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Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfec-
tion would be difficult to achieve, and aging is universal and cancers common. A hypothesis
is that because mutations are inevitable over a human lifetime, downstream mechanisms
have evolved to manage the deleterious effects of beneficial and lethal mutations. In the
colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation
accumulation, and multiple niche stem cells ensure that a lethal mutation within any single
stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem
cell niche may harness probability or chance to randomly discard many beneficial mutations
that might lead to cancer. An analysis of somatic chromosome copy number alterations
(CNAs) reveals a lack of perfect fidelity in individual normal human crypts, with age-related
increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease.
The age-related increase in somatic CNAs appears consistent with relatively normal repli-
cation error and cell division rates. Surprisingly, and similar to point mutations in cancer
genomes, the types of crypt mutations were more consistent with random fixation rather
than selection. In theory, a simple “non-Darwinian” way to nullify selection is to reduce
the size of the reproducing population. Fates are more determined by chance rather than
selection in very small populations, and therefore selection may be minimized within small
crypt niches. The desired effect is that many beneficial mutations that might lead to can-
cer are randomly lost by drift rather than fixed by selection. The subdivision of the colon
into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian

somatic cell evolution, capitulating to aging but reducing cancer risks.
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INTRODUCTION

The mechanisms responsible for human stem cell genetic fidelity
are difficult to directly study because of the impracticality of
experimental manipulations. However, the numbers and types of
somatic mutations accumulated during a lifetime are end mea-
sures of stem cell genetic fidelity. It should be possible to infer
from mutations the various mechanisms that may help limit both
the accumulation and phenotypic consequences of human somatic
mutations. Mutations can lead to cancer and aging, and replica-
tion errors are major potential sources of somatic alterations. The
colon is highly mitotic organ, with most epithelial cells replaced
weekly (1, 2). The colon is subdivided into millions of small
clonal units called crypts. Human colon crypts are small (~2,000
cells) glands maintained by multiple stem cells and a stem cell
hierarchy (Figure 1). A stem cell hierarchy helps limit mutation
accumulation because only a small fraction of all cells (~5%) in
the crypt are stem cells. Mutations in non-stem cells normally
cannot accumulate because these cells are lost within a week.
Within stem cells, a primary defense against mutations is DNA
replication fidelity, with the immortal strand hypothesis (3) an
extreme scenario where any replication errors are subsequently

lost because newly synthesized DNA strands are asymmetrically
distributed to non-stem cell daughters. Another mechanism of
mutation avoidance is stem cell quiescence, where stem cells divide
infrequently. Stem cells may also be extremely sensitive to DNA
damage, and therefore mutant stem cells could be eliminated by
apoptosis (4).

Recent mouse studies illustrate that Lgr5+ intestinal stem cells
are not quiescent, with mitotic rates estimated at once per day (5).
However, there may be many different types of intestinal stem cells,
and potentially some of these are more quiescent (6). The immor-
tal strand hypothesis (3) in intestinal crypts is controversial, with
evidence for and against asymmetric DNA strand segregation [see
for example references (7-12)].

Human crypt stem cell studies are limited because of the inabil-
ity to use the powerful fate mapping experimental techniques of
model systems. However, humans are long-lived and therefore
it is possible to measure the “success” of fidelity mechanism by
directly measuring mutations in colons isolated from different
aged individuals (13). Measurable mutations should accumu-
late over decades of aging, even with relatively low mutation or
stem cell division rates. Human stem cell fidelity mechanisms can
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be inferred from the numbers and types of somatic mutations
accumulated over a lifetime.

