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Poly(ADP-ribose) polymerase 1 (PARP1) is an important component of the base excision
repair (BER) pathway as well as a regulator of homologous recombination (HR) and non-
homologous end-joining (NHEJ). Previous studies have demonstrated that treatment of
HR-deficient cells with PARP inhibitors results in stalled and collapsed replication forks.
Consequently, HR-deficient cells are extremely sensitive to PARP inhibitors. Several expla-
nations have been advanced to explain this so-called synthetic lethality between HR
deficiency and PARP inhibition: (i) reduction of BER activity leading to enhanced DNA
double-strand breaks, which accumulate in the absence of HR; (i) trapping of inhibited
PARP1 at sites of DNA damage, which prevents access of other repair proteins; (iii) failure
to initiate HR by poly(ADP-ribose) polymerdependent BRCA1 recruitment; and (iv) acti-
vation of the NHEJ pathway, which selectively induces errorprone repair in HR-deficient
cells. Here we review evidence regarding these various explanations for the ability of PARP
inhibitors to selectively kill HR-deficient cancer cells and discuss their potential implications.

Keywords: PARP inhibitor, synthetic lethality, non-homologous end joining, homologous recombination, BRCA1,
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INTRODUCTION

Poly(ADP-ribose) polymerase (PARP) inhibitors are currently
undergoing extensive testing as potential anticancer agents (1—
13). These drugs were initially developed as modulating agents
that could enhance the cytotoxicity of DNA damaging treatments
such as ionizing radiation and temozolomide (1, 12, 14). Interest
in these agents was heightened by the demonstration that BRCAI-
and BRCA2- (BRCA1/2-) mutant cancer cells are selectively killed
by single-agent PARP inhibitor treatment (15, 16). Consistent
with these preclinical observations, the PARP inhibitor olaparib
has exhibited substantial single-agent activity in BRCA1/2-mutant
breast and ovarian cancer (17-21). Nonetheless, fewer than 50%
of patients with BRCA1/2-mutant cancers respond to these drugs,
raising important questions about identifying patients most likely
to derive benefit from PARP inhibition (22, 23). With this in
mind, extensive efforts have been directed at further refining the
mechanism of cytotoxicity of PARP inhibitors and elucidating
mechanisms of resistance.

To provide a context for discussing the selective killing of
BRCA1/2-deficient cells by PARP inhibitors, we first briefly out-
line what is known about the PARP family of enzymes and the
repair of DNA double-strand breaks. We then describe and discuss
four models that have been proposed to account for the selec-
tive killing of homologous recombination (HR)-deficient cells by
PARP inhibitors.

PARPs: A FAMILY OF ADP-RIBOSYLTRANSFERASES
The molecular biology and biochemistry of the PARP family of
ADP-ribosyltransferases have been extensively reviewed elsewhere

(24-33) and will only briefly be summarized here. Originally
described in the 1960s (34-36), PARP1 is the founding member
of a family of enzymes (37, 38) that transfer ADP-ribose moieties
from the dinucleotide NAD™ to polypeptide acceptors, thereby
catalyzing either mono- or poly(ADP-ribosyl)ation of polypep-
tide substrates (24, 39, 40). Although 18 members of the PARP
family have been identified in mammalian cells (24, 25), only 6 are
known to synthesize poly(ADP-ribose) polymers (1,25,41). Three
of these family members, PARP1, PARP2, and PARP3, have been
implicated in DNA repair (31). Of these, PARP1 is the most abun-
dant (up to 10° copies/nucleus) and has been shown to play critical
roles in DNA repair, epigenetic modification of chromatin, regu-
lation of genomic stability, modulation of cellular energy pools,
the regulation of transcription, and a distinct form of cell death
termed parthanatos (25-32, 42).

Although other PARPs might play an important role in the
response to PARP inhibitors (43), existing models of PARP
inhibitor-induced cytotoxicity emphasize the role of PARPI.
Moreover, despite the well-established effects of PARP1 modu-
lation on transcription (28), chromatin structure (26, 28, 44), and
energy metabolism (1, 30, 33), current explanations for the lethal-
ity of PARP inhibition in HR-deficient cells focus solely on the role
of PARP1 in DNA repair.

In response to certain types of DNA damage — particularly
DNA nicks and double-strand breaks — PARP1 catalytic activity
increases as much as 500-fold (41, 45, 46). This activation reflects a
recently described conformational change that is transmitted from
the DNA binding domains at the N-terminus of the PARP1 mol-
ecule through intervening domains to the catalytic domain at the
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C-terminus, resulting in altered alignment of critical residues in
the active site (41,47, 48). Once activated, PARP1 adds poly(ADP-
ribose) moieties to a wide range of nuclear proteins, including
histones, topoisomerases, and other non-histone chromatin pro-
teins, although PARP1 itself is the major protein that is covalently
modified (41, 49). The resulting poly(ADP-ribose) polymers not
only alter the function of the covalently modified proteins (49—
52), but also serve as a new binding site for other nuclear proteins
(32, 41, 53-55).

