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A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth
and tumorigenesis is emerging beyond Warburg as an area of research that is under
explored in terms of its significance for clinical management of cancer. Work discussed
in this review focuses less on the Warburg effect and more on mitochondria and how dys-
functional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and
other established aspects of cell growth and stress responses. There is increasing evidence
that key oncogenes and tumor suppressors modulate mitochondrial dynamics through
important signaling pathways and that mitochondrial mass and function vary between
tumors and individuals but the significance of these events for cancer are not fully appre-
ciated. We explore the interplay between key molecules involved in mitochondrial fission
and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of
mitochondria and consider how these distinct mechanisms are coordinated in response to
physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine
how deregulation of these processes in cancer has knock on effects for cell proliferation
and growth. We define major forms of mitochondrial dysfunction and address the extent to
which the functional consequences of such dysfunction can be determined and exploited
for cancer diagnosis and treatment.
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INTRODUCTION

Mitochondrial integrity is central to efficient cellular energy pro-
duction and cell survival in the face of environmental stresses,
such as nutrient deprivation and ischemia, but also in response
to genotoxic agents, such as those used in cancer therapies (1-
4). How changes in mitochondrial mass and function affects the
basic biology of cancer or determine the clinical outcome for
cancer patients stands out as having unexplored diagnostic and
therapeutic potential.

MITOCHONDRIA AND THE WARBURG EFFECT

Defective mitochondria was proposed by Otto Warburg to explain
his observation that tumor cells undergo increased aerobic glycol-
ysis (the so-called “Warburg effect”) compared to normal cells (5).
While mutations in key Krebs cycle enzymes support the notion
that mitochondrial metabolism is inherently defective in at least a
few human cancers (6), evidence that dysfunctional mitochon-
dria are the major cause of the Warburg effect is limited (5).
Instead, accumulating evidence supports altered expression and
activity of key glycolytic enzymes in tumor cells. For example,
altered expression of phosphoglycerate dehydrogenase, phospho-
glycerate mutase 1, and pyruvate kinase M2 has been shown to
reduce the rate of glycolytic flux to pyruvate and increase flux to
biosynthetic pathways (7), such as serine biosynthesis (8, 9) and
the pentose phosphate pathway (10). Interestingly, increased glu-
cose metabolism and the Warburg effect also promote tumor cell
survival through redox regulation of cytochrome ¢ and inhibition

of apoptosis (11). This may explain the Warburg effect and tumor
growth without necessarily invoking defective mitochondria, as
discussed elegantly in recent reviews (5, 12—18).

MITOCHONDRIAL GENOME MUTATIONS IN CANCER

While mitochondrial dysfunction does not necessarily explain the
Warburg effect, there is significant evidence that tumors do indeed
accumulate defective mitochondria (19-21). Homoplasmic muta-
tions in the mitochondrial genome have been found in primary
tumors (22) and linked to both increased primary tumor growth
(23) and metastasis (24). The tumor-promoting effects of mito-
chondrial genome mutation, such as in the genes encoding subunit
1 of cytochrome oxidase (CO) or various subunits of NADH dehy-
drogenase (ND) is due in part to increased levels of cytosolic and
mitochondrial reactive oxygen species (ROS) resulting from elec-
tron escape from the respiratory chain when these genes products
have reduced function (1921, 23, 24). There is also evidence that
more efficient electron chain activity and complex I activity in
particular limits breast tumor growth and metastasis in part by
maintaining high NAD+/NADH levels (25). However, as recently
discussed (26), more research is required to establish the extent
to which mitochondrial genome mutations actually drive tumor
growth and progression, as opposed to being a marker or readout
of mitochondrial dysfunction itself.