A practical problem with measuring somatic mutations is that
because different mutations occur in different cells, the frequency
of any specific mutation in a population of human cells is likely to
be too low (<5%) to measure with most techniques. Crypts con-
tain multiple stem cells (2, 6) and a mutation in one stem cell would
be masked by surrounding non-mutant cells in the same crypt.
However, progeny of a single mutant stem cell may expand and
fill the crypt because stem cells are extrinsically defined by a sur-
rounding niche, and their survival is probabilistic. Niche stem cells
usually divide asymmetrically to produce one stem and one non-
stem cell daughter, but may also divide symmetrically to produce
two stem cell daughters (expansion) or two non-stem cell daugh-
ters (extinction). The total number of niche stem cells remains
constant, but eventually all stem cell lineages except one become
extinct (Figure 1) by a niche succession process called neutral
drift (14, 15). Crypt niche stem cell neutral drift has been charac-
terized in mice using fate marking strategies that are impractical in
humans. However, measurements of passenger methylation pat-
terns in human crypts are also consistent with multiple stem cells
per crypt and neutral drift, with niche succession intervals esti-
mated at about 8years (16). This human crypt niche succession
time estimate is uncertain because of a paucity of experimen-
tal opportunities to characterize human crypt niche dynamics.
Another study also found that crypt stem cell succession times are
longer in humans compared to mice (17).

A mutant crypt stem cell can either suffer extinction or expand
to fill the entire niche (fixation), and become detectable (Figure 1).
Neutral drift appears to constantly recur in the absence of muta-
tions (14, 15), but potentially a mutation may influence this
process by conferring positive or negative selection to its cells.
Therefore, crypt mutation frequencies reflect many aspects of stem
cell genetic fidelity, from replication fidelity to the ultimate fates
of mutant stem cell progeny. Here data (13) from crypt genomes
scanned with high density SNP microarrays for chromosomal copy
number alterations (CNAs) from individuals of different ages are
further analyzed.

MATERIALS AND METHODS
COLON CRYPTS AND ANALYSIS
The data are from Ref. (13), using the “Reference” method with
additional analysis (see below). Briefly, single individual whole
normal crypts were obtained from ~1cm? mucosal patches of
fresh colectomies at the University of Southern California Keck
School of Medicine using an EDTA washout method (16). Pro-
curement of the excess tissue was approved by the Institutional
Review Board at the University of Southern California. Normal
crypts were isolated from normal appearing colon obtained at
least 10 cm away from a tumor. DNA was extracted in 15 pl of TE
with 1l of 20 mg/ml Proteinase K at 56°C for 4 h followed by
boiling for 7 min. All this DNA was used for the SNP microar-
rays (610-Quad, 660-Quad, 730-OmniExpress) using standard
[lumina protocols.

Data were processed using GenomeStudio with a quality
threshold of 0.15. Call rates for 180 crypts from 18 colons were
variable (49.5-99.8%, average 89.5%), likely because each crypt
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FIGURE 1 | Diagram of a colon crypt stem cell niche, illustrating niche
stem cell turnover. \With multiple niche stem cells, a mutation will become
detectable if its stem cell eventually dominates its niche.

has ~20 ng of DNA, versus the recommended 200 ng of DNA per
microarray. Crypts with call rates greater than 60% (N =176)
were further analyzed. Multiple crypts from the same colon were
compared pairwise at the SNPs. The genotype of a “reference”
crypt (typically one with a higher call rate) was determined with
GenomeStudio. The reference data were filtered by eliminating no
call SNPs and the homozygous (AA, BB) loci. The filtered refer-
ence crypt data were compared pairwise with the subject crypt. A
likely CNA was identified by loss of heterozygosity (LOH) in the
subject crypt at a string of adjacent heterozygous SNPs. At least
two different reference crypts were used.

The percentages of SNPs with LOH outside of these likely CNAs
were less than 2% of the AB SNPs, even with lower call rates. Most
of these non-CNA LOH SNPs were singletons, with fewer longer
strings. The probabilities that LOH occurred by chance in the likely
CNAs were calculated using the Poisson distribution, with error
probabilities estimated from non-CNA LOH SNP frequencies. The
smallest CNA had five adjacent heterozygous SNPs and the prob-
abilities that the CNAs < 1 Mb occurred by chance were all less
than 0.01 and typically much smaller. All CNAs were verified by
manual inspection.

Log R ratios were used to distinguish between deletions or gene
conversion (GC). A deletion was called when the average log R
ratio of the LOH region was more than 0.25 lower than its flank-
ing regions without LOH. Duplications were not formally analyzed
for because of the wide variations in log R ratios, but were visu-
ally identified as large regions with three chromosome copies with
increased log R ratios.

