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INTRODUCTION

Gynecologic malignancies annually account for over 91,000 new cancer cases and approx-
imately 28,000 deaths in the United States. Although there have been advancements in
cytotoxic chemotherapies, there has not been significant improvement in overall survival in
these patients. While targeted therapies have shown some benefit in many solid tumors,
further development of these agents is needed for the treatment of gynecologic malignan-
cies. Poly(ADP-ribose) polymerase (PARP) catalyzes the polyADP-ribosylation of proteins
involved in DNA repair. Inhibitors of PARP were originally developed for cancers with homol-
ogous recombination deficiencies, such as those harboring mutations in BRCAT or BRCA2
genes. However, pre-clinical research and clinical trials have suggested that the activity of
PARP inhibitors is not limited to those with BRCA mutations. PARP inhibitors may have
activity in cancers deficient in other DNA repair genes, signaling pathways that mitigate
DNA repair, or in combination with DNA-damaging agents independent of DNA repair dys-
function. Currently there are seven different PARP inhibitors in clinical development for
cancer. While there has been promising clinical activity for some of these agents, there are
still significant unanswered questions regarding their use. Going forward, specific ques-
tions that must be answered include timing of therapy, use in combination with cytotoxic
agents or as single-agent maintenance therapy, and whether there is a predictive biomarker
that can be used with PARP inhibition. Even with large strides in the treatment of many
gynecologic malignancies in recent years, it is imperative that we develop newer agents
and methods to identify patients that may benefit from these compounds. The focus of this
review will be on pre-clinical data, current clinical trials, and the future of PARP inhibitors
in the treatment of ovarian, endometrial, and cervical cancer.
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While there have been advancements in the development and

Gynecologic malignancies annually account for over 91,000 new
cancer cases and approximately 28,000 deaths in the United States
(1). Effective screening for cervical cancer is available in many
parts of the world, but there is no effective screening for endome-
trial or ovarian cancer. Many women with ovarian cancer, there-
fore, present with advanced stage disease for which cure is rare.
Endometrial cancer is more commonly diagnosed early on, as
patients are often symptomatic with postmenopausal bleeding.

Abbreviations: ATP, adenosine triphosphate; ATM, ataxia telangiectasia-mutated;
BER, base excision repair; DL, dose level; DSB, double strand breaks; EEC,
endometrioid endometrial carcinoma; FANC, Fanconi anemia complementation
group; HBOC, hereditary breast and ovarian cancer; HR, homologous recombina-
tion; MRE11, mitotic recombination 11; MSI, microsatellite instability; MTD, max-
imum tolerated dose; NADY, nicotinamide adenine dinucleotide; NSB1, Nijmegen
breakage syndrome; ORR, objective response rate; PAR, poly(ADP) ribose; PARP,
poly(ADP-ribose) polymerase; PFS, progression free survival; PI3K, phosphatidyli-
nositide 3-kinase; PHTS, PTEN hamartoma tumor syndromes; PMBCs, peripheral
blood mononuclear cells; RECIST, response evaluation criteria in solid tumors;
SSBs, single strand breaks; TNBC, triple negative breast cancer; VEGFR, vascular
endothelial growth factor receptor.

administration of cytotoxic chemotherapies, there has not been
significant improvement in overall survival in these patients. It is
imperative that novel and effective treatment strategies are devel-
oped. Although targeted therapies have shown occasional benefit
in some solid tumors, these agents have been largely ineffective for
the treatment of gynecologic malignancies.

One area of recent interest in targeted therapies for many can-
cers has been the development of poly(ADP-ribose) polymerase
(PARP) inhibitors. PARP catalyzes the polyADP-ribosylation of
proteins involved in DNA repair. Inhibitors of PARP were shown
to be highly selective for cancer cells that harbor homologous
recombination (HR) deficiencies, such as those harboring muta-
tions in BRCAI or BRCA2 genes (2). PARP inhibitors cause an
increase in single strand breaks (SSBs) in DNA that, if left unre-
paired, will lead to double strand breaks (DSBs) when encountered
by replication forks (3, 4). In the laboratory, HR-deficient cells are
unable to maintain genomic integrity in the presence of a large
number of DNA DSBs and are, therefore, exquisitely sensitive to
PARP inhibition. This synthetic lethal interaction between PARP
and BRCA has been proposed as a potential explanation for the
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sensitivity of BRCA mutation cell lines to PARP inhibition. Pre-
clinical research and clinical trials, however, have suggested that
the activity of PARP inhibitors is not limited to those with BRCA
mutations. PARP inhibitors may demonstrate synthetic lethality
in cancers deficient in other proteins that mitigate DNA repair
(5). McCabe et al. examined the effects of PARP inhibition on
various cell lines deficient in RAD51, Fanconi anemia complemen-
tation group (FANC), and Nijmegen breakage syndrome 1 (NBS1),
amongst other proteins involved in HR, and found that mutations
of these individual proteins induced sensitivity to PARP (6). These
findings suggest that the notion of synthetic lethality may be more
broadly applied to cancers with an impaired HR pathway, not just
those with BRCA mutations. This concept is frequently referred to
as “BRCAness” or “BRCA-like” (7). The inhibition of SSB repair by
PARP inhibition may also be sufficient to enhance the anti-cancer
activity in combination with DNA-damaging agents independent
of dysfunction in DNA repair pathways (8).

