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Objectives: To elucidate the association between thrombospondin1 (THBS1) expression
and TP53 status and THBST promoter methylation in epithelial ovarian cancer (EOC).

Methods: Epithelial ovarian cancer cell lines with known TP53 status were analyzed for
THBS1 gene expression using Affymetrix U133 microarrays and promoter methylation by
pyrosequencing. THBST mRNA expression was obtained pre- and post-exposure to radia-
tion and hypoxia treatment in A2780 parent wild-type (wt) and mutant (m)TP53 cells. THBS1
expression was compared to tumor growth properties.

Results: THBS T gene expression was higher in cells containing a wtTP53 gene or null TP53
mutation (p=0.005) and low or absent p53 protein expression (p=0.008) compared to
those harboring a missense TP53 gene mutation and exhibiting high p53 protein expres-
sion. Following exposure to radiation, there was a 3.4-fold increase in THBST mRNA levels
in the mTP53 versus wtTP53 A2780 cells. After exposure to hypoxia, THBST mRNA levels
increased approximately fourfold in both wtTP53 and mTP53 A2780 cells. Promoter methy-
lation levels were low (median =8.6%; range = 3.5-88.8%). There was a non-significant
inverse correlation between THBS 1 methylation and transcript levels. There was no asso-
ciation between THBS1 expression and population doubling time, invasive capacity, or
anchorage-independent growth.

Conclusion: THBST expression may be regulated via the TP53 pathway, and induced
by hypoxic tumor microenvironment conditions. Overall low levels of THBST promoter
methylation imply that methylation is not the primary driver of THBST expression in EOC.
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INTRODUCTION

Thrombospondinl (THBS1) is a potent modulator of angiogen-
esis that has been shown to have both stimulatory (1-6) and
inhibitory effects (7, 8) on the process of tumor neovasculariza-
tion, proliferation, invasiveness, and progression. We previously
demonstrated that THBS1 protein expression was associated with
clinical outcome in women with advanced epithelial ovarian can-
cer (EOC) who were treated with taxane and platinum-based
chemotherapy regimens (9). Specifically, women whose cancers
had high compared to low THBSI protein expression had worse
progression-free (PFS) and overall survival (OS). THBS1 was
shown to provide independent prognostic value after adjust-
ing for clinical characteristics and p53 overexpression. More-
over, exploratory adjusted Cox regression modeling revealed that
women whose cancers overexpressed p53 protein, which reflects
the presence of missense TP53 mutations, and expressed high
THBSI had a threefold elevation in the risk of disease progression
and death compared with women whose cancers didn’t overex-
press p53 or those that overexpressed p53 and expressed low
THBSI1 (9).

The TP53 tumor-suppressor pathway has been implicated
in the regulation of THBSI gene and protein expression (I,
9). Dameron and colleagues demonstrated that TP53 positively
regulated THBSI promoter sequences and induced endogenous
THBSI gene expression in fibroblasts (1). The exact regulatory
mechanism is unknown, however, the TP53 gene has numerous
functions including transcription factor, cell cycle arrest activa-
tion, apoptosis, DNA damage repair, and protein—protein inter-
actions. In addition, TP53 has been shown to regulate other
angiogenic factors via promoter methylation (10). The methy-
lation of promoter-associated CpG islands has been linked to
the transcriptional activity of multiple genes involved in carcino-
genesis (11). Oshiro et al. proposed that wild-type (wt) TP53
DNA-binding activity to promoters prevents aberrant methyla-
tion (10). Upon mutation the wt p53 DNA-binding activity is
lost and the TP53 target regions are vulnerable to de novo cyto-
sine methylation. TP53 mutations are present in over 90% of
high-grade serous ovarian cancers (12) and represent a plau-
sible mechanism of controlling epigenetic regulation of gene
transcription.
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The objective of the present study was to evaluate the rela-
tionships between THBSI1 protein expression, TP53 status, and
THBSI promoter methylation in EOC cell lines. We also sought
to determine if induced TP53 transcription or hypoxia was asso-
ciated with increased THBSI mRNA transcription. Our primary
hypothesis was that inactivation of the TP53 tumor-suppressor
gene pathway modulates THBSI transcription and expression in
ovarian cancers through aberrant promoter hypermethylation.
Furthermore, we evaluated whether THBSI expression was associ-
ated with population doubling time, invasive capacity, anchorage-
independent growth as well as cisplatin and paclitaxel induced
growth inhibition.