MITOCHONDRIAL ROS IN CANCER
Increased ROS levels primarily emanating from the mitochon-
dria are a noted feature of transformed cells that are variously
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attributed to inefficiencies in electron transport at the respira-
tory chain, increased metabolic demand, reduced ROS scavenging,
oncogene-induced replicative stress, and altered mitochondrial
dynamics (27-30). Oncogene-induced ROS promotes tumori-
genesis in numerous ways, including stabilization of hypoxia-
inducible factor (HIF)-a, induction of oxidative base damage to
DNA, increased calcium flux, inactivation of key phosphatases,
such as Pten and activation of both the NRF2 and NF-k B transcrip-
tion factors (27, 29). Elevated ROS levels in tumor cells compared
to normal cells has been exploited experimentally to kill cancer
cells specifically by chemically pushing ROS levels over a criti-
cal homeostatic threshold that is incompatible with either growth
or survival of tumor cells but tolerable by normal cells (31-33).
Indeed, many current genotoxic agents used in the clinic, such as
cisplatin and certain alkaloids, rely on ROS production for their
efficacy (29, 34, 35). However, one major side-effect of increas-
ing ROS systemically in a clinical setting is the damaging effect of
elevated ROS on normal tissues that can lead to disrupted differ-
entiation and defective immune cell function, particularly in cell
types, such as macrophages and neutrophils, where ROS is inher-
ently elevated to perform critical signaling roles (29). Also, not all
tumor cell types are equally sensitive to ROS induction with dif-
ferences in the sensitivity of epithelial cells (resistant) compared
to cells of mesenchymal origin (sensitive) (32). While appreciating
the important signaling role mitochondrial ROS plays in cancer
etiology and treatment response, this topic has recently been thor-
oughly reviewed elsewhere (29) and is not the focus of this review.

MITOCHONDRIA ARE HIGHLY DYNAMIC

Mitochondria are highly dynamic organelles responding to cel-
lular stress through changes in overall mass, interconnectedness,
and sub-cellular localization (1-3)(Figure 1). Change in overall
mitochondrial mass reflects an altered balance between mitochon-
drial biogenesis (increased mitochondrial genome duplication
combined with increased protein mass added to mitochondria)
and rates of mitophagy (degradation of mitochondria at the
autophagosome) (36—38). In addition, the extent to which mito-
chondria are interconnected to each other as a single continuous
mitochondrial reticulum is determined by the extent of mito-
chondrial fusion while conversely, mitochondrial fission results
in fragmented mitochondria of smaller overall dimensions (2, 39,
40). Mitochondria are also dynamic in terms of where they are
located in the cell with increased perinuclear localization under
hypoxia compared to normoxia (41), at axonal termini in neurons
(42), and movement along microtubules toward lysosomes under
conditions that promote mitophagy (43). The extent to which con-
trol of mitochondrial dynamics, not only rates of fission versus
fusion, but also changes in mitochondrial mass and sub-cellular
spatial organization (Figure 1), is deregulated in cancer has been
less frequently reviewed than Warburg (5), ROS (29), and mito-
chondrial genome DNA (mtDNA) mutations (26) and is the focus
of this review. We shall also assess whether a rational basis exists
to target key aspects of mitochondrial dynamics to treat cancer.

FISSION VERSUS FUSION IN CANCER
Re-modeling of the mitochondrial network in cells is mechanically
regulated by key dynamin-related fission and fusion gene products

and takes place in response to hypoxia, cell cycle cues, changing
energy demands, and other cellular stresses (1, 2, 39, 40, 44—-46).