The combination of phosphatase and tensin homolog (PTEN)-
deficient cells and PARP inhibition is another area of potential syn-
ergistic activity. PTEN encodes for a phosphatase that negatively
regulates the phosphatidylinositide 3-kinase (PI3K)/AKT/mTOR
pathway, which is important for cell proliferation and survival (9,
10) and also plays a poorly understood role in the expression of
the DNA repair protein RAD51 and in the functionality of HR.
Both in vitro and in vivo studies have demonstrated sensitivity
of PTEN-deficient cells to PARP inhibitors (11-13). Thus, PARP
inhibition may benefit patients with malignancies in which there is
decreased PTEN expression, such as endometrial cancer, glioblas-
toma, malignant melanoma, prostate, breast, lung, and colorectal
cancers (11).

Currently, there are multiple PARP inhibitors in clinical devel-
opment for cancer. While there has been promising clinical activity
for some of these agents, there are still significant unanswered
questions regarding their use. Going forward, specific questions
that must be answered include: timing of therapy, use in com-
bination with cytotoxic agents or as a single-agent, maintenance
therapy, and the existence of predictive biomarker(s) that can be
used with PARP inhibition. Even with large strides in the treatment
of many gynecologic malignancies in recent years, it is imperative
that we develop newer agents and methods to identify patients that
may benefit from these compounds.

POLY(ADP-RIBOSE) POLYMERASE

Base excision repair (BER) is one of multiple critical pathways that
maintain genome integrity in all cells, specifically in the recogni-
tion and repair of SSBs (14, 15). PARP is a family of 17 proteins
that play an important role in DNA repair pathways. The most well
studied member of the family, PARP1, is critical in the BER path-
way for DNA SSBs. It detects and binds single strand DNA damage
sites through its zinc finger domains, next attaching poly(ADP)
ribose (PAR) moieties on itself and other proteins that have been
recruited to the damage site (Figure 1). If there is excessive DNA
damage, such as is seen with ischemia, PARP1 becomes hyper-
activated. This heightened activity results in high levels of PAR
and the depletion of nicotinamide adenine dinucleotide (NAD™)
and adenosine triphosphate (ATP) (16), and ultimately, cell death
termed parthanatos (17). PARP is also involved in the repair of
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FIGURE 1 | Inhibition of PARP function. PARP1 recognizes and binds to
sites of DNA damage through its Zn-finger domains (Zf). PARP inhibitors can
trap PARP1 on damaged DNA in a complex that is possibly more toxic than
unrepaired single strand DNA breaks (28). PARP inhibitors also block the
enzymatic activity of the enzyme thereby inhibiting poly(ADP-ribosyl)ation,
which in turn blocks recruitment of downstream repair proteins (114).

DSBs (18) and the recruitment of additional repair proteins like
ataxia telangiectasia-mutated (ATM) and mitotic recombination
11 (MRE11), both of which are integral to the HR process (19, 20).

PARP1 was first reported in 1963 (21), but its anti-cancer util-
ity was not fully realized until 1980. At that time, Durkacz et
al. demonstrated that early-generation PARP inhibitors not only
hindered DNA repair, but also enhanced the cytotoxic effects of
DNA methylating agents in murine leukemia (22). Kupper et al.
demonstrated the enhancement of the cytotoxic effects of gamma-
irradiation after reduction of active PARP through overexpression
of a dominant negative mutant of PARP that recognizes and
binds damaged DNA, but does not possess the catalytic activity
of the enzyme (23). More recently, PARP moved into the spot-
light with the discovery that PARP inhibition in both cancer cell
lines (2, 24) and human tumors (25) lacking BRCA1 or BRCA2
is selectively cytotoxic compared to non-mutation containing
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tumors. One rationale for this efficacy is a principle termed syn-
thetic lethality, a condition by which deletion or inactivation of
only one of two genes (either BRCA or PARP) would not cause
cell death, but deletion or inactivation of two genes in combina-
tion (both BRCA and PARP) is lethal. If PARP1 and PARP2 are
inhibited, SSBs typically repaired by BER remain unresolved and
when encountered by a replication fork, lead to the accumulation
of DSBs (26). BRCAI- or BRCA2-deficient cells lack the ability to
effectively complete HR and repair DNA DSBs. This double hit
by impairment of both BRCA and PARP functionality ultimately
results in genomic instability and cell death. Conferring a potential
therapeutic benefit, cell death appears to be limited to homozy-
gous target tissues (i.e., tumor), since most BRCA patients carry
only one copy of the wild-type BRCA gene and there is no appar-
ent effect on cells heterozygous for BRCA mutations (2). These
observations have been exploited in the treatment of cancers asso-
ciated with BRCA mutations, such as hereditary breast and ovarian
cancer (HBOC), and even endometrial cancers (27).