MATERIALS AND METHODS

OVARIAN CANCER CELL LINES

Cell culture

Twenty-one immortalized ovarian cancer cell lines were included.
Nineteen ovarian cancer cell lines were evaluated for THBSI
expression and promoter methylation status, while two A2780
ovarian cancer cell lines (wt parent and mutant TP53 daughter
lines) were used to evaluate the effect of radiation and hypoxia
treatment on THBSI mRNA expression. The cells were grown in
monolayer culture in RPMI1640 media (Sigma-Aldrich Co., St.
Louis, MO, USA) supplemented with penicillin and streptomycin
(100 U/mL penicillin, 100 pg/mL streptomycin; Invitrogen, Carls-
bad, CA, USA) and 10% heat inactivated fetal bovine serum (v/v;
Invitrogen) in an atmosphere of 5% CO; at 37°C.

The short tandem repeat (STR) genotypes of all ovarian cancer
cell lines were analyzed to authenticate the cell lines using the
AmpFLSTR® Identifiler® Plus PCR Amplification Kit (Applied
Biosystems, Carlsbad, CA, USA) at the University of Colorado
Cancer Center, DNA Sequencing, and Analysis Core (13). The
STR genotypes of ovarian cancer cell lines that are available
from the American Type Culture Collection or the RIKEN BioRe-
source Center Cell Bank were identical to the source genotypes as
reported within their respective STR databases and all other non-
commercially available cell lines were shown to be derived from
females with unique genotypes.

Protein extractions were performed as previously described
(14) and RNA extractions were performed using the RNeasy Mini
Kit following the manufacturer’s protocol (Qiagen, Inc.; Valencia,
CA, USA). For cDNA synthesis, 1 g of total RNA was incu-
bated for 60 min at 42°C with oligo (dT) primers and 20 units
of AMV reverse transcriptase in 1Xx reverse transcriptase buffer
supplemented with 5mM of MgCl,, 1 mM of each dNTP, and
25 units of RNase inhibitor in a final volume of 20 wl (Roche
Diagnostics Cooperation, Indianapolis, IN, USA). Methodologies
for determining TP53 mutation status and immunohistochemical
protein expression, population doubling time of the cells, inva-
sive capacity, and chemotherapy-induced growth inhibition have
been previously described (15-18). Western blot analysis of TP53
protein was also performed before and after exposure to radiation
and hypoxia. Ten micrograms of total cellular protein for each
specimen were separated by 7.5% SDS polyacrylamide gel elec-
trophoresis and transferred to a nitrocellulose membrane (Schle-
icher and Schuell). Membranes were first incubated with primary
antibodies against TP53 (1:3000 DO-1, mouse monoclonal, Santa

Cruz Biotechnology, Inc., Santa Cruz, CA, USA) overnight at
4°C or B-actin (1:3000) A4700, mouse monoclonal, SIGMA, St.
Louis, MO, USA) for 1.5h at room temperature, and then with
an anti-mouse secondary antibody (1:7500 115-035-062, Jackson
ImmunoResearch, West Grove, PA, USA) for 1h at room tem-
perature. Antibody interactions were visualized using chemilumi-
nescence (Perkin Elmer Western Lightning™ Chemiluminescence
ECL Reagent, Shelton, CT, USA). TP53 and f-actin expression
were quantified by densitometric scanning using Scion Image soft-
ware (Scion Corporation, Frederick, MD, USA). Results were then
normalized to the B-actin content in each lane to correct for relative
expression.