ADDITIONAL ANALYSIS
The crypt SNP microarray data were further reanalyzed
with Nexus Copy Number software (Version 7, BioDiscovery,
Hawthorne, CA, USA) using the SNP-FASST?2 analysis with default
settings and a paired crypt analysis. The software did not identify
all CNAs identified in Ref. (13), but all of the previously identified
CNAs were evident with manual inspection. One additional dele-
tion on chromosome 1q in an 85-year-old male was identified by
the software, which was missed by the previous analysis because
the mutant cells were a minority of all cells, with heterozygous
SNPs still called AB by GenomeStudio.

The proportions of mutant cells within a crypt containing a
deletion were estimated by comparing average BAFs of the subject
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crypt that were homozygous (BAFys or BAFpp) in the reference
crypt, versus SNPs that became homozygous (BAF,, or BAFyy,).
Simplistically, if all cells within a crypt contained the deletion, then
BAFs at the previous AB SNPs would be identical to the SNPs that
were always AA or BB. The formula used was,

(0.5—BAFap) (BAFgg—0.5)

(BAFar—BAFy;) | (BAFgs - BAFy)
2

RESULTS

CHROMOSOME COPY NUMBER ALTERATIONS INCREASE WITH AGE
Detectable human crypt CNAs increased with age (Table 1 and
Figure 2). No CNAs were found in 48 crypts from individuals
less than 50 years old, with 14 CNAs in 13 of 89 crypts (15%)
from individuals greater than 50 years of age (p = 0.0042, Fisher’s
exact test). Call rates were not significantly different between
crypts with and without CNAs. CNAs sizes (Table 2) ranged
from ~10,000bp (LOH at five adjacent SNPS) to 98 Mb (LOH
at 3,996 SNPs). Only one crypt had more than one CNA. Seven
CNAs were greater than 1 Mb, and six were smaller than 1 Mb
(Figure 2B). A single 44 Mb interstitial duplication was detected.
The CNAs appeared to be in the majority (average 93%, range
34-100%) of cells within each crypt (Table 2). Only one LOH
region was estimated to be in less than 80% of the crypt cells.
Therefore, most of the CNAs were fixed or near fixations in their
crypts.

The CNAs were deletions, GC events, and one duplication
(Table 2). Log R ratios were consistent with LOH by GC for the
three largest CNAs that involved nearly the whole 1q chromosome
arm (98 Mb) and the distal ends of 17q (46 Mb) and 7q (24 Mb).
These large CNAs included their telomeres, and could be gener-
ated by a single double strand DNA break (DSB). The ten other
CNAs with reduced log R ratios appeared to be simple deletions
generated by two DSBs. The single interstitial duplication would
also require at least two DSBs.

DIFFERENT TYPES OF CHROMOSOME COPY NUMBER ALTERATIONS IN
INFLAMMATORY BOWEL DISEASE

Normal colon crypts (N =36) were also analyzed from four
patients with ulcerative colitis (UC), which is characterized by
inflammation and regeneration (18). There were more UC CNAs
with 39% of crypts having CNAs (Tables 1 and 2). Five crypts
had two or more different CNAs. All UC CNAs appeared to be
deletions (decreased log R ratios), and were present in more than
85% of the crypt cells. Call rates were not significantly different
between UC crypts with and without CNAs.

The UC CNAs were different from the CNAs in non-UC crypts
(Figures 2A,C). A single large deletion (~12.4 Mb) was found in
one UC crypt, but the 21 other UC CNAs were small (<1.0 Mb)
non-identical deletions clustered at two “hotspots” at 3p14.2 and
16p13.3. Four UC crypts had multiple 3p14.2 or 16p13.3 dele-
tions, some on both the maternal and paternal alleles, resulting in
homozygous deletions (HD) in two crypts. The 3p14.2 deletion
(N = 6) was present in the FHIT locus, a known DNA fragile site
(19). The 16p13.3 deletion was more common (N = 15), and was
also observed twice in the non-UC colon from patient 13. The

Table 1| Colon crypt chromosome copy number alterations.

