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APC normally down-regulates WNT signaling in human colon, and APC mutations cause
proliferative abnormalities in premalignant crypts leading to colon cancer, but the mecha-
nisms are unclear at the level of spatial and functional organization of the crypt. Accordingly,
we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT)
that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells
(SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate
while migrating upwards.The APC concentration is low at the crypt bottom and high at the
top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom
(where SCs reside) and low at the top. Given that WNT and APC gradients are counter
to one another, we hypothesized that a counter-current-like mechanism exists. Since both
APC and WNT signaling components (e.g., survivin) are required for mitosis, this mecha-
nism establishes a zone in the lower crypt where conditions are optimal for maximal cell
division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency
diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmet-
ric division, which causes SC overpopulation. In homozygote mutant crypts, these changes
are exacerbated. Thus, APC -mutation-induced changes in the counter-current-like mecha-
nism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during
tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt
cycle, and underlies adenoma development. Novel chemoprevention approaches designed
to normalize the two gradients and readjust the proliferative zone downwards, might thwart
progression of these premalignant changes.

Keywords: adenomatous polyposis coli,WNT signaling, survivin, colon cancer stem cells, crypt fission, crypt cycle,
adenoma morphogenesis, colonic stem cells

INTRODUCTION
It is well-known that APC down-regulates WNT signaling in
normal human colon and that APC mutation impairs this down-
regulation and contributes to the development of premalignant
crypts, which leads to colon cancer [reviewed in (1, 2)]. However,
the mechanisms are not well understood at the level of the spatial
and functional organization of the colonic crypt. Therefore, we
created a counter-current-like model that considers gradients of
factors (APC; WNT) along the crypt axis that spatially and tem-
porally regulate colonocyte proliferation and differentiation along
this axis. To understand this problem and our proposed solution
requires an understanding of the normal colonic crypt.

To better understand the role of APC, crypt renewal, and
colonic stem cells (SCs) in maintaining normal form and function
of the colon, we will first discuss the organization and function of
normal colonic epithelium. This discussion is important because
colonic SCs bequeath molecular information to their non-SC
progeny that determines the structure and function of normal

colonic epithelium. With that as a foundation, we can then begin
to see how changes in populations of SCs can contribute, during
colon tumor development, to altered tissue structure and altered
tissue function. Although there has been much research on the
structure and the function of rodent small intestine, which has
increased our understanding of the biology of GI SCs, here we will
emphasize knowledge obtained from human colonic SCs, human
colonic epithelium, and human colonic cancers. If the reader
wishes information in this field as it pertains to SCs in rodent
tumorigenesis, several excellent reviews are available (3–5).

HISTOLOGIC AND PROLIFERATIVE CHARACTERISTICS OF
NORMAL HUMAN CRYPTS THAT CONTAIN WILD-TYPE APC
Anatomically, colonic epithelium in humans is made of regu-
lar, pit-like structures called crypts, each containing two to three
thousand cells (6, 7). The epithelium of the colon has very high
turnover – it is replaced every 5 days through crypt renewal (6).
Because the human colon contains∼1011 cells (8) nearly 10 trillion
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colonocytes are generated per year. Remarkably, it is the colonic
SC that underlies the generation of this large number of cells dur-
ing an individual’s lifetime while, at any given time, maintains the
number of crypt cells constant and crypt dynamics at steady state.

THE ROLE OF NORMAL SCs IN NORMAL HUMAN CRYPT STRUCTURE
AND FUNCTION
The bottom of the crypt is where most colonic SCs reside. They
are generally quiescent but do generate rapidly proliferating cells
(transit-amplifying cells) that are simultaneously differentiating
and proliferating (i.e., they are maturing) as they migrate upwards
along the crypt axis. As they migrate, they are maturing along the
various cell lineages such as absorptive (columnar) goblet (mucin-
producing), and other cell types (9–12). Maturing cells, in turn,
generate fully mature cells. These terminally differentiated cells
continue migrating upwards,become apoptotic, and are eventually
sloughed off, at the crypt top, into the colonic lumen.

Several mechanisms are in place to maintain the crypt size and
the colonocyte population size constant. In dividing, the SC pop-
ulation at the bottom of the crypt undergoes self-renewal and,
at the same time, generates the population of transit-amplifying
cells (13). Because colonic SCs are long-lived, they are essential for
crypt self-renewal over the lifespan of each individual. Extrapo-
lations of findings from biologic studies in rodents suggests that
SCs in a human colonic crypt are a small proportion (∼1%) of
all cells in that crypt (14). This estimate is in accord with recent
immunostaining experiments in human colonic crypts for the SC
markers (15, 16). Nevertheless, these rare SCs drive crypt renewal
and are key to crypt homeostasis and viability (17, 18).

DYNAMICS OF NORMAL CRYPT CELL POPULATIONS
The dynamics of human colonic crypts are complex [reviewed in
(19)]. (i) Crypts contain many cell types. (ii) Most crypt cells have
neither a static location nor a static phenotype. As most crypt cell
types migrate toward the crypt top, they proliferate and differen-
tiate simultaneously (i.e., they undergo maturation). Eventually
they become fully mature, no longer proliferate, become termi-
nally differentiated, and, after apoptosis, are extruded at the crypt
top. (iii) Not surprisingly, given the above, cell phenotypes change
as colonocytes migrate and mature upwards along the crypt axis
and various phenotypic markers show gradient-like distributions.

A few cells of the colonic crypt, the SCs, are different. (i) They
don’t migrate upwards, remaining, instead, near the crypt bot-
tom. (ii) They are multipotent. Human and rodent studies show
that colonic SCs generate several lineages (endocrine cells, absorp-
tive cells, goblet cells). Via tissue renewal, SCs replenish not only
their own population, but also, all crypt cell types. (iii) SCs are
extremely long-lived. Since crypts are closed systems, crypt cells
must be generated by SCs that are already residing in the crypt.
Therefore, both the number of cells in the normal crypt and the
division of SCs require strict physiological regulation.

STUDYING THE GENERATION OF RAPIDLY PROLIFERATING NON-SCs BY
SCs
Because of numerous obstacles to the study of SCs in humans, ini-
tial studies focused on the functional properties of these cells.
One of the earliest ways used to study SCs and to determine

their anatomic location was pulse-labeling of DNA of rapidly
proliferating cells – daughter cells that are produced by SCs.
Uptake of bromodeoxyuridine (BrdU) or [3H]thymidine by these
daughter cells in human colonic crypts results in in vivo labeling
of DNA-synthesizing S-phase cells (6, 20–22). When the frac-
tion (proportion) of S-phase (labeled) cells is plotted against
cell position (i.e., against cell level) along the crypt axis, from
the crypt bottom to the crypt top, the result is a skewed bell-
shaped curve termed the labeling index or LI. In normal colonic
crypts, the curve for the LI is low at the crypt bottom (level 1)
and top (∼ level 82) and maximizes at approximately level 15.
Sequential LI profiles were used to track these labeled colono-
cytes, which showed that they migrate from bottom to top, where
they are then extruded. These tracking results indicate that SCs
must reside at the crypt bottom. These profiles also indicate
that there is a small fraction of cells in S-phase at the bot-
tommost crypt levels (6, 23), where SCs are located. This is
also consistent with literature reporting that SCs are relatively
quiescent (24–26).