Anchorage-independent growth

Assays for colony formation in soft agar were performed as
described. (19) Briefly, 2x RPMI media was prepared from pow-
der and supplemented with fetal bovine serum and antibiotics
(Invitrogen; Carlsbad, CA, USA), and 1% agarose was made with
the RPMI media using low-melting-temperature agarose (Invit-
rogen). One milliliter of 0.5% agarose was placed into each well
of six-well tissue culture dishes and overlayed with 1 mL of 0.33%
agarose prepared in 1x RPMI and containing 2 x 10* cells. After
3 weeks incubation at 37°C in a humidified chamber with 5%
atmospheric CO;, colonies larger than 100 wm in diameter were
counted. The colony number formed for each cell line was deter-
mined by averaging the number of colonies >100 pm that were
counted in 10—20 microscopic fields at 100 x magnification.

Hypoxia treatment of cell lines

A2780 cell lines were grown to 80% confluence in T150 flasks and
exposed to hypoxic conditions using 0.5% O, 0.5% O, 0.5% O,
0.5% O 0.5% O, in a Bactron Anaerobic Chamber (Sheldon Man-
ufacturing: Cornelius, OH, USA) for 8 or 24 h prior to harvesting
through trypsinization.

Radiation treatment of cell lines

Ionizing radiation was used to stimulate TP53 induction (20).
A2780 cell lines were plated in 60 mm dishes, grown to 80% conflu-
ence, and exposed to 5 Gy of ionizing radiation using the Gamma
cell 1000 (MDS Nordion ON, Canada), and harvested at 0, 2, 4, 6,
8,24, and 48 h post-exposure. To validate our model we irradiated
the A2780 wild-type TP53 (A2780wtTP53) ovarian cancer cell line
to 5 Gy and then subjected cell lysates to immunoblot to assess p53
protein expression.

THBS1 mRNA and protein expression

The genomic array and Western blot analysis were per-
formed as previously described (9, 21) (NCBI Accession
Series GSE25428; www.ncbi.nlm.nih.gov/geo). Three probes
(201108_s_at, 201109_s_at, and 201110_s_at) on the Affymetrix
U133 chip were used to assay the cell lines for THBS! expression
in 19 cell lines. Expression levels were RMA-normalized, and the
average expression probe value was calculated.

Real-time quantitative PCR (RQ-PCR) was used to ana-
lyze mRNA expression in eight immortalized ovarian cancer
cell lines (OVCA429, OVCA433 DOV13, OVCAR3, OVCA432,
SKOV3, A2780wtTP53, and A2780 mutant TP53 (A2780mTP53).
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Quantification of THBSI mRNA expression was obtained by RQ-
PCR using fluorescent TagMan methodology (ABI Prism 7900HT
Sequence Detection System; Applied BioSystems; Foster City, CA,
USA). RQ-PCR was performed using 7.25 pl 1:15 dilute cDNA,
12.5 ul Tagman Universal PCR Master Mix (Applied Biosystem;
Foster City, CA, USA), 1.25ul] primer assay in a final volume
of 25 wl. Primers and probes for THBS1 (Hs00170236_m1) and
GAPDH (human 402869) were obtained from Applied Biosystems
(Foster City, CA, USA). The thermal cycling conditions were: 50°C
for 2 min and 95°C for 10 min followed by 50 cycles of 95°C for
15s and 60°C for 1 min. The comparative cycle threshold method
was used to calculate the relative expression of THBSI mRNA
normalized to GAPDH run in parallel (22).

Thrombospondinl protein expression was quantified by den-
sitometric scanning (Scion Corporation, Frederick, MD, USA) and
normalized to the B-actin content to correct for relative expression.