Recently, Murai et al. suggest that the action of PARP inhibi-
tion is not only a function of how well the inhibitors disrupt the
enzymatic activity, but that certain inhibitors also trap PARP1
on damaged DNA, thereby blocking repair (28). Interestingly,
these studies showed that the potency in trapping PARP1 varied
among agents, independent of their catalytic inhibitory properties.
Clearly, additional investigation is warranted to better understand
the intricacies inherent to PARP inhibition pathway and ultimately,
advance drug development.

HEREDITARY BREAST AND OVARIAN CANCER AND BRCA
Hereditary breast and ovarian cancer is typically characterized by
the onset of breast cancer at a young age, a strong family history of
both breast and ovarian cancer, as well as an autosomal dominant
inheritance pattern. Fallopian tube and primary peritoneal can-
cers also fall into this hereditary spectrum and are included under
the ovarian cancer designation. An increased chance of bilateral
cancers (e.g., both breasts), the development of both breast and
ovarian cancer, and/or an increased incidence of other cancers
(pancreas, prostate, etc.) may also be seen in this syndrome. In
ovarian cancer, 10% of patients have a genetic predisposition.
However, in those patients with a family history of ovarian cancer,
the rate of BRCAI mutations is 80 and 15% for BRCA2 mutations
(29). More recently with the use of a massively parallel sequencing
approach, Walsh et al. identified that closer to 24% of serous ovar-
ian cancer patients have a germline DNA repair defect, over 30% of
these were in patients without a family history of breast or ovarian
cancer (30). The use of this broader assay is a promising method
for detecting germline mutations with greater sensitivity and at
decreased cost. Approximately 5-10% of all breast cancers and up
to 25-40% of breast cancers in young patients (<35 years old) are
hereditary. An estimated 3—-8% of all breast cases and 30-40% of
familial cases are likely caused by BRCAI and BRCA2 mutations.
Individuals with a BRCA mutation have an increased risk of
developing ovarian cancer up to 63% by some estimates, and breast
cancer by up to 87% (31). Patients with BRCA1 breast tumors tend
to have a higher histologic grade, medullary histopathology, and
are more likely than sporadic (non-BRCA mutant) tumors to be
estrogen receptor negative, progesterone-receptor negative, and

HER2/neu overexpression negative or “triple negative” (TNBC)
(32). Ovarian cancers associated with BRCA1 mutation are more
often serous adenocarcinomas (90%) compared to women with-
out this mutation (50%) (33-36). Although largely derived from
retrospective or indirect data, most studies have not identified
a significant survival difference between individuals with BRCA
mutation-associated breast cancer versus controls (37—44). How-
ever, patients with high-grade serous ovarian carcinoma associated
with a BRCA mutation tend to have a better prognosis than spo-
radic cases (45, 46). This improved prognosis may be related to
BRCA-mutated cells’ impaired DNA repair mechanism, lending
these lesions greater sensitivity to cytotoxic chemotherapy, espe-
cially with platinum-based agents (47, 48). Based on the high selec-
tive lethality of BRCA-mutated cancer cells to PARP inhibitors,
multiple studies have been undertaken to establish efficacy in
gynecologic malignancies.

THE ROLE OF PARP INHIBITORS IN OVARIAN CANCER
Although it ranks as the ninth most common cancer among
women, excluding non-melanoma skin cancers, ovarian cancer
is the fifth most deadly cancer in females and accounts for more
deaths than any other cancer of the female reproductive tract in
the United States (1). Since the symptoms of disease are typically
non-specific, ovarian cancer is often detected in advanced stages
when the chance of cure is low. Given its insidious nature and
the lethality of the disease, novel therapies are needed to improve
overall survival in ovarian cancer patients.

In BRCA mutation-associated ovarian cancers, multiple inves-
tigations have been completed or are presently underway to
establish the clinical activity of PARP inhibition in these muta-
tional carriers. Sixty patients with refractory solid tumors were
enrolled in a phase I trial of the PARP inhibitor olaparib (KU-
0059436/AZD2281); the study was enriched for patients with
BRCA mutations (25). In addition to establishing the maximum
tolerated dose (MTD) of olaparib at 400 mgbid and observing only
minimal adverse effects (primarily fatigue and gastrointestinal), it
was noted that only BRCA mutation carriers had a significant
objective tumor response. Out of 19 patients, 9 had a partial
response (PR) (47%) and remarkably, 8 of which were ovarian can-
cer patients. Twelve of these patients (63%) had either radiological
or tumor-marker responses or stable disease for >4 months. In
an expanded cohort of the same trial, 50 patients with BRCAI/2
mutation-associated ovarian, primary peritoneal, and fallopian
tube cancers were found to have a clinical benefit rate of 46%,
including 40% that experienced a Response Evaluation Criteria in
Solid Tumors (RECIST) radiologic or CA125 response (49). The
median duration of response was 28 weeks. Another key finding
was the overall clinical benefit rate was correlated with platinum
sensitivity. Platinum-resistant and refractory patients had a 46 and
23% respective benefit rate versus 69% in the platinum-sensitive
population (P = 0.038). The study also reported statistically signif-
icant associations between the overall platinum-free interval and
antitumor response, as well as between platinum sensitivity and
the maximum percentage change from radiologic baseline tumor
size and from baseline CA125 after olaparib treatment.