IDENTIFICATION, DISTRIBUTION, AND MODE OF CELL DIVISION OF
HUMAN COLONIC SCs
To study important questions such as: what regulates the distrib-
ution of SC in the human colonic crypt or what is their type of
cell division, it has been necessary to find accurate markers for
human colonic SCs. This effort has relied on showing that SC
markers fulfill certain criteria – ones that differ somewhat from
criteria for establishing SC markers in rodents because validating
SC markers by lineage tracing cannot readily be done for human
tissues for ethical reasons. Thus, validation in humans generally
relies on demonstrating characteristics of self-renewal, tumor-
initiating ability, long-term repopulating capability, and capacity
for multi-lineage differentiation (27). Based on these criteria sev-
eral reliable markers (e.g., CD44, CD133, CD166, Musashi 1) have
been established for normal and malignant human colonic SCs
(15, 28–31).

Our own work (16) led to the discovery that ALDH is a marker
for human colonic SCs. We found that ALDH positive colonic
cells exhibit the known SC properties of anatomic localization
and tumor-initiating ability: (a) immunohistochemistry identified
a small subpopulation of ALDH1+ cells (∼5%) localized to the
bottom of normal crypts (where SC reside) and (b) the Aldefluor
assay was used to isolate a subpopulation of malignant colonic
cells that generates xenograft tumors (also showing the ability for
self-renewal). As few as 25 ALDH+ cells generated tumors while
as many as 10,000 ALDH− cells from colorectal cancers (CRCs)
did not form xenograft tumors. It was also shown that ALDH+
cells possess the SC features of long-term repopulating ability and
multi-lineage differentiation (16). This was done by showing that
isolated ALDH+ cells have the ability: (1) to be serially passaged
long-term as xenografts in mice (and in colonosphere cultures)
with continued isolation of ALDH+ cells, and (2) to differenti-
ate into all of the different cell lineages found in colonic tissues
based on histologic evaluation of the tumor xenografts. Similar
findings have been published by others (32–34). Taken together,
this information is consistent with the conclusion that ALDH1 is
a SC marker in the colon of humans.
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We then determined staining indices to quantify the distrib-
ution of colonic SCs (16). Indices for ALDH+ cells and those
marked by other SC markers (CD133, CD44) showed that there
is a gradient in the number of SCs upwards along the crypt axis.
This gradient is similar to the exponential decrease in stemness
with distance from the crypt bottom that we previously reported
(23). The reason that this gradient exists is explainable in two ways.
(i) In the first explanation, there are, upward along the crypt axis,
decreases in the fraction of cells that are SCs. In this view, being a
SC is all-or-none, and SCs can divide asymmetrically or symmet-
rically. The division of SCs can occur asymmetrically to produce
one SC and one non-SC, symmetrically to produce two identical
SCs, or symmetrically to produce two non-SC (35, 36). In theory,
division of SCs must, on average, be asymmetric in order to main-
tain the SC number constant (37). That is, they must produce an
average of one SC and one non-SC over all crypt cell divisions.
Otherwise, the crypt cell population size will change, as it does in
colon tumorigenesis, where SC overpopulation occurs (16).

(ii) In the second explanation, gradual decreases occur, upwards
along the crypt axis, in the degree of stemness of each maturing
cell. In fact, a radiobiology study (17) suggested that stemness is
not all-or-none; rather, stemness is lost gradually. Hence it was
postulated (38) that in early generations SCs gradually lose the
capacity to function as SCs, and, eventually, all SC potential is
lost. Other findings (39, 40) indicate that rodent intestinal SCs
generate progenitor cells that have some SC-like properties and
that become committed to differentiating along a particular cell
lineage. This concept, that there are“intermediate degrees of stem-
ness” is consonant with many of the latest rodent models of small
intestinal SC with active SCs and ones that are recruitable, and
where the “probability of stemness” represents a gradual change
rather than a binary change (24, 41–43). That these progenitor cells
seem to have intermediate degrees of stemness supports the idea
that cells undergo gradual decreases in their degree of stemness as
they migrate along the crypt axis and mature (23).

PROLIFERATIVE CHANGES IN APC MUTANT CRYPTS DURING
HUMAN COLON TUMORIGENESIS
The mechanisms by which APC mutations lead to CRC initia-
tion have not been fully elucidated. For instance, it is not clear
how a germline APC mutation can initiate intestinal tumors as it
clearly does in ApcMin/+ mice and familial adenomatous polypo-
sis (FAP) patients. Most sporadic CRC cases as well are initiated
by APC mutations – such mutations are observed in ∼80% of
cases of sporadic CRC (44, 45). Inactivation of the second APC
allele happens during intestinal adenoma and carcinoma develop-
ment in both ApcMin mice and FAP patients (46). This “second hit”
typically results in the total absence of wt-APC protein (47, 48).
However, in the case of homozygous mutant APC, the truncated
APC protein usually contains some residual functions (discussed
below) (48, 49).

Histopathologic studies on APC mutant tissues from FAP
patients have been done to investigate how APC mutations might
lead to development of CRC. An early finding was that prolif-
erative mechanisms in the colonic crypt become dysregulated.
The proliferative alterations were first shown several decades ago
using pulse-labeling with BrdU or [3H]thymidine and plotting LI

(labeling index) curves (20–22, 50). For normal-appearing FAP
crypts, LI curves are shifted toward the crypt middle, maximiz-
ing at about level 20 (in normal colon, the maximum is at level
15) (50). This proliferative shift in normal-appearing (not yet dys-
plastic) FAP crypts is the earliest-known tissue alteration resulting
from a germline mutation in the APC gene. Notably, crypts (e.g.,
FAP crypts) exhibiting this proliferative abnormality don’t show
any microscopically visible changes in histology. Crypts begin to
show abnormalities in histology only when they become dysplas-
tic, i.e., during the formation, later, of premalignant adenomas,
which have a second hit at the APC locus. For adenomatous crypts
from FAP patients, LI curves are shifted even further up the crypt,
toward the top (51, 52).

It is possible that the observed shift in the distribution of labeled
cells reported in these studies might, in theory, have been caused
as a result of variation in the length of the crypt (53–55). How-
ever, more comprehensive studies on humans have substantiated
that this is not the case. In these studies (56, 57), fresh colonic
biopsies from unaffected controls and FAP patients were pulse-
labeled ex vivo with [3H]Thymidine. Moreover, the distribution
of labeled cells was not determined based on “crypt level” (which
could vary with crypt length) but on the “proportions” of cells
along the crypt axis from bottom to top (which would not vary
with crypt length). Zhang et al. (58) used a different approach to
map the distribution of proliferating cells – namely using quanti-
tative immunohistochemical (IHC) mapping of Ki67-labeled cells
and by plots of staining indices. These mapping results showed
that in FAP crypts the population of Ki67+ cells extended upward
into the crypt middle as compared to distribution of Ki67+ cells
in normal crypts where Ki67+ cells were restricted to the bottom-
third. Similar results were found by Mills et al. (59). In adenomas
from FAP patients, the shift was even more pronounced; cells stain-
ing for Ki67 were mostly found at the top of the crypt or on
the luminal surface of the adenomatous epithelium. Thus, results
from three independent approaches, quantitative IHC crypt map-
ping (58, 59), pulse-labeling of crypts in vivo (20–22, 50–52), and
pulse-labeling of crypts ex vivo (56, 57), all provided support
for the existence of an upward shift of the proliferative zone in
normal-appearing and adenomatous crypts in FAP patients.