Methylation analyses

Bisulfite pyrosequencing was used to evaluate THBSI promoter
methylation status in the cell lines on a PyroMark Q96 MD pyrose-
quencing instrument (Qiagen; Valencia, CA, USA). Genomic
DNA (800ng) was modified with sodium bisulfite as previ-
ously described (23) to convert unmethylated cytosines to uracils.
Methylated cytosines are protected from this conversion. PCR
amplification prior to pyrosequencing was performed with the
HotStar Taq PCR Kit (Qiagen) using 40 ng of bisulfite modified
DNA (assuming complete recovery) in a 25l reaction volume
with 1.5 mM MgCl, and 100 nM each of forward primer 5'-AGT
TTT TTT TAG GGA TGT TTT GTT GAT-3' and reverse primer
5'-(biotin)-CCA AAC TTA AAA ACA CTA AAA CTT CTC A-3'.
PCR conditions were 95°C for 15 min, followed by touchdown
PCR using 55 total cycles with a 30 s denaturation at 94°C,a 30s
annealing step (5 cycles at 69°C, 5 cycles at 66°C, 5 cycles at 63°C,
5 cycles at 60°C, and 40 cycles at 57°C) and a 30's extension step
at 72°C, followed by a final 10 min extension step at 72°C. The
extended cycle number is required to fully incorporate the biotin-
tagged primer, which is used to isolate the single stranded amplicon
used as the template for the pyrosequencing reaction, which was
done with sequencing primer 5'-GGG ATG TTT GTT GAT TAT-
3’. Pyrosequencing was performed using PyroMark Gold Q96
reagents (Qiagen) per the manufacturer’s recommendations. The
mean methylation value for the seven CpGs within the sequenced
region was used for analysis. Low methylation was arbitrarily
defined as <15% methylated, and high methylation as >15%.
The pyrosequencing assay was validated using mixtures of bisul-
fite modified universally methylated DNA (CpGenome; Promega;
Madison, WI, USA) and normal leukocyte DNA with the methy-
lated DNA comprising 0, 20, 40, 60, 80, and 100% of the total
input. There was a linear relationship between the amount of
methylated DNA present in the reactions and that measured by
pyrosequencing, with a correlation coefficient of 0.98.

Statistical analysis

Spearman’s correlation coefficient test was used to assess the asso-
ciation between THBSI gene expression and population doubling
time of the cells; invasive capacity; anchorage-independent growth
index; as well as cisplatin and paclitaxel IC50 values. The Wilcoxon

rank sum test was used to compare the continuous representation
of THBSI gene expression and promoter methylation in various
groups defined by TP53 gene mutation and protein expression.
All tests were two-sided and p < 0.05 was considered statistically
significant.

RESULTS
THBS1 EXPRESSION AND PROMOTER METHYLATION STATUS IN
OVARIAN CANCER CELL LINES
In the panel of 19 ovarian cancer cell lines, THBSI gene expres-
sion (median 9.5; range = 4.8—13.2) was associated with TP53 gene
mutation status and protein expression. Specifically THBSI gene
expression was higher in cells containing a wild-type TP53 gene or
null or frameshift TP53 mutation compared to those harboring a
missense TP53 gene mutation (p=0.005) (Table 1; Figure 1).
THBS! gene expression was also higher in cells with low p53
protein expression (0 or 14) compared to those exhibiting high
P53 protein expression (2+) (p =0.008) (Table 1). Pyrosequenc-
ing revealed a wide distribution of promoter methylation across
the cell lines, but the majority showed low methylation levels
(median = 8.6; range = 3.5-88.8). Cells with low levels of pro-
moter methylation (<5% methylated) exhibited higher THBSI
gene expression (>5), while those with high levels of promoter
methylation (>15% methylated) had low THBSI gene expression
(<5) (Figure 2A). Since only three observations have THBSI gene
expression values less than five the group is too small to use a statis-
tical test for comparison. There was no association between THBSI
promoter methylation and TP53 gene mutation status (p =1.0)
or p53 protein expression (p = 1.0). All of the cells with promoter
methylation >15% harbored a missense TP53 gene mutation.
There was no association between THBSI gene expression
and population doubling time of the cells, invasive capacity,
anchorage-independent growth or cisplatin and paclitaxel IC50
values (Figures 2B—F).