Through this ability to synthesize poly(ADP-ribose) polymer,
which covalently or non-covalently interacts with a variety of
nuclear proteins, PARP1 contributes to a number of different steps
in DNA damage response pathways. In its most extensively studied
role, PARP1 is essential for base excision repair (BER) (56-58), a
process involving the removal of a single damaged base and sub-
sequent restoration of DNA integrity (59, 60). After recruitment
to the damaged DNA, PARP1 recruits the scaffolding protein X-
ray cross complementing protein 1 (XRCC1) (57, 61), which in
turn binds to various BER proteins, bringing together a vari-
ety of components required for efficient repair of different base
lesions (59, 62).

The involvement of PARP1 in DNA repair is not limited to
XRCCI1 recruitment during BER. PARP1 has also been reported to
play a critical role in HR (63—-65), including recruitment of MRE11
and NBS1 to DNA double-strand breaks (66), and to competitively
inhibit the classical non-homologous end-joining (NHE]) path-
way by preventing Ku binding to free DNA ends (67). In addition,
PARPI plays a critical role in restarting replication forks that stall
as a consequence of nucleotide depletion or collisions with bulky
lesions (68—71). Any or all of these roles of PARP1 in DNA repair
might be important in understanding the cellular effects of PARP
inhibitors.

HOMOLOGOUS RECOMBINATION

In order to understand the models that currently describe the
action of PARP inhibitors in HR-deficient cells, we also briefly
review the process of HR itself. When DNA double-strand breaks
form, two pathways compete to repair them (Figure 1): HR, which
is a high fidelity pathway, and NHE], which is error-prone. Accord-
ing to current understanding (60, 72, 73), the HR pathway is
activated when components of the MRN (MRE11/Rad50/Nbs1)
complex bind to DNA double-strand breaks. In brief, Nbs1 brings
its binding partners MRE11 and Rad50 to the nucleus, where the
complex binds to double strand breaks (74). This MRN complex
then recruits phosphorylated CtIP, which activates the exonucle-
ase activity of MRE11 (75-78). After activated MRE11 resects
one strand of the DNA to generate relatively short 3’ single-
stranded DNA (ssDNA) tails, two different exonucleases, Exol
and DNA2, extend the single-stranded tails to a length of sev-
eral thousand basepairs by continuing the resection (79, 80).
The resulting ssDNA is rapidly bound by the ssDNA binding
protein replication protein A (RPA), which is then replaced by
Rad51 to form a nucleofilament as described in greater detail
below. This Rad51-ssDNA complex facilitates homology search-
ing and invasion of the ssDNA into homologous duplex DNA
sequences of its sister chromatid. Once the resected ends are
annealed to complementary strands, intervening sequence is

synthesized using the intact strand as a template and ligated into
place (81).

A critical step in the HR pathway is the loading of Rad51 onto
ssDNA. This step is the culmination of a long series of reactions
(Figure 1) that are triggered in response to DNA damage (72,
82). Once the MRN complex binds to DNA double-strand breaks,
it also recruits and activates the DNA damage-activated kinase
ATM, resulting in ATM autophosphorylation followed by sequen-
tial phosphorylation and recruitment of the histone variant H2AX,
the “mediator” (scaffold) protein MDC-1, and several other pro-
teins, including the tumor suppressor protein BRCAL, to sites of
DNA damage (73, 82). Partner and localizer of BRCA2 (PALB2)
binds to the C-terminus of BRCA1 and N-terminus of BRCA2, cre-
ating a bridge to recruit BRCA2 to sites of DNA damage. BRCA2
then binds phosphorylated Rad51, targeting active Rad51 to the
ssDNA (83).

This entire HR process is tightly linked to cell cycle progression
in multiple ways (84). First, BRCA2 and Rad51 are only expressed
in S and G2 phases of the cell cycle, making HR impossible in G1
(76). Second, the cyclin-dependent kinase CDK2, which is active
primarily at the G1/S transition and in S phase, catalyzes a priming
phosphorylation of CtIP that is required before DNA damage can
induce CtIP binding to MRN and subsequent MRE11-initiated
end resection (85, 86). Finally, GO and GI cells have not repli-
cated their DNA and, therefore, lack sister chromatids that provide
homologous sequences for HR.