In a phase 2 international, multicenter fashion, two sequential
cohorts of women with confirmed BRCAI or 2 mutations and
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recurrent disease were given either olaparib at 400 mg twice daily
(n=33) or 100 mg twice daily (n = 24) (50). The primary efficacy
endpoint was objective response rate (ORR). In the 400 mg twice-
daily cohort, ORR was 11 of 33 patients (33%; 95% CI 20-51); in
the 100 mg twice daily cohort, ORR was 3 of 24 patients (13%; 95%
CI 4-31). The most common toxicities experienced included nau-
sea, anemia, and fatigue and were mild in the majority of cases.
This phase 2 study provided positive proof of concept for the
efficacy and tolerability of olaparib in advanced BRCA-mutated
ovarian cancer.

Stemming from these initial reports, Kaye et al. designed a
phase II, open-label, randomized, international study to assess the
safety and efficacy of different doses (200 or 400 mg) of olaparib
given twice daily versus intravenous liposomal doxorubicin given
monthly in patients with BRCA-related ovarian cancer who had
failed prior platinum-based chemotherapy (51). A statistically sig-
nificant higher combined RECIST and CA125 rate of response for
olaparib 400 mg twice daily compared to liposomal doxorubicin
was noted. It did not find a significant difference in progression free
survival (PFS) between the groups, with a reported median PFS of
7.1 months for liposomal doxorubicin, 6.5 months for the 200 mg
olaparib cohort, and 8.8 months for the 400 mg olaparib cohort.
There were roughly twice as many >grade 3 toxicities seen with
liposomal doxorubicin compared to the PARP inhibitor. While
this study did not show a statistically significant improvement
in PFS between olaparib and liposomal doxorubicin, there was a
much greater PFS with liposomal doxorubicin (7.1 months) than
had been reported in historical data. Gordon et al. demonstrated
PES was only 4 months for liposomal doxorubicin compared to
topotecan in a phase III randomized study of recurrent ovarian
cancer (52). A recently reported phase III trial by Colombo et al.
also demonstrated a similar PFS (3.7 months) for liposomal dox-
orubicin (53). Although the ability to draw comparisons between
studies is limited, Kaye et al. reported PFS with liposomal dox-
orubicin is still within the 95% CI of historical controls, which
suggests that this difference may simply reflect random variation
within the population (54).

In addition to their use in BRCA mutation-associated ovar-
ian cancer, PARP inhibitors are also being investigated in non-
mutation carrier (or BRCA wild-type) ovarian cancers. Using
PARP inhibitors in such a scenario is based on the idea that there
is a HR DNA repair defect, but no germline BRCA1/2 mutation
in up to 50% of ovarian cancers (7, 11, 46, 55). Several studies
have exploited this concept. Gelmon et al. conducted a phase II
trial with high-grade serous/undifferentiated ovarian cancer with
unknown BRCA status or BRCA-negative disease (56) and an addi-
tional reference group with known germline BRCA mutations.
Patients were treated with olaparib 400 mg twice daily. The ORR
in BRCA-mutants (n=17) was 41% (95% CI 22—64) with median
PES of 221 days (95% CI 106-383), while BRCA mutation nega-
tive patients had an ORR of 24% (n=46; 95% CI 14-38) and
PES of 192 days (95% CI 109-267). In a post hoc exploratory
analysis, the ORR in patients with platinum-sensitive ovarian
cancer was 50% (10 of 20) in the BRCA-negative cohort and
60% (3 of 5) in the BRCA-mutant cohort. In platinum-resistant
ovarian cancers, 33 and 4% of patients with BRCA mutation posi-
tive and BRCA-mutant negative status respectively had responses.

Observed toxicities were similar to those described in previous
studies. This trial’s findings were noteworthy, as they solidified the
clinical utility of PARP inhibition in sporadic ovarian cancer. Fur-
ther, these results suggest that platinum sensitivity may be used as
a surrogate marker for HR deficiency. Results of a phase I study
of niraparib (MK4827), an oral PARP inhibitor shown to induce
selective lethality in HR repair deficient tumors with BRCA loss
or non-BRCA HR defects (57), was given to a small cohort of
patients enriched for BRCA-deficient and sporadic cancers associ-
ated with HR repair defects (58). Thirty-nine patients were treated
at 7 successive dose levels; 11 of these patients were BRCA muta-
tion carriers. Although results are only available in abstract form,
the study reported that three patients with serous ovarian can-
cer had prolonged RECIST PR (one sporadic platinum-sensitive,
two BRCA-deficient ovarian cancers). Disease stabilization was
observed for >44 weeks in the sporadic serous ovarian cancer
patient and for > 16 weeks in the two patients with BRCA-deficient
disease. In another phase II study with the PARP inhibitor ruca-
parib (AG-014699/PF-0136738), 41 patients with either breast (17)
or ovarian (24) cancer and known BRCA deficiencies were given
rucaparib as monotherapy and followed for ORR (59). Prelimi-
nary findings included a clinical benefit rate of 32%, but an ORR
of 5% (2/38). However, 26% (10/38) achieved stable disease for
>4 months and three patients remained on study for >54 weeks.
The final results from these two ongoing studies are anxiously
awaited.