Table 1 | Relationship between THBS1 differential gene expression,
promoter methylation, mRNA expression, and TP53 mutations in
ovarian cancer cell lines.

THBS1 Wilcoxon THBS1 Wilcoxon
promoter rank gene rank
methylation sum expression sum
percent

n Median (IQR) p Median (IQR) p

TP53 MUTATION

Null 3 8.7(8.0-94) 10* 9.9(9.9-10.5) 0.005*
Wild type 5 8.9(8.6-9.2) 10.1 (9.5-12.5)
Missense 9 8.1(7.8-471) 75 (5.1-7.9)

Frame Deletion 1 8.0 9.6

TP53 PROTEIN OVEREXPRESSION

No: 0 or 1+ 7 8.6(78-10.00 1.0 10.2 (8.9-12.2) 0.008
Yes: 2+ 9 8.1(7.8-471) 79 (5.1-9.4)

*There were too few observations in each group for comparison testing. There-
fore THBS1 gene expression was compared in the samples with missense
mutations to those with null mutations and intact wild-type TP53 gene combined.
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FIGURE 1 | THBS7 RMA expression and TP53 status. Ovarian cancer cell
lines harboring a TP53 missense mutation bars had lower THBST RMA
expression compared to cell lines with an intact wild-type (wt) TP53 gene.
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FIGURE 3 | TP53 mutation status in select ovariancancer cell lines and
THBS1 mRNA and protein expression. The three ovarian cancer cell lines
with wt TP53 demonstrated higher levels of THBS7 mRNA, but lower
relative protein expression. Conversely, mutant TP53 cell lines had lower
levels of THBST mRNA expression and higher levels of relative protein
expression. TP53 missense mutation [J; wt TP53 gene I

We evaluated THBSI gene, mRNA, and protein expression in
a subset of six ovarian cancer cell lines. Relative THBSI gene
expression was higher in the wild-type cell lines (OVCA429, 13.6;
DOV13, 12.4; OVCA433,14.0) compared to three cell lines har-
boring a TP53 mutation (OVCAR 3, 7.6; SKOV3, 9.6; OVCA432,
9.5) (RMA-normalized values given are an average of Affymetrix
U133 probes 201108_s_at, 201109_s_at, and 201110_s_at). We
observed that the cells containing a wt TP53 gene tended to express
higher levels of THBS1 mRNA (110-114), but lower relative pro-
tein expression (absent to 1.7). Conversely, mutant TP53 cell lines
had lower levels of THBSI mRNA expression (83-91) and higher
levels of relative protein expression (2.5-4.6) (Figure 3).

The effect of radiation and hypoxia treatment on THBST mRNA
expression in the A2780 ovarian cancer cell lines
After treatment with radiation, the A2780wtTP53 cells demon-
strated a 3.6-fold increase in THBSI mRNA levels at 24 h while
the A2780mTP53 cells had a 4.5-fold increase at 24h and a 9.5-
fold increase at 48 h (Figure 4A). There was a 3.4-fold greater
increase in THBSI mRNA levels in the A2780mTP53 cell line
compared to wild-type (Figure 4A). Similarly, when compared
to non-irradiated cells, irradiated cells demonstrated a 3.3-fold
increase in p53 protein expression 48 h after exposure (Figure 5A).
Following exposure to hypoxia, the THBSI mRNA levels
increased approximately fourfold in A2780wtTP53 cells at 8 and
24 h. There was a similar increase in THBSI mRNA levels in the
A2780mTP53 cells with a 4.6-fold increase at 8h and a 2.8-fold
increase at 24 h (Figure 4B). In contrast, p53 expression was absent
in the A2780wtTP53 cells at 24h and there was no significant
increase in p53 expression in the A2780mTP53 cells after exposure
to hypoxia (Figure 5B).