HR DEFICIENCY DEFINES CERTAIN MALIGNANCIES

The complex HR process can be interrupted at any of a number of
steps. In particular, HR fails to occur efficiently if genes encoding
components of the MRN complex, CtIP, ATM, MDC-1, H2AX,
PALB2, BRCA1, BRCA2, or Rad51 are silenced or mutated at criti-
cal residues. Mutations that disable these proteins, as well as other
participants in the HR process, are often found in cancers (73). In
high-grade serous ovarian cancer, for example, BRCAI and BRCA2
mutations are found in roughly 15% of cases, with mutations in
another dozen or more HR genes found in an additional 10-15%
of cases (87—89). While some of these mutations are familial, as
many as half appear to be sporadic (89, 90). These mutations
and the resulting genomic instability are a hallmark of high-grade
serous ovarian cancer (90). Likewise, mutations in BRCAI, BRCA2,
PALB2, and other components with the HR pathway are common
in familial and certain subtypes of sporadic breast cancer, par-
ticularly triple negative breast cancer (91-93). PTEN is deleted
or silenced in over 50% of endometrial cancers and a substantial
fraction of glioblastomas and prostate cancers (94-97).

Early studies found that BRCAI- or BRCA2-deficient cells
are hypersensitive to PARP inhibitors (15, 16). In particular,
cells lacking BRCA1 or BRCA2 were more susceptible to PARP
inhibitor-induced apoptosis and showed more profound growth
inhibition when treated as xenografts in nude mice (15, 16). Sub-
sequent investigation demonstrated that cells deficient in other
HR components, including NBS1, ATM, ATR, Chkl, Chk2, Rad51,
Rad54, FANCD2, FANCA, PALB2, or FANCC, are also hypersen-
sitive to PARP inhibitors (98—100). Moreover, cells lacking the
lipid phosphatase PTEN were shown to be deficient in Rad51
expression (101, 102), also leading to PARP inhibitor sensitivity
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DSB

FIGURE 1 | A simplified model for NHEJ and HR. WWhen a DNA
double-strand break (DSB) occurs during G1, it is repaired via NHEJ (right).
This process involves the following steps: (1) the Ku70/80 heterodimer detects
and binds to the DSB; (2) Ku70/80 bound to the DSB recruits DNA-PKcs; (3)
DNA-PKcs undergoes autophosphorylation, favoring the processing of DNA
ends by Artemis; and (4) the XRCC4/DNA ligase IV complex ligates the
processed DNA ends. Additional details regarding NHEJ can be found in refs
(109-111). In contrast, when a DSB occurs during the S and G2 phases of the
cell cycle, repair occurs preferentially via the HR pathway (left), which involves
the following steps: (1) PARP1 binds to the DSB (48) and competes with Ku
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binding to DNA ends (67); (2) the MRN complex is recruited (66) to the DSB
(together with CtIP and BRCA1/BARD1) and mediates the initial stages of
DSB resection; (3) extensive end resection is catalyzed by EXO1 and
DNA2/BLM (79, 80), resulting in long stretches of ssDNA,; (4) this ssDNA is
coated by RPA; (5) the BRCA2/PALB2/BRCAT complex facilitates replacement
of RPA with Rad51 (73, 81); (6) RAD51 filaments induce strand invasion into
homologous DNA sequences; (7) DNA polymerization occurs using the sister
chromatid as a template; and (8) resolution of the resulting complexes
produces an exact copy of the template where the DSB was generated.
Additional details of the HR process can be found in Refs. (60, 72, 73).

(102). Accordingly, the demonstration that PARP inhibitors are
active, relatively non-toxic anticancer agents (17-21) led to sub-
stantial enthusiasm for developing these agents to treat a variety
of neoplasms that exhibit HR deficiency.

Given the tantalizing preclinical and early clinical activity of
PARP inhibitors in HR-deficient tumors, there has also been sub-
stantial interest in inducing a state of temporary HR deficiency

in hopes of sensitizing cancers that lack inactivating mutations
in the Fanconi anemia (FA)/HR pathway. Previous studies have
demonstrated that this can be accomplished by treating cells
with epidermal growth factor receptor inhibitors (103) or cyclin-
dependent kinase inhibitors (104), which promote BRCA1 traf-
ficking from the nucleus to the cytoplasm; phosphatidylinositol-3
kinase inhibitors, which downregulate Rad51 (105) or BRCAI and
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BRCA2 (106); ATR inhibitors, which diminish replication stress-
induced activation of cell cycle checkpoints and repair (107), or
even possibly PARP inhibitors themselves (108). Whether this
pharmacological inhibition of HR will sensitize cancer cells in the
clinical setting as effectively as inactivating mutations in FA/HR
pathway genes remains to be determined.