Another larger, randomized, double-blind, placebo-controlled,
phase 1II trial evaluated maintenance treatment with olaparib
in patients with platinum-sensitive, relapsed, high-grade serous
ovarian cancer (60). Included patients had received >2 platinum-
based regimens and were required to have had a partial or
complete response to their most recent platinum-based therapy.
Two-hundred and sixty five patients were randomized to receive
olaparib at 400 mg twice daily or placebo (136 olaparib arm, 129
placebo). BRCA mutational status was similar between the two
groups. PES was significantly longer in the olaparib arm than
placebo (8.4 versus 4.8 months); however, there was no difference
in overall survival at the first interim analysis. Interestingly, sub-
group analysis revealed that regardless of BRCA mutational status,
the olaparib cohort had a decreased risk for progression. Toxici-
ties were overall mild in the olaparib group; most adverse events
were grade 1 or 2 and typically included nausea, fatigue, vomit-
ing, and anemia. These findings again support the argument that
platinum sensitivity is a useful clinical marker for olaparib sen-
sitivity. Further, this investigation recapitulates the role of PARP
inhibitors in the ovarian cancer population, regardless of BRCA
mutational status, and underscores the need for development of
relevant biomarkers that predict HR deficiency in the setting of
BRCA mutations or no known genetic abnormalities. Fortunately,
there are multiple ongoing trials investigating the relationship
between PARP inhibition and ovarian cancer that will hopefully
clarify some of these uncertainties (Table 1).

PARP INHIBITORS IN ENDOMETRIAL CANCER

Endometrial cancer is the fourth most common cancer in women
and the most commonly diagnosed gynecologic malignancy. An
estimated 90% of the cases are sporadic and 10% have a genetic
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Table 1 | Active clinical trials investigating PARP inhibitors in gynecologic malignancies.

Agent Clinical trial Trial description Phase Combination or
identifierE monotherapy
Olaparib® NCT01237067  Olaparib in combination with carboplatin for refractory/recurrent women's cancers 1 Combination
NCT01116648 Olaparib in combination with cediranib for recurrent ovarian or TNBC 1/2 Combination
NCT01445418  Olaparib with carboplatin to treat breast and ovarian cancer 1 Combination
NCT01623349 Olaparib with BKM120 in recurrent TNBC or high-grade serous ovarian cancer 1 Combination
NCT01650376 Olaparib with carboplatin and paclitaxel in relapsed ovarian cancer 1b Combination
NCT00782574  Olaparib with cisplatin in advanced solid tumors 1 Combination
NCT00628251  Olaparib versus doxorubicin in advanced BRCA1/2 ovarian cancer patients who have failed 2 Monotherapy
previous platinum-therapy
NCT01844986  Olaparib in BRCA-mutated ovarian cancer patients following first line platinum-based 3 Monotherapy
chemotherapy
NCTO01078662  Olaparib in advanced cancers with a confirmed BRCA1/2 mutation 2 Monotherapy
NCT01874353 Olaparib in BCRA mutated ovarian cancer patients after complete or partial response to 3 Monotherapy
platinum chemotherapy
NCT00516373  Olaparib in ovarian cancer 1 Monotherapy
VeliparibB NCT00989651; Veliparib in combination with carboplatin, paclitaxel, bevacizumab for newly diagnosed 1 Combination
G0OG-9923 ovarian, fallopian tube, or primary peritoneal cancer
NCT01306032  Veliparib with cyclophosphamide in refractory BRCA-positive ovarian, primary peritoneal, 2 Combination

ovarian high-grade serous carcinoma, fallopian tube cancer, TNBC, low-grade
non-Hodgkin's lymphoma

NCT01459380; Veliparib in combination with doxorubicin, carboplatin, and bevacizumab 1 Combination

GOG 9927

NCT01281852;  Veliparib with cisplatin and paclitaxel in patients with advanced, persistent, or recurrent 1/2 Combination

GOG-0076HH cervical cancer

NCTO01145430  Veliparib and doxorubicin for recurrent ovarian, fallopian tube, and primary peritoneal 1 Combination
cancers or metastatic breast cancer

NCT01266447; Veliparib, topotecan, and filgrastim or pegfilgrastim in patients with persistent/recurrent 2 Combination

GOG 127-W cervical cancer

NCT01690598  Veliparib with topotecan in patients with platinum-resistant or partially platinum-sensitive 1/2 Combination
relapse of epithelial ovarian cancer with negative or unknown BRCA status

NCT01012817 Veliparib with topotecan in relapsed/refractory or primary peritoneal cancer after prior first 2 Combination
line platinum-therapy

NCTO01113957 Veliparib with temozolomide versus doxorubicin alone in ovarian cancer 2 Combination

NCTO01749397  Veliparib and floxuridine in metastatic epithelial ovarian, primary peritoneal, or fallopian 1 Combination
tube cancer

NCT01540565; Veliparib in persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal 2 Monotherapy

GOG-0280 cancer patients with a BRCA2 mutation

NCT00892736  Veliparib monotherapy for patients with BRCA1/2 -mutated cancer, including 1 Monotherapy
platinum-refractory ovarian, fallopian tube, or primary peritoneal cancer; or basal-like breast
cancer

NCT01472783  Veliparib for patients with BRCA mutation and platinum-resistant or partially sensitive 1/2 Monotherapy

relapse of epithelial ovarian cancer

BMN 673 NCT01286987 BMN 673 in advanced or recurrent solid tumors, including epithelial and ovarian cancers 1 Monotherapy
Niraparib® NCT01847274 Niraparib versus placebo in platinum-sensitive ovarian cancer 3 Monotherapy
Rucaparib®  NCT01009190 Rucaparib with carboplatin in advanced solid tumors 1 Combination
NCT01482715 Rucaparib in patients with BRCA mutation breast or ovarian cancer, or other solid tumor 1/2 Monotherapy
NCT00664781 Rucaparib in metastatic breast cancer or ovarian cancer 2 Monotherapy

AOlaparib, also known as AZD2281.