Individual Age/sex Disease Crypts Mutant Total
crypts (%) CNAs
NORMAL
1 17/M CRC 0(0) 0
2 26/F CRC 5 0(0) 0
3 27/F Diverticulitis 10 0(0) 0
4 28/F CRC 10 0(0) 0
5 36/F Endometriosis 10 0(0) 0
6 45/M CRC 7 0(0) 0
7 57/M CRC 10 2 (20) 2
8 72/M CRC N 01(0) 0
9 78/F Diverticulitis 9 1(11) 1
10 80/M CRC 14 1(7) 1
1 83/M CRC 16 0(0) 0
12 85/M CRC 12 2 (17) 2
13 89/F CRC 14 6 (43) 7
14 98/M CRC 3 1(33) 1
Total 137 13 (9) 14
<50 years 48 0(0) 0
>b50years 89 13 (15) 14
COLITIS
15 30/M uc 12 6 (50) 8
16 56/M uc N 7 (64) 12
17 57/F ucC 8 1(12) 1
18 46/F uc 7 1(14) 1
Total 38 15 (39) 22

CRC, colorectal cancer; UC, ulcerative colitis.

16p13.3 deletion is in a region commonly deleted in cancer cell
lines (“16p 6 Mb unexplained”), that also appears to be a DNA
fragile site (20). Therefore, DSBs at two specific DNA fragile sites
are common in normal UC crypts.

EXPECTED CHROMOSOME COPY NUMBER FREQUENCIES WITH AGE
The increases in crypt CNAs with aging may reflect abnormal
losses of stem cell fidelity or could represent mutation frequen-
cies expected with normal mutation and cell division rates. It is
possible to calculate how CNA frequencies should increase with
age if one knows the normal error and division rates of crypt
stem cells. The CNA mutation rate in normal cells is uncertain but
chromosomal instability (CIN) of ~0.001 chromosomal changes
per division have been measured in colorectal cancer (CRC) cell
lines (21, 22). Assuming replication fidelity is ~10-100X higher
in normal cells (23-25), stem cell division every day to once a
week, and a single stem cell per crypt, expected frequencies of
mutant crypts with age were plotted (Figure 3). With this limited
data, observed mutant crypt frequencies are not markedly differ-
ent from that expected with these relatively modest combinations
of mutation and division rates. The modeled increase in mutant
crypts is roughly linear with age, and a lag between the acquisi-
tion of a CNA in a single stem cell and its subsequent fixation
to detectable levels in its niche (estimated at ~8 years in human
crypts (16) can help account for the relative lack of mutant crypts
at earlier ages.
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LACK OF EVIDENCE FOR MUTATION SELECTION IN CRYPT STEM CELL
NICHES
The CNAs in normal crypts could reflect selection for muta-
tions that confer selective advantages, or random mutations fixed
due to neutral drift. Although it is uncertain which CNAs con-
fer selective advantages to a crypt stem cell, CNAs commonly
found in CRCs may predispose to neoplastic progression. We
therefore compared the chromosomal locations of the 12 crypt
LOH regions (non-fragile sites) to 41 common LOH regions
found in 269 MSI negative CRCs from Ref 26 (Figure 4). Sim-
ilar to the non-UC colon crypts, most CRC LOH regions (78%)
were greater than 1 Mb. The regions commonly deleted in CRCs
include much of the genome (~45% of the genome for >10%
mutation frequencies, and ~33% for >15% mutation frequen-
cies), and the crypt CNAs may fall within these regions by
chance. Of the 12 crypt LOH CNAs, 7 overlapped with CRC
LOH CNAs with mutation frequencies >10%, but only 2 over-
lapped with CRC mutation frequencies >15% (Figure 4). To test
whether crypt CNAs were over or under-represented within the
CRC CNA regions, a Chi-square test was performed (Table 3).
The observed crypt CNA locations with respect to the CRC
CNAs were not significantly different than expected by chance
(p>0.05).

Another study measured CNAs in normal whole human blood
cells and also found age-related increases, with ~2-3% detectable

CNA incidence in the elderly (27). Blood cells are mixtures of many
different cell types that originate from hematopoietic stem cells in
multiple widespread bone marrow niches (28). The detection of
a CNA in the blood implies the spread of a mutant hematopoi-
etic stem cell to multiple bone marrow niches. In contrast to the
colon crypt CNAs that arise within isolated single small niches,
the whole blood CNAs were commonly found within chromoso-
mal regions frequently altered in hematopoietic malignancies and
normal individuals with detectable blood CNAs had higher risks
for subsequent hematopoietic malignancies.