Other studies have investigated mitotic cells (rather than
[3H]thymidine-labeled or BrdU-labeled cells) in FAP colonic
crypts (60, 61). But mitotic indices have not been reported prob-
ably because scoring mitoses is difficult due to the small number
(<0.5%) of mitotic figures per crypt. Wasan et al. (60) did report,
using crypt microdissection, on the highest crypt level at which a
mitotic figure was observed and found a modestly higher level
in FAP patients than in normal patients. However, the differ-
ence was not significant, possibly because he was studying only
a small series of FAP patients (n= 15). Mills et al. (61) studied a
larger series (n= 29) using the same technique, crypt microdissec-
tion. They found a marked and significant (p < 0.0001) increase
in the number of mitoses per crypt in FAP crypts (14.2) vs. control
crypts (5.6). More recently, we (58) used quantitative IHC map-
ping of phospho-H3+ cells to measure the distribution of mitotic
cells. This approach showed that in FAP crypts the population of
mitotic cells extended upward into the crypt middle as compared
to normal crypts in which phospho-H3+ cells were located in the

www.frontiersin.org November 2013 | Volume 3 | Article 244 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Genetics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boman and Fields APC:WNT crypt gradients and colon tumorigenesis

bottom-third. In adenomas from FAP patients, the staining index
for phospho-H3+ cells revealed that the shift of mitotic cells was
even more pronounced for adenomatous crypts. Thus, these data
on mitotic cells are consistent with the proliferative shift (based
on LI) observed in FAP.

It was unclear, however, how APC mutations generate these
earliest-known tissue events during colonic neoplasia develop-
ment, that is, an upward shift along the crypt axis of the prolifer-
ative zone (as indicated by shifts in the LI curve). To investigate
mechanisms as to how the proliferative abnormality occurs, we
turned to mathematical modeling. Our modeling results (37, 62,
63) clearly demonstrated that only increases in crypt SC number,
not alterations in apoptosis, differentiation or cell cycle prolif-
eration of non-SC populations, could accurately simulate the LI
shift in FAP crypts. This led us to postulate that the missing link
between an APC mutation and the LI shift in the initiation of CRC
in FAP trait carriers is the overpopulation of crypt SCs.

Biological studies (63, 64) that we did to follow up on our
modeling study (37, 62) provided data to support this SC over-
population mechanism, as have other studies. For example, using
methylation pattern diversity, Kim et al. (65) found enhanced SC
survival in FAP,which is consistent with SC overpopulation in CRC
development. In another study (66), the orphan G protein-coupled
receptor GPR49 (LGR5) was found to be overexpressed in primary
human colon tumors and LGR5 was then found, in rodent studies
(67), to be a SC marker. These research findings led us to determine
that ALDH1 is a marker for human colonic SC and allowed us to
demonstrate that SC overpopulation occurs due to an APC muta-
tion during CRC development (16). Using ALDH1 also allowed
us to track SC overpopulation in APC mutant tissues during the
stepwise progression to CRC development in FAP patient tissues.

Molecular studies have also been done to elucidate APC-based
mechanisms that contribute to CRC development [reviewed in (1,
2)]. In normal tissues, the APC protein controls WNT signaling by
binding to the β-catenin protein in the cytoplasm, which in turn
leads to β-catenin degradation. If APC is deleted or mutant, the
degradation rate of cytoplasmic β-catenin is diminished. In a small
proportion of CRC cases, ones that lack APC mutations, β-catenin
(CTNNB1) mutations are found. Both CTNNB1 and APC muta-
tions activate Tcf4-mediated transcription. The increased levels of
cytoplasmic β-catenin lead to increased binding to and activation
of Tcf4 (Tcf/Lef) transcription factors, factors that regulate target
protein expression and, in turn, cell proliferation and differentia-
tion. For example, Korinek et al. (68) showed, in rodents lacking
Tcf4, that epithelial SC compartments become depleted in small
intestinal crypts. Other studies (69) showed that Apc modulates
embryonic SC differentiation by controlling the dosage of beta-
catenin signaling. Moreover, LGR5 that is overexpressed in human
CRCs (66) is a Tcf4 target gene (70) and LGR5 was then used to
identify crypt SCs as the cells-of-origin of intestinal cancer (71).
Taken together, these findings show that APC mutations and acti-
vation of WNT signaling pathways are crucial to the development
of CRC.

APC AND WNT GRADIENTS
How crypt SC overpopulation is caused by APC mutations
remains unclear. An explanation we are presenting here is that, in

the normal crypt, APC-induced down-regulation of WNT signal-
ing establishes an APC:WNT gradient and dysregulation of this
gradient in tissues containing APC mutations is key. In normal
crypt renewal, daughter cells produced by SCs at the bottom of the
crypt proliferate while they migrate upwards. Because APC pro-
tein produced in crypt cells increases as the cells migrate upwards
(58, 72–80), APC concentrations are low at the bottom of the
crypt (where SCs reside) and high at the top of the crypt (where
differentiated cells are). In contrast, WNT signaling is greater at
the bottom of the crypt, occurring through a complex network
consisting of different WNT ligand and receptor signaling com-
ponents (81, 82). Activation of WNT signaling in the crypt bottom
was shown by studies demonstrating accumulation of nuclear
TCF4 in the crypt proliferative compartment (70, 83–85). There
are several lines of evidence demonstrating that continual stim-
ulation of the WNT pathway in the crypt bottom is essential for
maintenance of intestinal SCs, normal proliferation of transit-
amplifying cells, enterocyte maturation, and crypt homeostasis
(86, 87). WNT gradients are high at the crypt bottom and low at
the crypt top (inverse to the APC gradient). Given the existence of
these inverse gradients and the dynamics of their interactions, we
construed that there is a counter-current-like mechanism in the
normal crypt and that this mechanism likely regulates changes in
cellular phenotype associated with colonocyte maturation along
the crypt axis (Figure 1).

COUNTER-CURRENT-LIKE MECHANISMS
Counter-current mechanisms are found extensively in nature.
Typically, the incoming and outgoing components flow in opposite
directions to each other and interact to retain a high concentration
of a substance at one point in the system. In the colonic crypt, one
component is the Wnt gradient and the other is the APC gradi-
ent. These gradients are not only “counter” to each other, but also
APC and Wnt are both necessary for proliferation (but neither
is sufficient). As discussed below, APC and Wnt components are
known to interact during mitosis and, in our model, this inter-
action maintains cell division at a high level in a specific area in
the lower region of the normal crypt (peak at approximately crypt
level 15).

This raises the question as to what maintains the APC and Wnt
gradients in the normal colonic crypt. The inverse pattern is con-
sistent with their being feedback and/or feed-forward regulation,
which is a key to many counter-current mechanisms. For exam-
ple, Wnt signaling is activated at the crypt bottom by a complex
network of various Wnt ligands and receptors. The Wnt and APC
gradients can even affect each other. Indeed, it is well-known that
APC down-regulates Wnt signaling.