DISCUSSION

The function of THBS], its prognostic effect in various cancers,
and its regulation are controversial. Dameron et al. previously
reported that THBS1 may be regulated by TP53 based on studies
of fibroblasts from patients with Li Fraumeni syndrome (1). Our
data from immortalized ovarian cell lines indicate that THBSI
expression is associated with TP53 status and is consistent with the
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FIGURE 4 | THBS1 mRNA expression in ovarian cancer cell lines
following radiation and hypoxia treatment. Induction of THBST
transcription in the parent A2780wtTP53 cells and A2780mTP53 cells
following radiation treatment (A); and hypoxia exposure (B). After treatment
with radiation, the A2780wtTP53 cells demonstrated a 3.6-fold increase at
24 h while the A2780mTP53 cells had a 4.5-fold increase at 24 h and a
9.5-fold increase at 48 h. There was a 3.4-fold greater increase in THBS1
levels at 48 h in the A2780mTP53 cell line compared to wild type. There
was an approximately fourfold increase in THBS1 levels in the A2780wt
cells at 8 and 24 h. In the A2780m there was a 4.6-fold increase at 8 h, and
a 2.8-fold increase at 24 h. Controls M; radiated A2780wtTP53 cells Hl;
radiated A2780mTP53 cells [J; hypoxia treated A2780wtTP53 cells E; and
hypoxia treated A2780mTP53 cells B2.

hypothesis that THBSI gene expression is regulated via a TP53-
dependent pathway. The ovarian cancer cell lines containing wt
TP53 expressed higher levels of THBSI mRNAs. In contrast, the
cell lines harboring missense mutant TP53 expressed low THBSI
mRNA levels. Furthermore, induction with radiation, known
to stimulate TP53 transcription, was associated with a distinct
increase in THBS1 mRNA levels.

Wild-type TP53 may bind to the THBSI promoter resulting
in gene transcription. Alternatively, wtTP53 is normally degraded
and expressed at low levels, potentially allowing for a secondary
factor to bind to the promoter site. Interestingly, radiation induced
THBS]I expression was most pronounced in the mutated TP53
cell line, and we don’t have a clear explanation for this finding.
The A2780 daughter cell line carries a missense TP53 mutation.
However, the effect of the mutation on p53 function and DNA-
binding activity is unknown. In general, TP53 mutations change
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FIGURE 5 | TP53 protein expression in ovarian cancer cell lines
following radiation and hypoxia treatment. (A) Induction of TP53 protein
expression in A2780wtTP53 cells following radiation treatment. Irradiated
cells demonstrated a 3.3-fold increase in TP53 expression at 48 h compared
to non-irradiated cells. (B) Induction of p53 protein expression in the parent
A2780wtTP53 cells and A2780mTP53 cells following hypoxia exposure.
TP53 exposure was absent in the A2780wtTP53 cells at 24 h of hypoxia
exposure. There was no significant increase in p53 expression in the
A2780mTP53 cells after hypoxia. C, control; R, radiation; H, hypoxia.

the amino acid encoded within the affected codon, act in a “dom-
inant negative” fashion and can neutralize the function of the
normal intact TP53 allele. Specifically, missense p53 protein can
bind with wt p53 protein and prevent it from forming homote-
tramers and/or interacting with DNA, or if it does interact with
DNA, the presence of the mutant protein may impede interac-
tion with other secondary factors required to drive induction of
transcription (Figure 6). Missense and null TP53 mutations and
proteins may have different effects on gene transcription. Inter-
estingly, the cell lines with null TP53 mutations (those that lead
to complete loss of function of the gene, which can include some
truncation mutations that prematurely terminate the polypeptide,
some non-sense mutations that introduce a stop codon through
point mutation and prematurely truncate the polypeptide, and
some frameshift mutations resulting from insertion or deletion
of non-multiple-of-three nucleotides within the coding sequence
that shift the open reading frame, leading to premature trunca-
tion of the polypeptide), demonstrated similar levels of THBSI
expression as the wt TP53 cell lines. Our findings suggest that mis-
sense, but not null TP53 mutations, may interfere with THBSI
regulation.