8Veliparib, also known as ABT-888.

¢ Niraparib, also known as MK-4827

PRucaparib, also known as AG-014699; PF01367338.

EAIl clinical trials are found at www.clinicaltrials.gov and listed according to their NCT identifier. Last accessed 2013 June 19.
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origin. Endometrioid adenocarcinoma and serous carcinoma are
the most prevalent histological types, while endometrial clear cell
and mucinous carcinomas only account for approximately 5%
of all cases (61). Since many patients are symptomatic early in
their disease course, the majority of endometrial cancers (approx-
imately 75%) are detected in the initial stages when the disease
remains confined to the uterus (61). However, a significant amount
of women still experience advanced disease, for which systemic
treatment options are limited, toxicities high, and responses often
short-lived (62, 63). There is a pressing need for targeted therapies
that will yield a greater efficacy and be better tolerated.

A variety of different molecular defects linked to the devel-
opment of endometrial cancer are described. In endometrioid
endometrial carcinoma (EEC), also known as type I endometrial
cancer, microsatellite instability (MSI) and mutations in the PTEN,
K-ras, PIK3CA, and B-catenin genes are reported (64). As previ-
ously discussed, PTEN is a tumor suppressor gene that is involved
in DNA repair mechanisms, as well as in the inhibition of the
PI3K/AKT/mTOR pathway; PTEN -deficient cells are sensitive to
PARP inhibitors (11-13). Rare syndromes collectively known as
the PTEN hamartoma tumor syndromes (PHTS) are linked to
germline mutations in PTEN (65, 66). Outside of PHTS, PTEN
is altered in up to 83% of endometrioid carcinomas versus only
10% in serous and clear cell cancers (67-71). Dedes et al. demon-
strated that PTEN -deficient EEC cells had a greater sensitivity to
PARP inhibition than wild-type EEC PTEN cell lines (12). Given
the heightened prevalence of PTEN deficiency in EEC superim-
posed on these laboratory studies demonstrating sensitivity to
PARP inhibition, clinical studies are now in progress. A case report
describing a 58-year-old female with metastatic endometrioid
endometrial adenocarcinoma who had previously demonstrated
exquisite sensitivity to platinum-containing regimens, was given
olaparib as part of a phase I trial (72, 73). Prior to trial partici-
pation, brain metastases were found. However, after 10 weeks on
trial, the patient had a significant reduction in the size of the brain
metastases without other intervention and also reported improve-
ment in tumor-related symptoms. Unfortunately, the patient had
objective disease progression after 8 months on olaparib therapy.
Her tumor was biopsied and verified to be negative for BRCA
mutation, but positive for loss of PTEN. Although only an isolated
report, this case study coupled with compelling pre-clinical data,
provides a strong rationale for larger clinical trials. A phase 2, ran-
domized, placebo-controlled trial comparing olaparib versus best
supportive care or progesterone in advanced endometrial cancer
was planned, but unfortunately, was unable to be opened. In addi-
tion to EEC, serous endometrial cancers appear to have a similar
genetic background to serous ovarian carcinoma, including hall-
marks of deficiency in DNA repair as well as frequent mutations in
TP53, PIK3CA, K-RAS, and ERBB2 (74). These tumors may prove
to be another rational target for PARP inhibition.

PARP INHIBITORS IN CERVICAL CANCER

As the third most common cancer worldwide, cervical cancer has
an annual incidence of 530,000 cases, with 250,000 deaths expected
(75). It is the second leading cause of death in women from the
ages of 20-39 (76). Fortunately, the incidence of this cancer in most
developed countries has decreased by 70% over the past 50 years

due to improved screening methods with cervical cytology (77).
More recently, HPV vaccination has aided in the detection and
subsequent prevention of high-risk HPV subtypes, which are the
culprit for most cervical cancers (78-82). For advanced disease,
chemotherapy remains the standard of care. Similar to the experi-
ence in endometrial cancer, such therapy typically does not yield
durable responses or cure (83).