REGULATION OF APC EXPRESSION
Of course the question arises: What factors regulate APC gene
expression and is WNT signaling one of those factors? One fac-
tor appears to be cell proliferation. For example, Umar et al. (75)
found that epithelial proliferation induces APC expression and
full-length APC protein increases during rodent intestinal epithe-
lial hyper-proliferation. Fagman et al. (88) showed a similar effect.
Their study showed that nuclear accumulation of full-length and
truncated APC protein in colon carcinoma cell lines depends on
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FIGURE 1 | Schematic of the counter-current-like mechanism. The
“sweet spot” marks the crypt region where levels of APC and WNT
signaling are balanced and optimal conditions exist for mitosis and maximal
cell proliferation. Both APC and WNT signaling components (e.g., survivin)
are essential for mitosis. Left Panel: In normal crypts (wt-APC homozygote),
the gradients of WNT signaling (yellow wedge) and APC signaling (red
wedge) are balanced and the “sweet spot” is in the lower crypt. Middle
Panel: In FAP crypts (wt-APC heterozygote) the situation has changed.
Patients with FAP have a germline heterozygous APC mutation and thus a
50% reduction in APC gene dosage. Therefore, there is 50% less APC
protein expressed (as indicated by the narrower red wedge), and less

suppression of WNT expression and WNT signaling (as indicated by the
wider yellow wedge). The balance point, that is the “sweet spot,” has been
shifted to a higher crypt level. Right Panel: In adenomatous crypts
(mutant-APC homozygote), the changes in WNT expression (still wider
yellow wedge) and APC expression (still narrower red wedge) are
exacerbated due to a sporadic APC mutation in the second APC allele (the
second hit). In mutant-APC homozygote cases truncated APC protein can
retain some residual function. Here the “sweet spot” is shifted even further
up the crypt. A consequence of these changes is an increase in the number
of immature cells (including SCs) in the crypt. The SC overpopulation is
thought to drive colon tumorigenesis.

proliferation. Another factor is that regulation of APC expression
depends upon promoter methylation. Deng et al. (89) showed that
methylation of CpG sites around a CCAAT box in APC’s promoter
region inhibits APC’s gene expression by changing chromatin con-
formation and interfering with the binding of transcription factor
CBF (CCAAT binding factor) to the CCAAT box. Studies on vari-
ous cancers provide further support for the idea that expression of
APC is affected by promoter methylation. Indeed, APC promoter
hyper-methylation has been found to occur in a variety of human
cancers including breast (44%) and lung (53%) and other can-
cers (90). This promoter hyper-methylation leads to epigenetic
inactivation of the APC gene. Some transcription factors such
as p53, USF1, USF2, and GC-box binding protein Sp3 have also
been shown to regulate APC gene expression (91–95). While it has
not been shown (to our knowledge) that Wnt signaling directly
regulates APC expression (APC is not a known TCF4 target gene),
WNT signaling does have a role in chromatin remodeling via beta-
catenin’s interaction with chromatin remodeling complexes that
can affect gene transcription (96). This role fits with the observa-
tion that chromatin is more condensed in cells at the crypt base, the
region where WNT has highest activity (97). Thus, it is changes in
chromatin conformation (open or closed) along the crypt axis that
may modulate APC expression by affecting the ability of specific
transcription factors to bind to APC’s promoter region.

APC AND WNT SIGNALING ARE BOTH REQUIRED FOR
MITOSIS
In particular, the existence of inverse APC and WNT gradients and
their interactions begins to explain how crypt cell dynamics such

as cell division are regulated. For instance, APC is a protein located
at specific sites within mitotic cells and is essential for cell division
[reviewed in (98, 99)]. Cell division also requires WNT signaling.
In the WNT signaling pathway key down-stream signaling com-
ponents include survivin, aurora B kinase (ABK), INCENP, and
phospho-histone H3 (58, 100). ABK becomes activated when it
forms a complex with the other three proteins. Like APC,ABK,Sur-
vivin, INCENP, and Borealin are also located at specific sites within
mitotic cells and these proteins are necessary for cell division (101–
103). We and others found that survivin is a TCF4 target gene
(58, 63, 100, 104–106). Thus, APC itself down-regulates, via beta-
catenin/TCF4, expression of survivin. This, in turn, modulates
ABK activity, which contributes to the regulation of mitosis.

As both APC and WNT signaling are essential for mitosis, and
as their gradients are inverse to one another, there has to be a
zone along the crypt axis where the concentrations of APC and
WNT pathway components are together optimal for maximal cell
division – termed here a “sweet spot.” To better understand the
underlying mechanisms of this phenomenon, we created a new
model. It is a counter-current-like model that considers gradi-
ents of factors (APC; WNT) that regulate colonocyte proliferation
along the crypt axis (Figure 1). The scientific basis of this model
derives from the fact that both APC and WNT signaling are both
required for mitosis, which we will now discuss.

ROLE OF APC IN SPINDLE ORIENTATION AND MICROTUBULE FUNCTION
DURING MITOSIS
During mitosis, APC becomes localized to and acts at four sub-
cellular sites: midbody, centrosomes, cortex, and kinetochores
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[reviewed in (98, 99)]. APC proteins have several mitosis-related
functions. (a) APC acts at the plus ends of microtubules, which, in
turn, interact with kinetochores. This increases kinetochore abil-
ity to attach to microtubules. APC also helps maintain mitotic
fidelity – APC is needed for the normal function of the mitotic
spindle checkpoint, which includes detection of transiently mis-
aligned chromosomes. (b) At the cortex,APC regulates the stability
of astral microtubules, and provides a cortical location for attach-
ment of those microtubules. APC and other interacting cortical
factors (which includes dynein) rotate the mitotic spindle into a
defined orientation, and help orient the mitotic spindle. (c) In
vertebrates, APC and EB1 (its binding partner) co-localize to the
mother centriole, and this anchors a subset of microtubules. At this
site, it is likely that APC has a role in centrosome re-orientation
and directed migration. (d) APC also co-stains with tubulin at
the midbody (which separates daughter cells) suggesting a role for
APC in cytokinesis (107).

APC is associated, during mitosis, with kinetochores in
metaphase, with the midbody during telophase and with polar
microtubules in anaphase. During metaphase, APC interacts with
EB1 in the alignment of chromosomes through plus-end cap-
ture and through attachment of microtubules to kinetochores
(108, 109). This linkage seems to require EB1 and, notably, APC
and EB1 localize specifically to the mother centriole. APC is also
localized to the centrosome, and helps nucleate and anchor micro-
tubules, which is required for establishment of the bipolar spindle.