It is unlikely that methylation plays a significant role in the
regulation of THBSI gene expression, given the overall low lev-
els of THBSI promoter methylation detected in the vast majority
of the cell lines analyzed. However, we did find that all of the
cells with higher levels of promoter methylation (>15% methy-
lated) harbored a missense TP53 gene mutation and had the lowest
THBSI gene expression. These findings suggest that THBSI gene
expression may be silenced in association with aberrant cytosine
methylation of its promoter (Figure 6). Transcriptional repression
of MASPIN, a tumor-suppressor gene involved in angiogenesis,

and desmocollin 3 (DSC3), an inhibitor of cell motility, by aberrant
DNA methylation has been reported (10, 24). In these cases, the
wt TP53 gene binds to its consensus DNA-binding sites within the
promoter, prevents aberrant de novo cytosine methylation there-
fore protecting the potential for gene activation. However, when
the TP53 gene is mutated, its DNA-binding activity is lost and the
TP53 target regions are vulnerable to methylation; thus the abil-
ity to activate transcription is repressed (10). Hypermethylation
of the THBSI promoter in tumor specimens has been associated
with worse clinical outcome in patients with neuroblastomas (25)
and penile cancers (26) and an aggressive phenotype in those
with gastric cancers (27). In melanoma cell lines, exposure to a
demethylating agent reversed THBSI promoter hypermethylation,
increased THBSI1 expression, and reduced angiogenesis in vivo
(28). However, Miyamoto et al. reported that THBSI methylation
was more frequent in gastric cancers with wt TP53 compared to
those with mutant TP53 (27). The association between THBSI
promoter methylation and survival in patients with EOC has not
yet been explored. However, our findings in ovarian cancer cell
lines, which may or may not be representative of the situation in
primary tumor tissues, indicate that THBSI promoter methyla-
tion is relatively low and that the regulation of THBSI is probably
not primarily driven by differences in methylation, at least in these
cells.

Hu and colleagues recently reported that THBSI promoter
methylation was induced in the setting of oxygen-glucose depri-
vation (29). Oxygen—glucose deprivation-induced THBSI pro-
moter methylation was associated with a reduction in THBSI
mRNA and protein expression. According to Wang et al. glucose
up-regulates THBSI gene transcription through antagonism
of cGMP-dependent protein kinase repression via upstream
stimulatory factor 2 (30). All of our experiments were conducted
in glucose-based media that may have interfered with the methy-
lation process. We also found that hypoxia induced THBSI
mRNA expression, which was not expected. Furthermore, hypoxia
exposure did not elicit an increase in p53 protein expres-
sion, suggesting that the increase in THBSI expression was
not mediated by the TP53 pathway. We hypothesized that
hypoxia would lead to reduced THBSI expression to confer a
favorable angiogenic environment. However, others have also
reported that hypoxia increases THBS1 expression. Ortiz-Masia
and colleagues found that hypoxia exposure resulted in hypoxia-
inducible factor-1 (HIF1) dependent up-regulation of THBSI
(31). HIF1 binds to the HRE sequence in the THBSI promoter.
The HIF1 pathway represents another venue of THBSI1 reg-
ulation. Other mechanisms of THBSI regulation may include
epigenetic modulation via histone modifications, transcriptional
repressors and enhancers that augment or inhibit binding and
activity or regulation via other tumor-suppressor genes (30,
32,33).