DISCUSSION

The numbers and types of somatic mutations accumulated over
a lifetime reflect different aspects of stem cell fidelity. Mutations
are potentially deleterious, and in theory, there may exist spe-
cial mechanisms that prevent their accumulation within stem
cell lineages (3). Primary defenses against somatic mutations are
high replication fidelity, efficient DNA repair, and reduced stem
cell divisions. The current data indicate that more than 10% of
normal human crypts accumulate at least one measurable CNA
after the age of 50 years. As illustrated in Figure 3, the observed
CNA accumulation is consistent with relatively high replication
fidelity and low stem cell division rates. Therefore, even with
high genetic fidelity, somatic mutations can accumulate because
of long human lifetimes. Other studies using histologic markers
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Table 2 | Chromosome copy number alteration characteristics.

Crypt Age Location® Size (Mb) Type Mutant (%)
NORMAL
7a 57 13g14.11 0.73 Deletion 83
7b 57 17912 0.015 Deletion 94
9a 78 7933-q44 24 GC (arm loss) 98
10a 80 1912-q44 99 GC (arm loss) 96
12a 85 17912-925.3 46 GC (arm loss) 99
12b 85 1943 2.4 Deletion 34
13a 89 5035.1 3.6 Deletion 95
9912-g31.2 44 Duplication NC
13b 89 9921.13 0.23 Deletion 89
13c 89 16p13.3 0.073 Deletion 97
13d 89 16p13.3 0.27 Deletion 90
13e 89 17p12 1.1 Deletion 98
13f 89 229131 0.26 Deletion 96
14a 98 9022.32 3.3 Deletion 99
COLITIS
15a 30 16p13.3 0.38 Deletion 96
15b 30 16p13.3 0.41 Deletion 95
15¢ 30 16p13.3 0.34 Deletion 86
15d 30 3p14.2 0.082 Deletion 96
3p14.2 0.13 Deletion 96
16p13.32 0.35 Deletion 89
15e 30 16p13.32 0.35 Deletion 91
15f 30 3p14.2 0.075 Deletion 98
16a 56 3p14.2 0.14 Deletion 100
16b 56 16p13.3 0.21 Deletion 96
16¢ 56 16p13.3 0.60 Deletion 97
16d 56 16p13.3 0.20 Deletion (HD) NC
16p13.3¢2 0.15 Deletion (HD) NC
16e 56 16p13.3 0.010 Deletion 98
16p13.3 0.1 Deletion 98
16f 56 3p14.2 0.1 Deletion 100
16p13.3 0.44 Deletion (HD) NC
16p13.32 0.24 Deletion (HD) NC
169 56 4921.1-g22.1 12 Deletion 94
16p13.3 0.19 Deletion 96
17a 57 16p13.3 0.32 Deletion 98
18a 46 3p14.2 0.042 Deletion 95

aOther 16p allele within the same colon.
NC, not calculated.

have also demonstrated age-related increases in human crypt
mutations (29, 30).

Potentially the observed CNAs may have occurred secondary
to losses of normal stem cell fidelity. A cell with increased genetic
instability would be expected to accumulate multiple mutations.
For example, CRC genomes typically have multiple CNAs (25, 26).
However, generally only a single CNA was found in each crypt,
which is more consistent with random mutation rather than a
crypt specific decrease in genetic fidelity.

LACK OF STEM CELL ENVIRONMENTAL BUFFERING
Stem cell genomes may be protected from environmental stresses.
However, the increased CNA frequencies in UC crypts illustrate

that the local microenvironment can influence stem cell genetic
fidelity. UC is characterized by severe inflammation with tissue
damage and regeneration (18). Potentially increased cell prolifer-
ation would simply result in “accelerated” stem cell aging, with
more but the same types of CNAs observed in older non-UC
crypts. The current data indicate a distinct UC CNA signature
characterized by high frequency small (<1 Mb) deletions at two
specific DNA fragile sites. Fragile site deletions likely reflect repli-
cation stress (31), which is consistent with the higher proliferation
of UC. There are multiple known human DNA fragile sites (31)
and it is uncertain why only two such sites were commonly altered
in normal UC crypts. This distinct mutation signature illustrates
that stem cell genomes are sensitive to their microenvironments,
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and that UC may increase cancer risks by increasing the numbers
of specific mutation types.