ROLE OF WNT SIGNALING IN MITOSIS AND MITOTIC SPINDLE
ORIENTATION
Survivin, ABK, INCENP, and Borealin are also involved in mito-
sis and function as a complex of chromosomal passenger pro-
teins [chromosomal passenger complexes (CPCs)] localized to
chromosomes in prophase (101–103). In metaphase, survivin
targets this CPC to centromeres. The complex is stabilized by
INCENP. Survivin binding to INCENP is promoted by Bore-
alin. During metaphase, ABK is localized to the inner centromere.
ABK regulates kinetochore-microtubule interactions and pro-
motes proper chromosome bi-orientation by regulating and cor-
recting kinetochore-microtubule attachments. In particular, ABK
at the inner centromere inhibits formation of syntelic micro-
tubule attachments, thus promoting monotelic attachments and
appropriate bi-orientation on the mitotic spindle.

APC, EB1, SURVIVIN, AND ABK LOCALIZE TO SIMILAR SITES DURING
THE DIFFERENT PHASES OF MITOSIS
The cellular location of APC, EB1, survivin, and ABK during the
different phases of mitosis has been described in several reviews
(98, 99, 102).

In anaphase APC is located at the cortex and helps position
the spindle. This depends on guiding cortical microtubules to
specific cortical sites. This seems to require a microtubule plus-
end protein complex, which includes APC, beta-catenin, EB1, and
other proteins. APC is linked to microtubules by binding to EB1,
and dynactin/dynein complexes are tethered to APC-associated
EB1 at cortical attachment sites. Indirect links between APC and
actin filaments seem to be mediated by beta-catenin and alpha-
catenin, which provides, during mitosis, a functional link between

microtubule and actin cytoskeletons. Survivin and ABK concen-
trate, during anaphase, at the spindle midzone and equatorial
cortex in preparation for their roles in late mitotic events.

In telophase, APC co-stains with tubulin at the midbody (107).
It is unknown how APC contributes to furrow induction dur-
ing cytokinesis. But it may help guide cortical microtubules to
the cortex, or control actin dynamics at the cortex. ABK and sur-
vivin also play critical roles in cytokinesis. During telophase, ABK
and survivin are localized to the midbody. ABK seems to mediate
cytokinesis by phosphorylating several proteins that localize to the
cleavage furrow, which destabilizes intermediate filaments prior to
cytokinesis (110, 111).

DO APC, SURVIVIN, AND ABK INTERACT DIRECTLY?
The fact that APC, EB1, survivin, and ABK localize to similar sites
during the different phases of mitosis suggests that interactions
occur between these proteins. Indeed, the APC binding protein
EB1 provides a link between APC and ABK because EB1 and ABK
co-localize to the central spindle in anaphase and to the midbody
during cytokinesis. For instance, it was found that EB1 promotes
ABK activity by blocking its inactivation by protein phosphatase
2a (112). Therefore, EB1 mediates microtubule dynamics in asso-
ciation with APC and also positively regulates ABK activity. In
addition, formin mDia3, another APC binding protein, helps
stabilize microtubule-kinetochore attachments and chromosome
alignment in metaphase (113). This ability has been attributed
to the binding of mDia3 to EB1, the other protein that interacts
with APC. This provides another link to ABK because microtubule
binding to kinetochores via mDia3 is regulated by ABK phos-
phorylation of mDia3 (114). Thus, during mitosis, there are both
anatomical and functional links between APC, EB1, and ABK.

The evidence thus indicates that these key mitotic components
need complex regulation during the different phases of mitosis
and at different locations along the crypt axis. One aspect of this
regulation, we and others found, involves APC itself. APC down-
regulates expression of survivin via beta-catenin/TCF4, which, in
turn, modulates ABK activity (58, 63, 100, 104–106). APC, which
is a tumor suppressor gene, not only helps in mitosis but also
promotes both differentiation and apoptosis in the colonic crypt.
As noted above, APC in the crypt is distributed along a gradient,
from essentially negligible at the crypt bottom to a maximum at
the crypt top. The WNT gradient is inverse to the APC gradient.
Since survivin is a down-stream component of WNT signaling,
and survivin activates ABK, it is not surprising that survivin and
ABK gradients are, like the WNT gradient, highest at the crypt
bottom and lowest at the crypt top [(58, 100)].

That these gradients are inverse to one another might be seen
as contradicting the fact that APC, ABK, and survivin are essen-
tial for appropriate progression of cells through mitosis. However,
what this evidence really provides is insight into how cells undergo
phenotypic transitions as they migrate and undergo maturation
upwards along the crypt axis. In that view, there is, along the nor-
mal crypt axis, a region where APC, EB1, survivin, and ABK levels
together generate the highest rates of proliferation and differenti-
ation. In this “sweet spot,” transit-amplifying cells proliferate and
differentiate – a concept that is supported by our mathematical
modeling and biologic data (23, 58, 62, 63).
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OUR COUNTER-CURRENT-LIKE MECHANISM IS A MODEL
THAT ALSO EXPLAINS THE PROLIFERATIVE CHANGES
DURING COLON TUMORIGENESIS
In heterozygous APC mutant crypts, such as normal-appearing
colonic epithelium in FAP patients, there is half the wild-type
APC gene dosage. But both APC alleles will still be regulated
as in the normal crypt. However, one of the transcripts will
be a mutant transcript and be translated into a mutant protein
(50%) while the other will encode a wild-type protein (50%).
Thus, the encoded wild-type protein levels should be reduced
by about half at all points along the haplo-insufficient crypt
axis and the gradient becomes diminished but retains its dis-
tribution. Because concentrations of wt APC are decreased, the
optimal concentrations that generate the sweet spot occur fur-
ther up the crypt (Figure 1). This upward shift in the position
of the sweet spot parallels the shift in the labeling index in FAP
crypts from the lower region to the middle crypt (see Prolif-
erative Changes in APC Mutant Crypts During Human Colon
Tumorigenesis, above).

In homozygous mutant APC crypts, such as are found in ade-
nomas, these changes become exacerbated further. In this case, the
APC gradient is not totally lost because the truncated APC protein
usually contains some residual function (48, 49). Thus, optimal
conditions corresponding to the sweet spot are found even further
up the crypt. Indeed, the labeling index in adenomatous crypts
shifts to the top of the crypt.

RESIDUAL APC FUNCTION IS RETAINED IN CELLS WITH HOMOZYGOUS
MUTANT APC
It is fascinating how APC mutation leads to retention of resid-
ual activity in the encoded mutant protein. In the situation where
tumors are homozygous mutant for APC, the site of the “first
hit” in the APC gene determines the type of the “second hit,”
both in hereditary (FAP) and sporadic colorectal tumors (48, 115–
118). This results in expression of truncated APC protein in most
tissues with homozygous mutant APC. But, the truncated APC
protein actually retains a microtubule binding domain (Armadillo
repeats) and one to three intact β-catenin-binding amino acid
repeats. This indicates that second hits at the APC locus occur
that generate a “just-right” level of WNT/beta-catenin signaling
that is optimal for tumorigenesis, with the combined hits (or“just-
right” genotypes) resulting in only partial loss of APC functioning
(49, 119, 120).

Therefore, in neoplastic crypts one has to look higher up the
crypt to find the optimal APC concentration for cell division. This
is also true for WNT because diminished APC leads to diminished
down-regulation of WNT. Thus, it is only higher up the crypt
where the APC concentration is high enough to diminish WNT
levels to what normally was the optimal WNT concentration for
promoting cell division. Shifting the proliferative zone upwards in
neoplasia will theoretically increase symmetric SC division below
the sweet spot, which will cause CSC overpopulation and promote
colon tumorigenesis. Mutations at the second APC allele would
exacerbate these changes. Thus, APC-mutation-induced changes
in a counter-current-like mechanism will increase the number of
proliferative cells (SCs, rapidly proliferating cells), contributing to
colon cancer initiation and adenoma development.