We also noted a paradoxical relationship between THBSI rel-
ative gene, mRNA, and protein expression. The ovarian cancer
cell lines harboring mutant TP53 genes had lower relative THBSI
mRNA levels, but expressed higher THBS1 protein. In contrast,
ovarian cancer cell lines with wt TP53 had higher relative THBS1
gene and mRNA levels, but expressed lower THBS1 protein lev-
els. Sundaram and colleagues observed a similar paradoxical
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resulting in gene transcription. Alternatively, wtTP53 is normally degraded
and expressed at low levels allowing for a secondary factor to bind to the
promoter site. Missense p53 protein can bind with wt p53 protein and
prevent it from forming homotetramers and/or interacting with DNA, or if
it does interact with DNA, the presence of the mutant protein may impede
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interaction with other secondary factors required to drive induction of
transcription. In rare cases, upon mutation the wt p53 DNA-binding
activity is lost and the p53 target regions are vulnerable to de novo
cytosine methylation (Me) that inhibits transcription. Null TP53 mutations
lead to complete loss of function of the gene and abnormal p53 fragments
that are degraded. This may allow for a secondary factor to bind and
induce THBST transcription.

relationship in a colorectal cancer cell line (34). While TP53 stim-
ulated THBSI transcription, there was not an associated increase
in THBS1 protein levels. They discovered that TP53 upregu-
lated a microRNA, miR-194, in THBS1 retrovirus-transduced
HCT116 cells, leading to decreased THBS1 levels. The removal of
the miR-194 complementary site in the THBSI 3'-untranslated
region, led to THBSI reactivation, impaired angiogenesis in
Matrigel plugs, and reduced growth of HCT116 xenografts. In
contrast, transient overexpression of miR-194 increased angio-
genesis in HCT116/THBS1 cells, and increased microvascular
densities and vessel sizes in vivo. The findings indicate that miR-
194 is involved in the post-transcriptional regulation of THBSI.
However, their findings do differ from ours in that they also
reported that TP53 stimulated THBSI transcription did not
increase with THBS! mRNA levels. Further analysis is needed
to understand the THBSI post-transcriptional modifications in
ovarian cancer.

Moreover, post-translational modifications may be critical in
altering THBS1 protein expression (35). Thrombospondins are
large trimeric polypeptides and known targets of proteolysis. The
THBS1 and 2 activities are uniquely determined by exposure to the
microenvironment. Proteolytic cleavage transforms their structure
and alters their activity in a tissue- and pathophysiological-specific
manner (35). THBS1 protein can be cleaved by cathepsins, leuko-
cyte elastases, and plasmin. It was beyond the scope of our project

to explore post-transcriptional or translational modifications to
account for our findings.

Of note, we did not find an association between THBS]1 expres-
sion in vitro and tumor growth properties or cisplatin/paclitaxel
induced growth inhibition. However, THBSI’s angiogenic effect
and interaction with cytotoxic agents may not be adequately eluci-
dated using in vitro studies. The in vitro nature of this investigation
limits the application of these results and does not account for the
role of the tumor microenvironment. Specifically cell lines are
cancer cells only and the adjacent stroma that is integral to eval-
uate mesenchymal remodeling and tumor angiogenesis was not
assessed in this model. Other limitations of our study included the
use of a simplistic model of ionizing radiation to simulate TP53
induction. To validate our model we irradiated ovarian cancer
cell line A2780wtTP53 to 5 Gy and then subjected cell lysates to
immunoblot to assess total protein expression. When compared
to non-irradiated cells, irradiated cells demonstrated a 3.3-fold
increase in p53 expression 48 h after exposure. We acknowledge
that ionizing radiation may also induce other genes in addition
to TP53 and these unidentified genes may also play a role in
angiogenesis. We are continuing to evaluate THBS1 expression and
promoter methylation in ovarian cancer specimens that contain
cancer cells as well as the surrounding stroma.

In conclusion, THBSI expression may be regulated via the
TP53 pathway and induced by hypoxic tumor microenvironment
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conditions. Overall low levels of THBSI promoter methylation
imply that methylation is not the primary driver of THBSI expres-
sion in EOC. THBSI expression does not appear to be associated
with tumor growth properties.
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