatives like quercetin glu-
curonides or quercetin 3-O-sulfate. However after further analysis
Manach et al. showed that these quercetin derivatives maintain
anti-oxidant activity although their effect were reduced to half of
the quercetin (231-233). Sesink et al. showed that breast cancer
resistance ABCG2 and the multidrug resistance-associated protein
2 (Mrp2), two ATP-binding cassette (ABC) transporters involved
in drug cancer resistance are able to pump both quercetin agly-
cone and quercetin conjugated derivatives out of the cells and thus
explain the low bioavailability of quercetin (234).

Myricetin

Myricetin (Figure 2) is a quercetin analog present in many plants
as for example Limonium axillare, Jatropha curcas, Japanese cypress
(Chamaecyparis obtusa), Leucaena leucocephala, and many berries
(60, 128,129, 218, 235). In plants, myricetin acts as a host defense
molecule, is released by roots and acts as a nematode repellent and
an inducer of root nodules in several cases (223).

Thisis a flavonol that exerts anti-bacterial (217) and anti-cancer
properties which is able to inhibit mutagenesis induced by carcino-
gens such as benzo(a)pyrene (236). Myricetin is able to induce
apoptosis of pancreatic cancer cells via the activation of caspase-3
and 9 (130). It induces apoptosis of human bladder carcinoma
cell line T-24 with activation of caspase-3 after DNA cleavage and
cell cycle arrest in G2/M phase by a down-regulation of cyclin Bl
and cdc2. It inhibits the phosphorylation of Akt but increases the
phosphorylation of p38 and decreases MMP-9 expression. In vivo
experiments have shown a growth inhibition of T-24 xenografts
on mice models (131). Myricetin is also able to induce apopto-
sis in HL-60 (human promyelocytic leukemia cells) through an
ROS-independent cell death pathway (237). In vitro experiments
have shown an inhibition of mammalian DNA polymerases and
human DNA topoisomerase II by myricetin. Further experiments
have revealed that it also inhibits proliferation of HCT-116 human
colon carcinoma cells and trigger apoptosis after a cell cycle arrest
in G2/M cell cycle transition (238). Recent studies have shown
that a non-toxic dose of myricetin decreases PI3 kinase activ-
ity in pancreatic cancers cells MIA PaCa-2, Panc-1, or $2-013
and triggers cell death by apoptosis. In vivo experiments per-
formed on mice have shown a regression of tumor growth and
a decrease of metastasis (239). In rat models, myricetin is able
to inhibit cytochrome P450 (CYP) activity in liver or intestine
and thus to increase bioavailability of tamoxifen, a drug used to
treat breast cancer. Similar results were observed for doxorubicin
(240, 241).

Kaempferol

Kaempferol (Figure 2) is a flavonol identified in many plants

like Nepenthes gracilis, chili peppers, Gynura medica, Bracken

(Pteridium aquilinum), Ginkgo biloba (64, 126,132,219,242,243).
Involved into plant defense, kaempferol has been described

as a nematode repellent, nematode egg hatching inhibitor, and

allelopathic agent (223).

www.frontiersin.org

August 2013 | Volume 3 | Article 202 | 9


http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive

Gaascht et al.

Cancer prevention and therapy by Dionaea

From a therapeutic point of view, anti-cancer properties of
kaempferol have been underlined by many papers (132, 244).
A concentration of 40 wM of kaempferol is sufficient to inhibit
proliferation of oral cancer cell lines (SCC-1483, SCC-25, and
SCC-QLL1). Analysis has shown PARP-cleavage and caspases-3-
dependent apoptosis (126). Kaempferol inhibits ovarian cancer
cells and induces cell death by apoptosis in a dose-dependent
manner. Luo etal. observed caspase-3 and 7 cleavage that was abro-
gated by caspase 9 inhibitor that confirmed the extrinsic caspase-
dependent cell death mechanism. Western-Blot analysis showed an
up-regulation of pro-apoptotic proteins Bax and Bad and a down-
regulation of anti-apoptotic protein Bcl-xL (133). The same team
analyzed effects of kaempferol on VEGF expression in ovarian can-
cer cells. Results show that this flavonol inhibits time-dependently
VEGF secretion and angiogenesis. It also down-regulates phospho-
ERK concomitant with c-myc and NF-kB expression through
ERK signaling pathway (134). They also developed different
kaempferol nanoparticles and have tested their efficiency on can-
cerous and normal ovarian cells. PEO [poly(ethylene oxide)], PPO
[poly(propylene oxide)], PEO poly(ethylene oxide) decreases both
ovarian cancer and healthy cell viability. On the opposite (PLGA)
[Poly(DL-lactic acid-co-glycolic acid)] exerts selective cytotoxic
effect on cancer cells only. However, all kaempferol nanoparti-
cle formulations were able to reduce cancer cell viability better
than kaempferol alone (245). Pharmacokinetic in vivo studies
performed on human and rats have revealed that kaempferol is
mainly absorbed in the small intestine and is metabolized to glu-
curono and sulfo-conjugated forms in the liver. Results have shown
that kaempferol has a very poor bioavailability (2%) and that
after ingestion of several mg of kaempferol, it is only detected
at nanomolar levels in plasma and it should be emphasized that
most in vitro studies were conducted at micromolar concentra-
tions (132, 231, 246). It has also been showed that kaempferol
can be converted into its analog, quercetin (Figure 2) by the
enzyme CYP1AIl in rats (247). Although cancer cells are able
to eliminate compounds like quercetin, it has been shown by
Sesink et al. that kaempferol blocks Bcrp-mediated quercetin
efflux by competitive inhibition (234, 248). Based on this dis-
covery, it has been shown that kaempferol enhances the effect of

cisplatin in ovarian cancer cells and of etoposide in rat models
(249, 250).