STEM CELL ARCHITECTURE: MANAGING MUTATIONS BY PLAYING DICE
Stem cell genetic fidelity is high but appears insufficient to pro-
tect against detectable mutation accumulation or chronic envi-
ronmental stresses, especially over decades. Given that mistakes
are inevitable, other downstream mechanisms may minimize the
unwanted consequences of either deleterious or beneficial muta-
tions. Such a secondary line of defense is the probabilistic nature of
a stem cell niche architecture. Stem cells are a fraction (~5%) of all
crypt cells, so most replication errors occur in non-stem cells and
are lost. More importantly, there are multiple stem cells per crypt
that are extrinsically defined by a niche. These stem cells normally
turnover such that eventually progeny of only one current stem
cell occupy the entire niche (Figure 1). This stem cell turnover
is an important downstream mechanism for managing genetic
infidelity. An unwanted consequence of lethal mutations is tissue
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FIGURE 3 | Percent of crypts with any chromosome copy number
alteration versus age. Circles are averaged experimental data and the
dotted lines indicate calculated mutation frequencies with different
combinations of mutation and stem cell division rates. A regression analysis
indicates that the experimental increase in CNA frequency with age is
significant (p=0.01). The calculated mutation frequencies do not account
for the lag between a mutation in a stem cell and the time needed to
become detectable by niche succession.

loss. A crypt maintained by a single stem cell would be extremely
vulnerable to lethal mutations. A crypt maintained by multiple
immortal stem cells that always divided asymmetrically would
also lack a mechanism to compensate for the death of its stem
cells. Multiple niche stem cells protect the crypt against the delete-
rious effects of lethal mutations because the loss of any stem cell is
readily compensated by the expansion (symmetrical division) of a
neighboring stem cell lineage.

An important question is how the dominant niche stem cell is
chosen. In the absence of mutation, all niche stem cells are similar,
and episodic succession occurs through neutral drift (14, 15). With
mutation, selection could have both desirable and undesirable
consequences. Stem cells with non-lethal deleterious mutations
would be eliminated by purifying selection, which would miti-
gate aging. However, stem cells with beneficial mutations would
become dominant, which could predispose to tumorigenesis.

A niche with multiple neighboring stem cells might appear to
be an ideal Darwinian setting to discriminate between even minor
fitness differences. Selection could impose ratchet-like increases
in fitness, but the opposite typically occurs — tissues degener-
ate with age. How can less fit stem cells dominate their niche?
One way to suspend Darwin is through an interesting non-
Darwinian phenomenon (32). According to population genetics
theory, the role of chance or drift becomes much more impor-
tant as population size decreases (33, 34). In smaller populations,
it becomes increasingly harder to eliminate deleterious muta-
tions or to fix beneficial mutations. Although many parameters
influence the balance between chance and selection, generally
chance becomes increasingly more important as population sizes
slip below one thousand. Crypts stem cell populations are small
(<100 stem cells per niche) and therefore chance rather than
selection may more determine what types of mutations are fixed
(Figure 5). The regions of LOH acquired during human aging
did not preferentially fall within regions commonly deleted in
CRC:s (Figure 4), suggesting random mutation fixation rather than
selection.

The numbers of documented somatic CNAs are small, but ran-
dom mutation fixation due to small niche stem cell numbers may
also help explain why neutral passenger mutations are common
in carcinomas (35). Many cancers appear later in life, and many
alterations found in CRC genomes appear to arise in normal colon
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FIGURE 4 | Relative locations of crypt LOH chromosome copy
number alterations and common CRC LOH copy number
alterations [from Ref. (26)]. The locations of the crypt CNAs did not
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preferentially fall within common CRC CNA intervals, but appeared
randomly scattered by chance (see Table 3). Triangles indicate
chromosome ends.
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before visible tumorigenesis (36, 37). Interestingly, cancer genome
mutation frequencies are consistent with relatively normal divi-
sion and mutation rates (38), suggesting many CRC mutations
first accumulate in normal crypts. Importantly, there is a pro-
found lack of evidence for purifying selection in many types

Table 3 | Crypt chromosome copy number alterations versus common
colorectal chromosome copy number alterations.