Indeed, FAP crypts have increased mitoses (61), and a car-
dinal pathologic feature of colonic adenomas and carcinomas
is increased numbers of mitotic figures and aneuploidy. One
explanation for this increase is that the residual APC activity in
combination with increased WNT signaling in neoplastic tissues
increases the frequency of mitosis. If APC is necessary (but not
sufficient) for mitosis, and if there is enough residual APC func-
tion in a tumor, one would expect more frequent mitoses (but not
a greater rate of mitosis) when WNT signaling is also upregulated.
In the setting where you have increased frequency of mitosis, you
could also have changes in the fidelity of chromosome segrega-
tion. It is probably the dynamic interplay between APC and CPC
proteins during mitosis that affects the fidelity of mitosis (e.g., the
accurate segregation of chromosomes). Since the truncated APC
protein is not fully functional, and leads to, via WNT, aberrant
down-regulation of CPC protein expression, it is not surprising
that APC mutations lead, in colonic tumors, to aberrantly oriented
mitotic spindles and aneuploidy.

EFFECTS OF CHANGES IN COLONIC APC AND WNT
GRADIENTS IN NEOPLASTIC CRYPTS ON SYMMETRIC AND
ASYMMETRIC CELL DIVISION IN THE SC NICHE
The counter-current-like mechanism may also play a role in regu-
lating the symmetry of crypt cell divisions. The orientation of the
mitotic spindle axis of colon cells appears to change upward along
the normal crypt axis. In the crypt bottom, the mitotic spindle ori-
entation lies perpendicular to the apical surface – an orientation
that selectively occurs in the SC niche of human and rodent small
and large intestine (121). This perpendicular alignment of mitotic
spindles correlated with the pattern of retention of label-retaining
DNA in the crypt base, a pattern that is consistent with asymmet-
ric division of SCs. In the normal crypt middle (i.e., in the crypt
column), where SCs are rarely found, Quyn et al. (121) showed
that mitotic spindle alignments are mostly parallel to the apical
surface, which is a pattern that is consistent with symmetric dif-
ferentiated cell division. This mechanism involving change in the
mitotic spindle orientation along the normal crypt axis could con-
tribute to the maintenance of a constant number of SCs in the SC
niche (16, 64).

In premalignant heterozygous mutant Apc tissue in rodents
(ApcMin/+ intestine), both perpendicular spindle orientations and
asymmetric DNA label retention were lost in the SC niche (but
not in the crypt middle) (121). This pattern is consistent with a
decrease in asymmetric and an increase in symmetric cell division
in the SC niche in crypts with an APC mutation. Moreover, their
murine small intestine and human colon data demonstrate that
crypts with APC mutations show increased asymmetric cell divi-
sion in the crypt middle (column). These data thus indicate that
a shift in asymmetric cell division from the crypt bottom to the
crypt column happens in parallel to the shift in the labeling index
that was reported by others (20–22, 50, 56, 57). We also reported
(58) that the subpopulation of cells expressing the mitotic pro-
teins ABK and survivin shifts upward in FAP and ApcMin/+ crypts.
The global effect on the crypt of an APC mutation thus is a delay
in phenotypic transitions along the crypt axis, an increase in the
number of SCs that divide symmetrically, and expansion of the SC
population at the crypt bottom, which drives colon tumorigenesis.
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STUDIES ON RODENT INTESTINE THAT MIGHT PROVIDE
INSIGHT INTO MECHANISMS OF SC DIVISION IN HUMAN
COLON
Theoretically, in normal tissue renewal, asymmetric cell division
maintains the number of SCs constant (37, 122). An alternative
concept is that SCs must, on average, have asymmetric divisions,
even if each particular SC division is not always asymmetric (123).
In neoplastic tissue, in contrast, it can be deduced that, in the devel-
opment of SC overpopulation during human colon tumorigenesis,
the rate of symmetric SC division must be increased (37). However,
it is controversial whether, in the process of crypt renewal, SCs nor-
mally divide symmetrically or asymmetrically. Yatabe et al. (124)
used methylation patterns to investigate this question for human
colonic SCs. The patterns better supported a model of the crypt
SC niche in which SCs were periodically replaced via symmetric
SC division. And, using this methylation pattern diversity analysis,
Kim et al. (65) found enhanced SC survival in FAP, which is con-
sistent with SC overpopulation in CRC development. In contrast,
a recent paper by Bu et al. (34) reports data showing that human
colon cancer SCs can divide by either symmetric or asymmetric
division.

There is now a vast literature emerging on mechanisms of SC
division in rodent intestine that provide insight into mechanisms
of SC division in human colonic crypts. As noted above, Lgr5
was identified to be a SC marker in mouse intestine (67). Using
lineage-tracing models that were based on fate mapping, Snip-
pert et al. (125) reported that rapidly cycling small bowel SCs in
rodents (i.e., Lgr5+ cells), undergo symmetric SC division that fol-
lows a pattern of “neutral drift dynamics.” These findings support
a stochastic mechanism in which symmetric SC division occurs in
response to loss of a neighboring SC and, as expansion of the sur-
viving clone continues, the crypt SC niche becomes increasingly
monoclonal (126). Schepers et al. (127) studied SCs (Lgr5+ cells)
in the base of the crypt looking for asymmetric segregation of
chromosomes and asymmetric segregation of chromosomes was
not observed at the crypt base since Lgr5+ intestinal SCs randomly
segregated newly synthesized DNA strands.

Other studies, however, indicate that SCs divide asymmetri-
cally. Asymmetric division of SCs in the SC niche supports a
deterministic mechanism whereby a small number of SCs each
generate a SC and a non-SC (a transit-amplifying cell). The non-
SC daughter leaves the SC niche,and proliferates (promoting tissue
renewal) whereas the SC daughter stays in the SC niche (35, 128).
Asymmetric SC division is consistent with the “immortal strand
hypothesis,” that is, the idea that during SC division, newly synthe-
sized DNA strands segregate with the non-SC daughter to avoid
mutations that are caused during DNA replication (129).

The “immortal strand” hypothesis has been tested using DNA-
labeling methods to identify label-retaining cells (LRCs). Cells
that retain DNA labels like BrdU or [3H]thymidine are thought
to be SCs. Potten et al. (130) used double-labeling of cells in
rodent small bowel using BrdU and [3H]thymidine (3HTdR).
Template DNA strands in SCs were labeled with 3HTdR during
tissue regeneration or development. Newly synthesized strands
were labeled with BrdU, which established a way to follow how the
two markers segregated after cell division. The authors found that
the template strands (which were 3HTdR-labeled) were retained,

but newly synthesized strands (which were BrdU-labeled) were
lost following the second SC division. Studying cultured cells that
cycle with asymmetric cell kinetics, Merok et al. (131) reported co-
segregation of chromosomes containing immortal DNA strands,
and that is also consistent with the immortal strand hypothe-
sis. Moreover, as discussed above, Quyn et al. (121) observed
that labeled DNA was asymmetrically retained in the SC niche of
rodent intestinal crypts. The pattern of retention of label-retaining
DNA correlated with the perpendicular alignment (alignment
relative to the apical surface) of mitotic spindles in the crypt base.