CONCLUSION

This review has presented the different known chemopreventive
and therapeutic agents isolated from D. muscipula. At the present
time, more than 15 compounds (Figure 2) have been isolated from
D. muscipula, mostly flavonoids, and phenolic compounds. Most
of these secondary metabolites are also present in other plants and
up to now, only one D. muscipula-specific molecule with ther-
apeutic potential has been isolated from Venus flytrap, diomus-
cipulone (Figure 2). But this naphthoquinone has not yet been
tested for its biological properties like several others compounds as
diomuscinone, droserone, 3-chloroplumbagin, and hydroplumba-
gin 4- O-B-glucopyranoside or p-coumaric acid (Figure 2) which
are also present in other plants. Many of these anti-cancer com-
pounds present in D. muscipula have been described as NF-kB
pathway modulators like plumbagin, ellagic acid, or salicylic acid.
The reason is that the NF-kB pathway is an interesting anti-cancer
drug target due to its involvement into the development and
the progression of many cancers (251-253). However it’s impor-
tant to keep in mind that the NF-kB pathway is not responsible
for all types of cancer and that there are many other pathways
and phenomena involved in cancer development and progression
that can be the targets for drugs of natural origins (18, 19, 28,
251,254, 255).

Currently only several compounds like quercetin, salicylic acid,
and kaempferol have moved to pharmacokinetic studies and clin-
ical trials (Table 2). All results have shown that these compounds
have a very poor bioavailability that can be explained by several
reasons. Plant secondary metabolites are often recognized as xeno-
biotics by the organism and are rapidly detoxified by gut flora
or enzymes and eliminated from the organism. Intestinal bac-
teria are known to metabolize drugs before their absorption by
the organism. Some drugs can be directly metabolized by the
organism or can be conjugated and transformed into an inac-
tive molecule before reaching their target. However several studies
have shown that it is possible that this defense mechanism can
lead to the conversion of an inactive molecule into another one

Table 2 | Clinical trials involving natural compounds present in Dionaea muscipula Solander ex Ellis.

Chemical class Compound Trial name Disease Status Identifier
Phenolic acids Ellagic acid Dietary intervention in follicular lymphoma Follicular lymphoma Unknown NCT00455416
Caffeic acid FLAX FX, A research study of the effects of Colon cancer Recruiting NCT01619020
flaxseed lignans on colon health
Ferulic acid FLAX FX, A research study of the effects of Colon cancer Recruiting NCT01619020
flaxseed lignans on colon health
Flavonoid Quercetin Prostate-cancer prevention trial with quercetin and Prostate cancer Recruiting NCT01538316
genistein (QUERGEN)
Sulindac and Plant compounds in preventing colon Colon cancer Terminated NCT00003365

cancer

The table was generated by using data available from the website http.// clinicaltrials.gov
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like kaempferol into quercetin. Moreover, it is known that can-
cer cells use drug resistance mechanisms like ABC transporter
efflux pumps to down-regulate intracellular drug levels. It is very
important to take theses mechanisms into consideration to under-
stand and develop cancer drugs of natural origins but also all
other kinds of drugs. New secondary metabolites generated by
the organism during drug metabolism by bacteria, the organism
itself, or cancer cells should be identified and taken into consid-
eration. It is also very important to underline that due to the
low bioavailability of several of these compounds, they are only
present in nanomolar concentration in plasma while in many
studies, a concentration in milli or micromolar is used to treat
cells in in vitro conditions and to obtain an effect. However, it
has been shown that co-treatment of two natural molecules like
quercetin and kaempferol and a chemotherapeutic drug like cis-
platin or etoposide is more efficient than a single treatment thanks
to the ability of the natural compound to block ABC transporters.
Low bioavailability and incompletely absorbed compounds are
ineffective against metastatic and invasive cancers.

One of the most promising anti-cancer compounds is probably
plumbagin. It has been shown that plumbagin induces cell death,
affects many hallmarks of cancer, interacts directly with cancer
targets like tubulin, inhibits ABC transporters, is well absorbed by
the organism and can be present in the organism at a micromolar
concentration. We have to underline that plumbagin is used for
centuries in traditional medicines and is present in many plants
that can explain that plumbagin is more studied than other Venus
flytrap compounds.

Most natural compounds isolated from D. muscipula like
plumbagin, quercetin, myricetin, ellagic acid, or vanillin have mul-
tiple effects and act as anti-cancer drugs with multiple targets
on different types of cancers. However, as in many cases, direct
drug targets are often unknown and there are several reasons that
can explain this situation. Plant secondary metabolites are usually
small molecules compared to their protein targets and analytical
methods have only been developed recently and this step is usually
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the most challenging, expensive and the most time consuming in
the drug development process. On one hand, the development
of new methods, techniques, and devices like high-throughput
screening but also of new biological discoveries (new organism,
interspecies interactions) will lead to new molecule discovery in
already known organisms but also in new species (256-260). On
the other hand, discovery of new anti-cancer drug targets, new
visions, and new approaches of cancer development by biologi-
cal experiments as for example identification of immediate drug
direct protein and nucleic acid targets by Drug Affinity Responsive
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of these promising therapeutic compounds (255, 268-272).

Data presented here show that Nature can be considered an
impressive medicinal cabinet that remains to be entirely discov-
ered, improved and used by researchers to hit the right targets.
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