NHEJ AS AN ALTERNATIVE MECHANISM OF DNA REPAIR

In addition to HR, which is a high fidelity repair process, cells
also can employ the more error-prone NHE] pathway to repair
double-strand breaks. In essence, NHE] is a process that detects
free DNA ends, trims incompatible DNA, and directly ligates the
double helix to restore DNA integrity (Figure 1). As reviewed
elsewhere (109-111), this process involves initial binding of the
Ku70/Ku80 heterodimer to free DNA ends, resulting in recruit-
ment of the large serine/threonine kinase DNA-PKcs. Once bound
to the DNA terminus, DNA-PKcs phosphorylates itself as well as
a number of enzymes that can process DNA ends, including the
nuclease Artemis, polynucleotide kinase phosphorylase, and DNA
polymerases. Finally, the DNA ends are ligated by the DNA ligase
IV/XRCC4 complex. Because cells in G1 lack both the DNA sub-
strate and much of the protein machinery required for HR, NHE]
is the major pathway used for DNA double-strand break repair
during GO and G1. Moreover, this pathway is thought to play a
major role in DNA repair when HR is impaired.

Previous studies have demonstrated that the NHE] pathway
is regulated in a number of ways. First, a complex containing
the large scaffolding protein 53BP1 and its binding partner Rifl
inhibits accumulation of BRCA1 and the HR regulator CtIP at
sites of DNA damage, thereby facilitating NHE] in preference to
HR (112-115). Second, ATM-mediated phosphorylation modu-
lates the activity of the NHE] nuclease Artemis (111). Third, Ku70,
Ku80, and DNA-PKcs have all been previously identified as bind-
ing partners of poly(ADP-ribose) polymer (pADPr) (54, 57); and
more recent studies suggest that other NHE] components such as
XRCC4 and Artemis also interact with pADPr (55). Additional
studies have indicated that pADPr inhibits the NHE] pathway,
providing a starting point for one of the models describing the
cytotoxicity of PARP inhibitors (15, 116).

CHOICE BETWEEN HR AND NHEJ

Several factors determine whether a DNA double-strand break is
repaired by HR or NHE] (117, 118). The lack of BRCA2, Rad51,
and a suitable sister chromatid as a template prevent HR during
the GO and G1 phases of the cell cycle. During S and G2 phases, on
the other hand, there is a competition between HR and NHE]. For
example, Ku70 and Ku80 binding impairs double-strand break end
resection, whereas resection prevents binding of the Ku70/Ku80
complex (119, 120). Additional studies have shown that MRN
plays a primary role in removing or displacing Ku from DNA
ends to allow resection to take place. When damage occurs during
the GI phase of the cell cycle, the 53BP1/Rifl complex restricts
CtIP recruitment and stimulation of MRE11-mediated resection
as described above, thereby facilitating NHE]J (112-115). During
the S and G2 phases of the cell cycle, on the other hand, Rifl is
inhibited by a BRCA1-CtIP complex, allowing HR to occur. These
competing interactions illustrate the complexity of processes that

regulate DNA repair and provide an explanation for the observa-
tion that mechanisms involved in DNA double-strand break repair
shift from NHE] to HR during S phase (121).

CURRENT EXPLANATIONS FOR THE SELECTIVE
CYTOTOXICITY OF PARP INHIBITORS IN HR-DEFICIENT CELLS
The seminal observation that PARP inhibitors selectively kill
BRCA1/2-deficient cells in preclinical models (15, 16) was rapidly
followed by the demonstration that PARP inhibitors exhibit clini-
cal activity against BRCA1/2-mutant tumors (17-20). At least four
different explanations have been advanced to explain this so-called
synthetic lethality.

BER INHIBITION

Because PARPI plays a critical role in BER (122, 123), initial
explanations for the ability of PARP inhibitors to selectively kill
HR-deficient cells focused on the interplay between BER and HR.
According to this classical view [Figure 2A, see also Ref. (124,
125)], DNA damage induced by reactive oxygen species or replica-
tion errors results in DNA single-strand breaks, which ordinarily
would be repaired by the BER pathway. Inhibition of PARP is pos-
tulated to cause persistence of these single-strand breaks, which are
then converted to DNA double-strand breast as a consequence of
interactions with transcription complexes and advancing replica-
tion forks. In HR proficient cells these DNA double-strand breaks
would be repaired by HR. In the absence of BRCA1, BRCA2, or
other HR components, however, impaired repair would result in
persistence of these breaks and lethality. Accordingly, cells with
fully active PARP1 or an intact HR pathway (BRCA1/2 wild type
cells) would be expected to survive these endogenous DNA insults,
whereas cells with an HR defect treated with a PARP inhibitor
would not (124, 125).