The use of PARP inhibitors in cervical cancer has only recently
been explored in the pre-clinical arena. Along with non-small cell
lung cancer, mesothelioma, and ovarian cancer cell lines, Michels
et al. created cervical cancer (HeLa) cell lines resistant to cisplatin
(84). Upon further study, these lines were found to have high lev-
els of PAR and PARP1, with PARP1 constitutively hyperactivated.
Exposure of the cells to pharmacologic PARP inhibition resulted
in cell death. Hence, this work hints at another role for PARP
inhibition, in the treatment of cisplatin-resistant cervical cancers.
Interestingly, this group also observed that elevated levels of PAR
identified in PARP1-overexpressing tumor cells and xenografts
predicted response to PARP inhibition in vitro and in vivo more
accurately than PARP1 expression itself, suggesting PAR may be
a reasonable biomarker of response to PARP inhibitor therapy
in cervical cancer. A phase I trial is presently enrolling patients
with cervical cancer along with other gynecological malignan-
cies to investigate the combination of olaparib with carboplatin
in refractory or recurrent disease (NCT01237067; see Table 1).
Another phase 1/2 trial is investigating the use of veliparib with
cisplatin and paclitaxel in advanced, persistent, or recurrent cer-
vical cancer (NCT01281852; Table 1). Additional pre-clinical and
clinical investigation will hopefully reveal even more promising
applications for PARP inhibition in cervical cancer.

FUTURE DIRECTIONS

Poly(ADP-ribose) polymerase inhibitors are an exciting new class
of agents that have already demonstrated promising pre-clinical
and clinical activity in a variety of malignancies. Nevertheless, the
full potential of PARP inhibition in cancer has not yet been real-
ized. In addition to single-agent use, PARP inhibitors have been
studied in combination with a number of different chemother-
apies, anti-angiogenic agents, as well as with ionizing radiation.
Other areas of active investigation include the development of
markers that will predict clinical benefit from PARP inhibition,
as well as the identification of resistance mechanisms to PARP
inhibitor therapy.

Chemotherapies known to induce DNA strand breaks, espe-
cially SSBs, are of particular interest for combination studies. In
the case of methylating agents, activation of BER elicits ther-
apy resistance (85). A large body of pre-clinical in vivo and
in vitro studies demonstrates the addition of a PARP inhibitor
may sensitize cells to DNA-damaging agents and further delay
the development of treatment resistance (8, 85-93). These stud-
ies were conducted with a wide variety of chemotherapeutic
agents, including topoisomerase I inhibitors, platinum agents, as
well as DNA alkylating agents. Human trials combining PARP
inhibitors and chemotherapy agents for sporadic and BRCA-
associated gynecologic malignancies are underway, but few have
reached maturity (NCT01445418, NCT01237067; see Table 1).
Promising data has come from Oza et al., who conducted a
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multicenter phase II study that compared the efficacy of olaparib
plus paclitaxel/carboplatin followed by olaparib maintenance ther-
apy versus paclitaxel/carboplatin alone with no further therapy in
patients with platinum-sensitive recurrent serous ovarian cancer
(94). Importantly, the BRCA status was unknown for the majority
of the patients. In arm A, patients received six, 21-day cycles of
olaparib (200 mg twice daily) with paclitaxel (175 mg/m? IV, day
1) and carboplatin (AUC 4 IV, day 1), followed by olaparib main-
tenance therapy at a dose of 400 mg twice daily in a continuous
fashion versus in arm B, the standard dose of carboplatin (AUC 6
1V, day 1) and paclitaxel (175 mg/m? IV, day 1) without the PARP
inhibitor. Patients receiving olaparib had a significant improve-
ment in PFS versus chemotherapy alone. OS data was felt to be
immature, but preliminarily showed similar results between the
two arms (64 versus 58%). In the combination phase, both arms
had generally similar toxicity profiles, with nausea, fatigue, and
alopecia the most common adverse events experienced. During
the maintenance phase (olaparib monotherapy versus no further
therapy), side effects were consistent with the known monother-
apy side effect profile of PARP inhibitors. In a smaller phase I dose
escalation trial, olaparib was added to carboplatin in BRCAI/2
mutational carriers with breast or ovarian cancer (95). Therapy
was administered in a 3 x 3 dose escalation fashion: oral olaparib
at 100 or 200 mg every 12h [dose level (DL) 1/2] with IV car-
boplatin AUC 3 on day 8 then every 21 days; DL6-9 gave olaparib
days 1-7 at 200 then 400 mg every 12 h, with carboplatin AUC 3 on
day 2 then escalation to AUC 5 (no DL3-5). From the preliminary
results, bone marrow suppression was the observed dose limiting
toxicity. Of the 23 evaluable ovarian cancer patients, PR was seen in
8/23, disease stabilization occurred in 11/23. Overall, the ovarian
cancer cohort had a clinical benefit of 83%. Clearly, the results of
these studies are intriguing; data from similar combination trials
is eagerly anticipated.

In addition to chemotherapeutic agents, PARP inhibitors are
also being combined with anti-angiogenic agents. The rationale
behind this combination is based on the observation that vascu-
lar endothelial growth factor receptor (VEGFR) inhibition may
lead to increased DNA damage through downregulation of DNA
repair proteins, including ERCC1 and XRCC1 (96, 97). Stem-
ming from pre-clinical data supporting the relationship between
PARP inhibition and the VEGF pathway (98-100), several phase
I studies are presently underway. The phase 1 study of ABT-
888 (veliparib) in combination with carboplatin, paclitaxel, and
bevacizumab as first-line treatment for stage II-IV ovarian cancer
is actively enrolling patients (NCT00989651; Table 1). Another
phase I trial of olaparib in combination with cediranib, a VEGFR
inhibitor, is also open to recurrent ovarian or TNBC patients
(NCT01116648; Table 1). Trial investigators are exploring the tox-
icities and recommended phase 2 dosing of the dual therapy. From
a preliminary report, myelosuppression was dose limiting at the
highest dose level (cediranib 30 mg daily/olaparib 400 mg twice
daily) (101). Although unconfirmed, the study also notes a 56%
response rate in enrolled ovarian cancer patients. These results
are encouraging; additional efficacy data will be forthcoming
(Table 1).