CRC LOH 10% frequency, CRC LOH 15% frequency,

p=0.353* =0.231
Observed Expected® Observed  Expected®
Crypt LOH in 7 5.4 2 4
CRC LOH
intervals
Crypt LOH 5 6.6 10 8
outside CRC

LOH intervals

*Two tailed p value, Chi-square.
2CRC LOH regions (> 10% mutation frequencies) cover ~45% of genome.
°CRC LOH regions (> 15% mutation frequencies) cover about ~33% of genome.

of cancer genomes (breast, CRC, pancreatic, glioblastoma, head
and neck, ovarian, myeloma, gastric), manifested by the ratio of
non-synonymous to synonymous mutations (39, 40). This ratio
(dN/dS) is about one and essentially the value expected of ran-
dom mutation, suggesting that most coding mutations in cancer
genomes were not screened by selection. This lack of evidence for
somatic mutation selection is curious because the dN/dS ratio is
less than one in the human germline (40), indicating that purifying
selection normally eliminates many non-synonymous mutations
in human populations. The abundance of cancer passenger muta-
tions and the lack of purifying selection may be the legacy of
their origins within very small stem cell niches, where mutation
selection is nullified by chance fixation.

If non-Darwinian mutation fixation depends on small num-
bers of niche stem cells, tissues with different niche architectures or
dynamics may more often accumulate selective mutations. Whole
blood cells originate from multiple hematopoietic stem cell niches
that are much more dynamic than crypt niches with respect to
physical locations, numbers of stem cells, and migration of stem
cells to neighboring niches (28). Instead of a physical subdivision
into multiple distinct isolated small stem cell niches, hematopoi-
etic stem cells are not confined to a single niche but normally
migrate to new niches. Consistent with a different niche archi-
tecture, age-related increases in detectable CNAs in whole blood

non-Darwinian
evolution
{random stem
cell fixation)
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FIGURE 5 | Darwinian versus non-Darwinian stem cell niche
evolution. Mutations may increase or decrease cell fitness. With multiple
stem cells subject to selection, progeny with the highest fitness should
reliably dominate the niche, paradoxically increasing fitness with age and
predisposing to cancer. With the non-Darwinian evolution favored by very
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small niche populations, chance or drift more determines niche
succession, and almost any stem cell may become fixed, even stem cells
with lower relative fitness. The result is the random loss of many driver
mutations, and more consistent with aging, a stochastic tendency for
decreased crypt fitness.
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appear to be more driven by selection because blood CNAs are
frequently located in regions commonly altered in hematopoietic
malignancies (27). Niche stem cell number size limitations may
not apply to the hematopoietic system, and therefore selection
may have a greater role in determining whether a mutant stem cell
can spread and occupy the majority of hematopoietic stem cell
niches.

Random niche mutation fixation is not a fool-proof anti-cancer
mechanism because by chance sometimes a potential driver muta-
tion will become fixed instead of discarded, and some somatic
mutations may confer selection sufficient to overwhelm random
fixation. Many driver mutations such as in APC and TP53 are
compatible with normal appearing intestines, and their fixation
within a crypt resembles clonal evolution, with a net increase in
mutant cells but without visible tumorigenesis. Indeed, some “dri-
ver” mutations without immediate apparent selective value may
be randomly fixed, expressing their driver functions only in com-
bination with other driver mutations much later in the final tumor
or metastasis. Potentially CRCs could result from the random
accumulation, in any order, of multiple initially neutral, “driver”
mutations in niche stem cells (41). However fewer CRCs would
occur with multiple crypt niche stem cells compared to crypts
with multiple immortal stem cells (42).