TRAPPING OF PARP1 AT SITES OF DNA DAMAGE
An alternative model suggests that PARP1 becomes trapped on
DNA in the presence of PARP inhibitors, thereby diminishing
access of other repair proteins to damaged DNA. This model
(Figure 2B) is based on some of the well-established character-
istics of PARPI reviewed above. In particular, PARP1 contains
N-terminal zinc fingers that recognize damaged DNA, permitting
PARP1 binding to various lesions (126), and increased pADPr syn-
thesis (48,127, 128). While PARP covalently modifies a wide range
of substrates, most of the resulting pADPr is covalently bound to
PARP1 itself (129), increasing the negative charge of the enzyme
and eventually causing its dissociation from the DNA (51).
Studies performed over 20 years ago demonstrated that cat-
alytically inactive PARPI, e.g., PARP1 lacking its substrate NAD ™,
inhibits DNA repair under cell-free conditions (51). Additional
experiments showed that the DNA binding domain of PARP1,
which is able to recognize damaged DNA but not catalyze pADPr
formation, also acts as a dominant negative to enhance the cytotox-
icity of certain DNA damaging treatments in intact cells (130, 131).
PARP1 that has been catalytically inactivated by treatment with an
effective small molecule inhibitor would likewise be expected to
inhibit repair. This mechanism has recently been found to account
for the ability of PARP inhibitors to enhance the cytotoxicity of the
topoisomerase I poison topotecan (132) and the DNA methylating
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FIGURE 2 | Four current models of PARP inhibitor-induced cancer cell
killing. (A), classical explanation of PARP inhibitor cytotoxicity in HR-deficient
cells (124, 125). As described in the text, endogenous DNA damage is thought
to result in DNA single-strand breaks, which ordinarily would be repaired by
base excision repair (BER). If PARP inhibitors prevent BER, then persistent
single-strand breaks are thought to be converted to DNA double-strand
breaks, which would be repaired by HR in HR-proficient cells but remain
unrepaired in HR-deficient cells. (B) Model emphasizing trapping of inhibited
PARP1 at sites of DNA damage. According to this model, PARP1 binds to
damaged DNA, synthesizes polymer, and then is released from the DNA so
that repair enzymes can bind (51). Building on these observations, this model
postulates that PARP inhibition results in failure of PARP1 to dissociate from
sites of damage, leading to diminished access of other repair proteins,
inhibited repair, and cell death. (C) Model emphasizing impaired recruitment
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of mutated BRCA1 in the presence of PARP inhibitors. As described by Li and
Yu (134), recruitment of BRCA1 to DNA double-strand breaks requires both
rapid binding of the BRCA1 binding partner BARD1 to pADPr and subsequent
binding of a BRCA1-containing complex to phosphorylated H2AX at the break.
Mutations that impair recruitment of the BRCA1-containing complex to
phosphorylated H2AX render BRCA1 localization to sites of damage more
dependent on the BARD1-pADPr interaction and, therefore, more sensitive to
PARP inhibitors. (D), model emphasizing the role of activated NHEJ in PARP
inhibitor killing. When DNA double-strand breaks occur, HR preferentially
repairs them. In HR-deficient cells, however, double-strand breaks are more
frequently repaired by the errorprone NHEJ pathway, resulting in mutations,
chromosomal rearrangements, and NHEJ-mediated cell death. PARP
inhibitors accelerate this process by removing a brake on NHEJ (116). (A,D)
are modified from Patel et al. (116).

agent methylmethane sulfonate (MMS) (133). Extrapolating from
these observations, it has been suggested that trapping of PARP1
at sites of endogenous DNA damage might account for the ability
of PARP inhibitors to kill HR-deficient cells (Figure 2B).

DEFECTS IN RECRUITMENT OF BRCA1 TO SITES OF DNA DAMAGE

Li and Yu recently reported that recruitment and retention of
BRCAL at sites of DNA damage reflects two different processes,
(i) an initial interaction between poly(ADP-ribose) polymer at the
damage site and the BRCT domain of the BRCA1 binding partner
BARD1 and (ii) subsequent slower binding of a BRCA1-containing

protein complex to phosphorylated histone H2AX at the dam-
age site (134). Mutations that impair BARDI1 interactions with
poly(ADP-ribose) polymer, BARD1-BRCA1 complex formation,
or binding of the BRCA1-containing protein complex to phospho-
rylated H2AX all reduce survival after DNA damage. Moreover, in
the presence of PARP inhibitors, the initial rapid recruitment of
the BARD1-BRCA1 complex to sites of DNA damage is impaired,
making the cells more dependent on phospho-H2AX-mediated
BRCA1 recruitment. Conversely, when mutations in the BRCT
domain of BRCA1 impair participation of BRCAL1 in the complex
that interacts with phospho-H2AX, recruitment of BRCA1 to
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sites of DNA damage becomes dependent on poly(ADP-ribose)-
mediated recruitment of BARD1 (134), providing another model
to explain synthetic lethality between BRCA1 mutations and PARP
inhibitor treatment (Figure 2C).