Due to PARP’s ability to inhibit multiple processes related to
DNA repair, combining PARP inhibition with ionizing radiation

is a logical combination. Pre-clinical studies confirm that PARP
inhibition acts to sensitize malignant cells to radiation (88, 102).
Several laboratories have also shown that PARP 1 knockout mice
have an enhanced sensitivity to gamma-radiation (103, 104). In
mouse colon cancer xenografts, veliparib coupled with irradia-
tion resulted in prolonged survival from 23 to 36 days, and in
one mouse, a complete response (8). At the present time, there
are no active clinical trials investigating the combination of radi-
ation therapy with PARP inhibition in gynecologic malignancies.
However, there are active trials investigating this dual therapy
in other diseases like breast cancer (NCT01477489) (105) and
glioblastoma multiforme (NCT00687765) (106). Enrollment of
gynecologic malignancy patients into similar trials is important
since radiation plays a significant role in the treatment of cervical
and endometrial cancer.

As evidenced by the discussed clinical data, many patients ben-
efit from PARP inhibitor therapy, though the degree of response
varies and sometimes there is no observed clinical benefit. A
predictive marker that not only evaluates the drug’s pharmacody-
namic effects, but can also identify who might benefit from therapy
may help guide treatment decisions. Several attempts have been
made to meet this objective. Duan et al. described a triple stain
immunofluorescence assay looking at FANCD2, DAPI, and Ki67
as a means for measuring the functional competency of the Fan-
coni anemia pathway in proliferating cells in formalin fixed tumor
tissue from patient biopsies across multiple tumor types (5). This
stain is now being tested in a prospective fashion to select patients
for a phase 1 clinical trial using veliparib alone or in combination
with mitomycin-C (NCT01017640). The use of massively paral-
lel sequencing analysis (e.g., BROCA) in a prospectively designed
trial should also be investigated as this may capture a larger
percentage of patients likely to be sensitive to PARP inhibition
compared to relying on BRCA1/2 mutational analysis alone (30).
Mukhopadhyay et al. developed a method of measuring HR func-
tion by quantifying RAD51 foci via immunofluorescence-based
assays of ascitic fluid (107). They subsequently correlated in vitro
cytotoxicity of the PARP inhibitor rucaparib with the HR status
from these culture results. They correlated their in vitro results to
patients whom were treated with platinum-based chemotherapy;
tumor progression and OS were prospectively compared between
HR-competent versus HR-deficient patients (108). Interestingly,
patients who were HR-deficient, as established by assay analysis,
had lower rates of tumor progression at 6 months and a higher
median survival. From these results, the authors suggest that the
RAD51 assay successfully identified those patients with HR defi-
ciency and hence, may better predict which patients will have the
best response to PARP inhibition. In addition to ascitic fluid,
collection of peripheral blood mononuclear cells (PBMCs) as a
surrogate tissue to monitor drug actions may be preferable to
tumor biopsy collection, as it is less invasive and multiple samples
may be longitudinally obtained. In order to better characterize the
pharmacodynamic profile of the PARP inhibitor ABT-888, Ji et
al. developed an immunoassay for measuring PAR incorporation
in both tumor biopsies and PBMCs (109). In this study, con-
siderable inter-individual and inter-sample heterogeneity in PAR
levels was observed. Given these findings, it is not surprising that
the trial comparing cyclophosphamide with veliparib presented
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a 50% reduction in PAR levels in 90% of patient PBMCs and
80% reduction in tumor biopsies across all dose levels (110). A
larger phase II follow up study with this combination is ongo-
ing (NCT01306032; Table 1). Though limited conclusions may
be drawn from this experience, one must consider the possibility
that PAR levels did not correlate well with actual PARP inhibitor
activity (111). Ongoing genomic microarray analysis of patients
involved in trials using olaparib may give useful insight into genetic
signatures that may predict response. Regardless, these results
underscore the need to identify a validated method of quanti-
fying PARP inhibitor activity that corresponds to actual clinical
outcome.

As with the majority of anti-cancer agents, tumors may develop
acquired resistance to PARP inhibitor therapy. There are several
proposed mechanisms of resistance, and likely many more that
have not yet been described. One potential means is the restora-
tion of HR secondary to a gain of function mutation in the BRCA2
allele via elimination of the c.6174delT mutation (112). Resistance
secondary to up regulation of the ABCB1a/b gene that encodes for
a P-glycoprotein efflux pump is also described with long-term use
of the PARP inhibitor olaparib. Reversal of resistance occurred
with co-administration of a P-glycoprotein inhibitor (113). These
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