NON-DARWINIAN STEM CELL NICHE EVOLUTION: A TESTABLE
HYPOTHESIS

The hypothesis that stem cell niches harness non-Darwinian evo-
lution can be tested experimentally in model systems by comparing
the fates of specific mutations engineered to occur in single iso-
lated stem cells. Mouse crypt niches are likely smaller than human
niches, so non-Darwinian effects should be exacerbated. For exam-
ple, with a mouse model with a mutant Cre sporadically reactivated
by rare back-mutation, the fixation of an individual intestinal crypt
stem cell with a neutral floxed lacZ marker (Rosa26R) can be
compared to the fixation of a stem cell with Rosa26R combined
with floxed “driver” mutations (43, 44). With Darwinian evolu-
tion, driver mutations should confer selective advantages and be
fixed much more often, leading to more lacZ positive crypts. With
non-Darwinian evolution, stem cells with driver mutations should
be randomly discarded as often as stem cells with neutral Rosa26R
mutations, resulting in similar numbers of lacZ positive crypts.
Predicted differences between niche selection and random fixa-
tion are large. With “N” niche stem cells (N is about 8-12 stem
cells per crypt in mice (14, 15), stem cell fixation should be 100%
with driver mutation selection, but only 8-12% (“1/N”) of stem
cells will become fixed with random stem cell loss.

Data with floxed KrasC'?P and Apc®%S driver mutations were
more consistent with non-Darwinian evolution or random niche
fixation because the numbers of fixed lacZ positive mutation
events were similar to control mice without the driver mutations
(43, 44). Although stem cells with KrasG’?P or Apc*8%S mutations
did not appeared to be fixed more often in crypt niches, they
did confer selective advantages after fixation, manifested by larger
patches of mutant crypts due to increased crypt fission. Similar
experimental studies can further test whether isolated single niche
stem cells with specific somatic mutations are fixed randomly or
selectively.

CRYPT STEM CELL GENETIC FIDELITY AND NON-DARWINIAN STEM
CELL EVOLUTION

Perfect stem cell fidelity would be an “anti-evolution” strategy to
never grow old. Aging, or the accumulation of mutations may
be inevitable, and the genetic fidelity of human crypt stem cells
appears not to be higher than expected of normal cells. Given
the inevitability of mutations, the crypt stem cell niche may trade
Darwinian for non-Darwinian evolution as a downstream mech-
anism to manage these mutations (Figure 5). During a lifetime,
a critical question is whether deleterious or beneficial mutations
are more dangerous to homeostasis. Many “deleterious” somatic
mutations may be tolerated by human cells, exemplified by the
relatively large numbers of rare but potentially dysfunction muta-
tions in normal human germline genomes (45). The spread of
beneficial somatic mutations may pose a greater threat to sur-
vival. Niche stem cell turnover may harness a non-Darwinian
evolution mechanism (neutral drift) that readily protects against
lethal mutations and helps ensure that beneficial mutations that
might lead to cancer are often discarded. Given the cooperation
needed between multiple cells in mammalian tissues and the dan-
gers of tumorigenesis, an optimal reliable downstream strategy
to guard against the unwanted effects of some mutations may be
random stem cell fixation in tissues subdivided into very small
niches. This non-Darwinian strategy is built into the tissue niche
architecture from birth, and can help explain why tissues do
not become paradoxically “fitter” with age (Figure 5). This sce-
nario resembles Muller’s ratchet, where asexual division leads to
decline (46).

Interesting, non-intuitive phenomenon often emerge at smaller
physical dimensions. Multiple, mitotic stem cells in very small
niches with non-Darwinian evolution can better explain colon
aging and somatic mutation frequencies and spectra compared to
Darwinian niche selection. Non-Darwinian evolution may pre-
dominate whenever reproducing somatic tissues are physically
subdivided into distinct very small isolated compartments. Given
the impracticality of human experimental manipulations, the
analysis of somatic alterations found in normal human tissues
provides a feasible pathway for insights into human stem cell
mechanisms. Somatic alterations can reveal much about stem cell
life and death, particularly because most mitotic niche stem cell
lineages suffer extinction. Newer technologies increasingly pro-
vide better methods to detect mutations, and more data on the
numbers and types of alterations found in normal human tis-
sues will allow much better inferences on how we age. Small stem
cell niches provide a downstream architectural mechanism for
randomly discarding many inevitable but unwanted mutations.
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