NHEJ ACTIVATION

Although PARP1 clearly plays an important role in BER (14, 122),
it is important to emphasize that PARP also regulates other repair
processes (1,30, 123, 135) as described above. Earlier observations
suggested that a variety of DNA repair proteins, including Ku70,
Ku80,and DNA-PKcs, can be regulated by ADP-ribosylation (135).
In particular, Ku70, Ku80, DNA-PKcs, and more recently Artemis
were identified as pADPr binding proteins (53-55). Moreover,
the interactions of Ku70 and Ku80 with pADPr inhibit classi-
cal NHEJ (67, 136—138). These observations prompted several
groups to examine the potential contribution of NHE] path-
way activation to PARP inhibitor-induced killing of HR-deficient
cells.

Collectively, these studies have provided several pieces of evi-
dence suggesting an important role for NHE] activation in PARP
inhibitor-induced killing. PARP inhibitor treatment results in
DNA-PKcs activation in HR-deficient cells, as manifested by DNA-
PKcs autophosphorylation and phosphorylation of the down-
stream substrate H2AX in a DNA-PK-dependent fashion (116).
This PARP inhibitor-induced DNA-PKcs activation is accompa-
nied by increased NHE] activity as indicated by assays for repair of
a plasmid that has a DNA double-strand break (116). Moreover,
PARP inhibitors selectively induce chromosomal rearrangements
and mutations in HR-deficient cells (15, 116). Importantly, this
PARP inhibitor-induced increase in chromosomal rearrangements
and mutations is diminished by simultaneous treatment of HR-
deficient cells with a selective DNA-PK inhibitor (116). Likewise,
the cytotoxicity of PARP inhibitors is diminished by manipula-
tions that diminish NHE] activation, including Ku80 siRNA (116),
DNA-PKGcs inhibition (116), or DNA-PKcs deficiency (116, 139,
140). Based on these results, a model for PARP inhibitor-induced
cytotoxicity that emphasizes activation of the NHE] pathway has
been proposed (Figure 2D). In this model, some endogenous
source of DNA damage results in DNA double-strand breaks. If
cells are HR proficient, the HR pathway repairs this damage with
high fidelity. If cells are HR deficient, however, then end resection-
dependent NHE] is activated (116) and contributes to error-prone
repair that results in mutations and chromosomal rearrangements
(Figure 2D).

Consistent with this model, deletion of 53BP1, which is
required for NHE] pathway activation, leads to PARP inhibitor
resistance (141). Likewise, 53BP1 loss was shown to rescue the
lethality of deleterious BRCAI mutation in mouse models (142,
143), suggesting that BRCAI deficiency kills mouse cells by
activating NHE]J.

THE ELEPHANT AND THE BLIND MEN

Like the blind men examining the elephant, each of these models
emphasizes a different aspect of PARP1 biology. Just as none of
the blind men in the parable could provide a complete descrip-
tion of the elephant, we believe that the present models explain

certain facets of PARP inhibitor-induced lethality but also leave
some questions unanswered.

The role of poly(ADP-ribose) polymers in recruitment of BRCA1 to
sites of DNA damage

The observations summarized in Figure 2C provide substantial
new insight into the recruitment of BRCA1 to sites of DNA
damage. Nonetheless, this model fails to explain PARP inhibitor
sensitivity of HR-deficient cells in general. As the authors them-
selves point out, this model cannot explain the enhanced PARP
inhibitor sensitivity of cells that totally lack BRCA1 (as opposed to
expressing a BRCT domain mutant). Moreover, it is unclear how
this model accounts for the synthetic lethality observed when cells
lacking BRCA2, Rad51, or other downstream components of the
FA/HR pathway are treated with PARP inhibitors (15, 98).

Trapping of PARP1 at sites of DNA damage

We are concerned that the model shown in Figure 2B also fails
to account for critical observations regarding PARP inhibitor-
induced killing. In particular, this model is a classical enzyme
poisoning model, where the inhibited enzyme becomes an agent
that contributes to cellular demise. This type of model, for exam-
ple, accounts for the cytotoxicity of topoisomerase I poisons such
as camptothecin (144). For this class of drugs, the poisoning model
accounts for a number of critical observations: (i) loss of the tar-
get enzyme is not lethal (145, 146); and (ii) because the lethality
results from the cytotoxic action of the inhibited enzyme rather
than the inhibition of product production, the killing effect is
observed at concentrations far below those that inhibit all activity
of the enzyme (144). Importantly, this type of model accurately
predicts that elevated expression of the target enzyme will increase
the lethality of drugs that poison the enzyme and diminished
expression of the target enzyme will decrease the lethality of the
poisons (144).