In a study on rodent colon, Kim et al. (65) showed that a double-
labeling method (BrdU and 2H2O) could be employed to identify
and isolate nuclei from colonic epithelial LRCs. This let them mea-
sure proliferation rates of LRCs in vivo (t 1/2≈ 140 days). Falconer
et al. (132) used fluorescence in situ hybridization and unidirec-
tional probes specific for centromeric and telomeric repeats. They
found that one can identify parental DNA template strands in sis-
ter chromatids of rodent metaphase chromosomes. These findings
showed that orientation of chromosomes is uniform; the 5′ end
of the short arm is on the same strand as the “T-rich” major satel-
lite repeats. This repetitive DNA orientation allows both analysis
of mitotic segregation patterns and differential labeling of sister
chromatids. The authors uncovered substantial non-random seg-
regation of sister chromatids in a subpopulation of colonic crypt
epithelial cells, which included cells outside the SC niche. This
finding suggested that there exists in colonocytes a mechanism
that controls how sister chromatids are allocated as intestinal SCs
divide. Interestingly, DNA methylation is emerging as a mecha-
nism that might regulate non-random template strand segregation
suggesting that this aspect of SC division may be under dynamic
control.

How can one reconcile these different findings regarding sym-
metric SC division and asymmetric SC division in the population
of intestinal SCs during crypt renewal? One possible way is based
on recent findings that, in the SC niche, different subpopulations
of SCs exist. Using a variety of markers (Bmi1, Lgr5, and mTert),
distinct intestinal SC populations were identified (133). Lgr5 labels
SCs that rapidly cycle and are located in the crypt base, modulated
by Wnt signaling, and sensitive to irradiation (71). Subsequently,
using lineage-tracing experiments in adult rodents, Barker et al.
(134) showed that cycling Lgr5+ cells are very long-term self-
renewing cells in the intestine. Another study identified Lrig1
protein, the pan-ErbB negative regulator, as a specific intestinal
SC marker which also functions as a tumor suppressor (135). In
a different study, Montgomery et al. (136) identified a subpopula-
tion of intestinal SCs that express telomerase reverse transcriptase
(mTert), that cycle slowly, and that give rise to Lgr5+ cells. This
study showed that although Lgr5+ intestinal SCs represent a dif-
ferent subpopulation, they can also have high telomerase activity.
Bmi1 labels a different subpopulation of intestinal SCs. These SCs
are quiescent, insensitive to Wnt signaling, resistant to high-dose
radiation, and generate all the differentiated lineages in the crypt.
Since Bmi1 and Lgr5 label two different populations of SCs and
since Bmi1+ cells can generate Lgr5+ cells, Bmi1+ cells represent
a reserve SC population that cause Lgr5+ cells to be dispensable
(137). Thus, based on the above findings, the idea that SCs are
quiescent has been challenged. Some studies suggest that there
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are slowly cycling SCs; other studies suggest that there are actively
cycling SCs; yet other studies suggest that there are only relatively
quickly cycling SCs (138–140). This evidence demonstrates that
there may be different SC subpopulations in the intestinal SC niche
and suggests that these different populations may even have dif-
ferent modes of division (asymmetric SC division vs. symmetric
SC division).

Another possible explanation is provided in a recent editorial
by Winton (141) in which he states “Interpretation of the growth
dynamics of stem-cell-derived clones has previously demonstrated
that symmetric fate choice is a common feature of intestinal SC
self-renewal (126). However, asymmetric fate choices could be
interspersed with symmetric ones and still be compatible with
these models [e.g., if small numbers of SC per crypt are assumed;
(125, 142)].” Another possible explanation is given by a recent
study by Bellis et al. (143). These investigators found that Apc con-
trols planar cell polarities that are central to gut homeostasis. By
studying the SCs at the bottom of intestinal crypts, they discovered
that spindle alignment and planar cell polarities form a func-
tional unit that can generate daughter cell anisotropic movement
away from niche-supporting cells. By proposing a mechanism
involving anisotropic daughter cell movement rather than spin-
dle re-orientation in SCs [per (121)], the Bellis model provides an
alternate mechanism for the idea of neutral competition of SCs for
niche-supporting cells, that is central to the concept of stochastic
population asymmetry (128).

Alternatively, there are other studies that may reconcile the
ambiguity as to whether SCs are rapidly cycling or quiescent.
Buczacki et al. (24) found that quiescent intestinal cells in rodents
are precursors that are committed to maturing into differentiated
secretory cells of the Paneth and endocrine lineages. However,
upon intestinal injury, they become capable of extensive prolif-
eration and give rise to the other intestinal cell lineages. Thus,
quiescent intestinal crypt cells represent a reserve population that
can be recruited to a SC state. A study by Takeda et al. (43) also
showed that there is inter-conversion between intestinal SC pop-
ulations (Hopx+ slow cycling SCs and Lgr+ proliferating SCs) in
distinct niches. Kobayashi et al. (144) reported that Lgr5+ colon
cancer SCs interconvert with drug-resistant Lgr5− cells, which
are capable of tumor initiation. Glauche et al. (145) reported that
SC proliferation and quiescence were two sides of the same coin.
They concluded that“hematopoietic SC organization was an adap-
tive, regulated process where the slow activation of quiescent cells
and their possible return into quiescence after division are suffi-
cient to explain the simultaneity of occurrence of self-renewal and
differentiation.”

Clearly, a great deal of research has been done to study the
various intestinal SC populations (e.g., Lgr5, Hopx, mTert, Bmi1,
Lrig1, etc). However, the interacting dynamics and modes of divi-
sion of these different intestinal SC types do not appear to be
fully resolved. Taken together, we believe that these studies suggest
that the intestinal SC is a cell that is in one of several phenotypic
states that immature enterocytes can assume based on the dynam-
ics within the colonic crypt. These dynamics may be relevant to
those proposed in our counter-current-like mechanism proposed
for human colonic crypts.

COUNTER-CURRENT-LIKE MECHANISMS AND ADENOMA
DEVELOPMENT
Adenoma morphogenesis is due, in large part, to abnormal crypt
fission. In the normal adult rodent intestine and human colonic
crypt, fission is responsible for regular replacement of crypts
through the “crypt cycle” (146–150). The crypt cycle is a slow,
continuous replication process involving three phases (growth,
budding/bifurcation, and fission) (Figure 2, upper panel). In the
growth phase, crypts gradually grow in size until the transition to
the budding/bifurcation phase. The fissioning process then occurs
in a symmetric manner through a budding mechanism that is trig-
gered by a development of a bud (appearing as an indentation) at
the base of the crypt. Crypt bifurcation then longitudinally grows
and extends upward and crypt fission finally occurs to create two
new virtually identical crypts (60, 151, 152). Two factors have been
proposed to govern crypt fission: the size of the crypt and the size of
the crypt SC population (147, 153). Since the crypt cycle produces
expansion in the crypt population size, it is critical for epithelial
homeostasis, as well as for repair of mucosal injury.