Recent reports suggest that PARP inhibitors sensitize to cer-
tain DNA damaging agents by poisoning PARP1 (Figure 2B) as
proposed by Lindahl and coworkers two decades ago (51). In par-
ticular, it has been reported that cells selected for resistance to
the DNA methylating agent temozolomide in combination with
the PARP inhibitor veliparib express markedly diminished lev-
els of PARP1 (147). As the authors point out, this is difficult to
explain if PARP inhibitors are sensitizing cells by diminishing
total cellular levels of poly(ADP-ribose) polymer below a criti-
cal threshold (catalytic inhibition) but are readily understood by
the poisoning model put forward in Figure 2B. Likewise, recent
studies of topoisomerase I poison/PARP inhibitor combinations
are also compatible with this type of PARP1 poisoning model
(132). In particular, PARP1 downregulation or knockout abol-
ishes the ability of the PARP1 inhibitor veliparib to sensitize cells
to topotecan or camptothecin, establishing PARP1 as the critical
target for this sensitization. Importantly, however, PARP1 knock-
down or knockout does not result in cells that are hypersensitive
to camptothecin or topotecan (132). Instead, Parpl~'~ cells and
ParpIt/* cells exhibit identical camptothecin sensitivity in the
absence of PARP inhibitors (132), suggesting that PARP1 catalytic
activity is not essential for camptothecin resistance. Parpl gene
deletion likewise protects chicken DT40 cells from the methylating
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agent MMS in combination with PARP inhibitors without render-
ing the cells hypersensitive to MMS alone (133), suggesting that
PARPI catalytic activity is also not required for MMS resistance.
Consistent with a poisoning model, further experiments examin-
ing the topoisomerase I poison/PARP inhibitor combination have
shown that transfection of Parpl~'~ cells with catalytically inac-
tive PARP1 or the isolated PARP1 DNA binding domain sensitizes
to camptothecin just like treating Parpl™/* cells with a PARP
inhibitor (132). Collectively, these observations suggest that trap-
ping of inhibited PARP1 on damaged DNA, which has previously
been reported to prevent access of repair complexes (51), con-
tributes to the cytotoxicity of certain types of drug-induced DNA
lesions (133, 147, 148) as illustrated in Figure 2B.

On the other hand, it is difficult to see how the poison-
ing model in Figure 2B can account for the synthetic lethality
between HR deficiency and PARP inhibition. As described above,
this type of model in which the inhibited enzyme is the lethal
agent predicts that cells lacking PARP1 will be resistant to PARP
inhibitors and cells containing elevated PARP1 levels will be
hypersensitive. Contrary to this prediction, a number of groups
have demonstrated that PARP1 downregulation kills BRCA1/2-
deficient cells (15, 16, 116), suggesting that PARP inhibitors are
killing BRCA1/2-deficient cells by diminishing the production of
poly(ADP-ribose) polymer rather than trapping PARP1 at sites of
DNA damage.

BER inhibition

In contrast to the preceding model, the classical model that focuses
on the role of PARP1 in BER (Figure 2A) is consistent with
the observation that PARP knockdown kills HR-deficient cells.
It should also be acknowledged that this model provided part
of the rationale for testing PARP inhibitors in BRCA2-deficient
cells in the first place (16). Nonetheless, this model makes several
predictions that have been difficult to verify experimentally.

First, the model predicts that DNA ss breaks will accumu-
late after PARP inhibition. Work by Helleday and coworkers,
however, has demonstrated no induction of ss breaks by PARP
inhibitors (149, 150). It is, of course, possible that the putative
PARP inhibitor-induced ss breaks are converted to DNA double-
strand breaks so rapidly that they are not detected. Further study
of this issue, perhaps with more sensitive assays for DNA ss breaks,
appears to be warranted.

A second issue relates to the reported effects of XRCC1 knock-
down. If ss break repair is playing a critical role in the cytotoxicity
of PARP inhibitors, then the effect of downregulating other ss
break repair components such as the scaffolding protein XRCC1
immediately downstream of PARP1 (151) should recapitulate the
effect of PARP1 downregulation. However, XRCC1 downregula-
tion has no impact on survival of BRCA2-mutant PEO1 ovarian
cancer cells, whereas PARP1 downregulation is cytotoxic (116).
Importantly, the XRCC1 knockdown was sufficient to sensitize
the cells to MMS, suggesting that BER had been inhibited. These
results imply that PARP1 exerts a role outside of ss break repair in
HR-deficient cells (116).

Collectively, these observations call into question the suggestion
that PARP inhibitors are inducing so-called synthetic lethality in
the setting of HR by inhibiting ss break repair. Further testing of

additional predictions of the model shown in Figure 2A is clearly
needed.

NHEJ activation

As indicated above, a number of observations suggest that NHE]
plays a critical role in PARP inhibitor-induced killing (15, 116,
139-141). The model shown in Figure 2D, which emphasizes the
role of PARP in regulating NHE], is consistent with these observa-
tions. Nonetheless, a number of questions about this model also
remain unanswered.

First, it is unclear whether all components of the NHE] pathway
contribute equally to PARP inhibitor sensitivity. Available studies
only show what happens if 53BP1, Ku80, or DNA-PKcs is dis-
abled. In view of observations that “atypical” NHEJ can occur in
the absence of certain components (110), it remains to be deter-
mined whether loss of Artemis, XRCC4, ligase 4, or other NHE]
components has the same impact on PARP inhibitor sensitivity.

Second, the available data suggest that inhibiting the NHE]
pathway diminishes cytotoxicity of PARP inhibitors in HR-
deficient cells. However, additional research is needed to determine
how these cells survive and repair DNA double-strand breaks if HR
and NHE] are both disabled.

Third, preclinical and clinical studies have suggested that PARP
inhibitors are particularly effective in tumors that have deleterious
mutations in HR pathway genes such as BRCAI and BRCA2. In
contrast, tumors such as triple negative breast cancer that have
BRCA1/2 gene methylation appear to be less sensitive. It is unclear
whether this reflects incomplete inhibition of the HR pathway
by methylation, or whether NHE] pathway genes might also be
methylated in these tumors, leading to a repair status similar
to BRCA2-mutant cells in which NHE]J components have been
downregulated.

Finally, the model summarized in Figure 2D fails to specify the
source of DNA damage that activates the NHE] pathway. Given the
importance of this putative damage to PARP inhibitor-induced
killing, this question clearly warrants further study.

Should the models be combined?

Like the blind men in the parable, perhaps we can better under-
stand the true nature of the elephant by merging several incom-
plete pictures. For example, it has been suggested (150) that
inhibition of ss break repair (Figure 2A) might generate the DNA
double-strand breaks (Figure 2D) that activate NHE] and con-
tribute to the cytotoxicity of PARP inhibitors. This would certainly
be consistent with some of the known roles of PARP1 in DNA
repair described above. On the other hand, the failure of PARP
inhibitors to increase DNA ss breaks (149), like the failure of
XRCC1 downregulation to reproduce the effects of PARP1 down-
regulation in BRCA2-deficient cells (116), raises concern that the
hybrid model might not adequately account for the DNA damage
that contributes to NHE]J-mediated killing. Given the other roles
of PARP]I, e.g., in restarting stalled replication forks (68—71), it is
equally plausible that PARP inhibitor-induced collapse of stalled
replication forks or disruption of some other PARP1-mediated
process provides the DNA double-strand breaks that trigger NHE].
Clearly, like the blind men, we require additional information to
generate a coherent picture.
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TRANSLATION TO THE CLINIC: WHY THE CORRECT
MECHANISM MATTERS

In contrast to chronic myelogenous leukemia, where the vast
majority of patients respond to a Bcr/Abl kinase inhibitor (152),
or BRAF V600E-mutant melanoma, where the response to vemu-
rafenib is also above 50% (153, 154), early studies have sug-
gested that PARP inhibitors have only a 30-40% response rate
in BRCAI/2-mutant ovarian and breast cancers (19-21). In an
era of increasingly personalized cancer treatment, a less than 50%
chance of responding to a supposedly tailored therapy is somewhat
disconcerting (22). By understanding the mechanistic basis for the
synthetic lethality between HR deficiency and PARP inhibition, it
might be possible to better understand why some HR-deficient
cancers respond and others do not.

The models described above make different predictions about
the cancers most likely to benefit from PARP inhibitor therapy.
For example, the poisoning model shown in Figure 2C predicts
that HR-deficient tumors with elevated PARP1 levels should be
hypersensitive to PARP inhibitors. In contrast, the models shown
in Figures 2A,D, which emphasize catalytic inhibition of PARP1 as
the triggering event, predict that HR-deficient tumors with lower
PARPI levels will, if all other factors are equal, be more sensitive
to PARP1 inhibitors because they will require less drug to decrease
poly(ADP-ribose) polymer levels below a critical threshold. The
model shown in Figure 2D further predicts that HR-deficient can-
cers with diminished levels of NHE] proteins will be relatively
resistant to PARP inhibitors, whereas the model in Figure 2A pre-
dicts that HR-deficient cancers with diminished levels of NHE]
proteins will be more sensitive to PARP inhibitors because they
are dependent on NHE] for repair of DNA double-strand breaks
in the absence of HR.

In order to understand why some HR-deficient cancers respond
to PARP inhibitors and others do not, these predictions need to be
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