In adenomas that develop due to APC mutations, tissue dis-
organization is manifest as dysplasia, and premalignant tumor
growth results from an increased rate of intestinal crypt fis-
sion (151, 154–156). For example, Wasan et al. (60) showed
that both FAP patients and ApcMin/+ mice have increased rates
of intestinal crypt fission in APC haplo-insufficient intestinal
epithelia. In homozygote APC mutant epithelium, the rate of
crypt fission is even greater (153). This identifies APC as one
of the key factors in the regulation of crypt fission. Moreover,
an increase in the crypt fission rate appears to account for the
clonal and exponential expansion of mutant cell populations that
drive tumor growth (157, 158). In normal-appearing and adeno-
matous intestinal tissues from FAP patients and ApcMin/+ mice,
histologically aberrant crypt fissioning occurs. In this process, the
budding/bifurcation process is asymmetrical, giving rise to crypt
branching and non-identical crypts (60, 153).

So how might these changes in crypt fission relate to our
counter-current-like model? In normal crypts, budding initiates
the fissioning process at the bottom of the crypt. In our model
(Figure 2), fissioning normally begins below the sweet spot at a
point in the SC niche where WNT signaling is highest and APC
is lowest. In this scenario, the APC/WNT gradients restrict the
region where fissioning can be initiated to the crypt bottom, such
that fissioning will proceed symmetrically.

In heterozygote and homozygote APC mutant crypts, asym-
metric crypt fissioning appears to occur because fissioning starts
anywhere along the crypt axis, not just at the crypt bottom (60,
159). In our model (Figure 2), this happens in a crypt that has
an upward shift in the sweet spot and an expansion of the region
below the sweet spot where low APC and high WNT levels occur. In
this view, a change in APC and WNT gradients expands the region
where fissioning can be initiated so it can occur anywhere along
the crypt column including toward the crypt top such that fission-
ing occurs asymmetrically. But, in APC mutant crypts, not only
is the symmetry of fissioning abnormal, but the rate of fission-
ing is increased. Based on our counter-current-like mechanism,
changes in APC and WNT gradients due to APC mutation lead to
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FIGURE 2 | Normal and abnormal crypt fission cycles. The upper panel in
the figure depicts the normal crypt cycle – a slow, continuous replication
process involving growth (A), budding (A→B), bifurcation (B→D), and fission
(D→E) phases. In the growth phase, crypts gradually grow in size until they
transition to the budding/bifurcation phase. Fissioning then occurs in a
symmetric manner through a budding mechanism that is triggered at the
base of the crypt. Crypt bifurcation then longitudinally extends upward and
crypt fission finally occurs to create two new, virtually identical, crypts. Our
model predicts that at the place where budding first develops at the crypt
bottom, cell division is enabled due to creation of a pair of new sweet spots.
This is due to induction of APC expression at the crypt bottom that normally
has a high background level of WNT signaling, which creates two new

counter-current-like gradients of APC and WNT. The optimal conditions that
support the high rate of proliferation in the new sweet spots provide the
mechanism for a high rate of cell proliferation that expands the colonocyte
population which drives the growth of the bifurcation upwards. The lower
panel in the figure depicts the abnormal crypt cycle. In crypts with mutant
APC, the rate of crypt fission is increased and fission often occurs
asymmetrically. In this case, fissioning occurs because the
budding/bifurcation starts somewhere along the crypt axis but not at the crypt
bottom. Consequently, creation of two new counter-current like gradients of
APC and WNT along the crypt column leads to generation of two new sweet
spots which drive growth of the bifurcation upwards in an asymmetric fashion.
The result of this abnormal crypt fission is two crypts of different sizes.

an increased WNT gradient (while the APC gradient diminishes).
In this view, increased WNT signaling not only increases the rate
of crypt fissioning but also causes asymmetric fissioning, which
underlies adenoma growth. This view is consonant with stud-
ies implicating Wnt/β-catenin signaling in crypt fission because
WNT is essential for intestinal SC division (152, 160).

To further understand how our counter-current-like mecha-
nism might relate to aberrant crypt fissioning (asymmetric fis-
sioning and increased rate of fissioning) that drives adenoma
development, it is useful to draw parallels between the crypt cycle
and the hair follicle cycle. In the hair follicle cycle, hair grows cycli-
cally through three phases: anagen is the growth phase; catagen the
involuting or regressing phase; and telogen, the resting or quiescent

phase (161). As noted above, there are also three phases in the
crypt cycle: the crypt growth phase, the crypt budding/bifurcation
phase, and the crypt fission phase. In the hair follicle cycle, WNT
signaling maintains the anagen growth phase (162). That WNT
signaling and the rate of crypt fission are both increased in APC
mutant crypts suggests that WNT signaling also has a role in the
growth phase of the crypt cycle.

Since, based on our model, “optimal” APC levels in mutant
crypts occur higher up the crypt and fissioning occurs asymmet-
rically at points higher along the crypt axis, APC may also have a
role in the budding/bifurcation phase of the crypt cycle. Indeed, it
has been proposed that it is APC that normally controls the sym-
metry of crypt fissioning (60). Our model predicts that at the place
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where budding first develops at the crypt bottom, cell division is
enabled due to localized induction of APC expression that estab-
lishes two new gradients which creates a pair of new sweet spots
(Figure 2). The enabling of rapid cell division at these new sweet
spots creates a motor mechanism that drives growth of the bifur-
cation upwards toward the crypt top. This proposed mechanism
is consonant with biological data showing that increased cell divi-
sion selectively occurs on both sides of the extending bifurcation in
fissioning crypts (163). Moreover, cells staining positively for the
Wnt target gene Lgr5 are located at the bottom-most region of the
two newly emerging crypts (164). These Lgr5+ cells in bifid crypts
appear to be located below both sides of the extending bifurcation.
Thus, our model predicts that optimal APC and WNT signaling
are crucial to regulating the rate and symmetry of crypt fission-
ing during the crypt cycle. Therefore, based on our mechanism,
changes in APC and WNT that are due to APC mutation alter reg-
ulation of the crypt cycle, cause abnormal crypt fission, and drive
adenoma development.

CLINICAL SIGNIFICANCE
Based on our proposed counter-current-like mechanism, it may be
possible to develop novel approaches that normalize the APC and

WNT gradients, shift the proliferative zone downwards, and thwart
the progression of premalignant changes in the APC mutant
colonic crypt. One can consider targeting APC, but it is unlikely
that gene therapy will be efficient enough to transfect wt-APC
genes into mutant SCs. The alternative is to diminish the WNT
gradient. In principle, this can be done by targeting TCF4 or TCF4
target genes such as survivin. Indeed, several agents that inhibit
TCF4 activity are already in development (165, 166).

CONCLUSION
Our consideration of how APC mutations affect the spatial and
temporal organization of the colonic crypt led us to propose
an APC:WNT counter-current-like mechanism that regulates cell
division along the crypt axis. It is a mechanism that explains
how APC mutations induce proliferative abnormalities that drive
colon cancer development. This mechanism also suggests how
chemoprevention for this malignancy might be achieved.
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