THE MECHANICS OF FISSION AND FUSION
Mitochondrial fusion is promoted by homotypic/heterotypic
interactions of the Mitofusin 1 and Mitofusin 2 dynamin-related
GTPases at the outer mitochondrial membrane (OMM) of adja-
cent mitochondria and by Opa-1, also a dynamin-related GTPase,
at the inner mitochondrial membrane (IMM) (1, 39, 40, 45).
Inhibition or loss of any one of these proteins impedes mitochon-
drial fusion leading to increased mitochondrial fragmentation
and is associated with clinical neuropathy in Charcot—Marie—
Tooth disease and Autosomal Dominant Optic Atrophy, highlight-
ing the critical role played by mitochondrial fusion in cellular
homeostasis, particularly in the nervous system (39, 42).
Mitochondrial fission requires the recruitment of a differ-
ent dynamin-related GTPase, Drpl to the OMM where it forms
ring-like oligomers that pinch off mitochondria into smaller frag-
mented mitochondria (39). Fission is important ahead of mitosis
to ensure even distribution of mitochondria to daughter cells (47—
49) but also occurs when cells undergo mitophagy or apoptosis (2,
40,44, 50, 51). Recruitment of cytosolic Drp1 to the mitochondria
during fission is a regulated process involving post-translational
modification of Drp1 (49, 52-54) and its interaction with putative
receptors at the OMM such as Mitochondrial Fission Factor (Mff),
Fis1,MiD49, MiD51, and possibly other proteins with which Drp1
interacts (45, 55-59). Recent work has also highlighted a role for
the endoplasmic reticulum (ER) that is intimately associated with
mitochondria, in determining the sites at which fission will occur
(60). The constriction of mitochondria at points of contact with
the ER are set up prior to recruitment of Drp1 to mitochondria and
independent of Mff. Intriguingly, the mitochondrial fusion pro-
tein Mfn2 also plays a role in tethering mitochondria to the ER, in
a manner required for proper calcium uptake by the mitochondria
from the ER (61). Screens in yeast have identified additional puta-
tive molecular regulators of mitochondrial tethering to the cell
cortex and the ER in ways that regulate mitochondrial positioning
in cells and inheritance by daughter cells (62) but whether similar
mechanisms operate in mammalian cells is unclear.

STRESS-INDUCED CHANGES IN RATES OF FISSION AND FUSION
Beyond the actual mechanics of mitochondrial fission and fusion,
the signaling pathways that regulate these processes are only just
coming to the fore as mechanisms that may be disrupted in can-
cer. These signaling pathways respond to specific stresses and serve
to coordinate mitochondrial dynamics with other aspects of cel-
lular physiology. Drugs that inhibit protein synthesis, including
mTOR inhibitors, as well as other stresses such as ultra-violet (UV)
light have been shown to promote so-called “stress-induced mito-
chondrial hyperfusion” that relies upon canonical fusion proteins
(Opa-1,Mfn1) (46), although, how these stress signaling pathways
activate the fusion machinery is not clear. Stress-induced hyper-
fusion of this kind promotes ATP production through more effi-
cient oxidative phosphorylation (OXPHOS) (63), and also inhibits
mitophagy and prevents apoptosis (46, 64, 65).

The functional consequences of altered rates of fission or fusion
for cellular metabolism, cell cycle kinetics and cell viability are

Frontiers in Oncology | Molecular and Cellular Oncology

December 2013 | Volume 3 | Article 292 | 2


http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive

Boland et al.

Mitochondrial dysfunction in cancer

Mfn1

anzk,
Opa1l

Bcl-2 family

@D

C Biogenesis

Drp1
Mff Pink
Fis1 Parkin
Bcl-2 family BNip3
Nix
B Fission Rheb
ER connections Bcl-2 family
(Mfn2)
A Fusion Membrane
depolarization
(A)

PGC-1a, B
PPARy
NRF1/2

ERRa, B, v

Bcl-2 family
Opa-1 cleavage;
cristae re-modeling; 0
Bax/Bak channel formation;
Cytochrome c release. @

F Spatial dynamics

D Mitophagy

E Apoptosis

FIGURE 1 | Defining mitochondrial dynamics. (A) Mitochondrial fusion
requires the action of fusion proteins, OPA-1 at the IMM and Mitofusin 1 and
Mitofusin 2 at the OMM promoting the fusion of membranes of juxtaposed
mitochondria. Mitochondrial fusion is selective for polarized mitochondria and
promoted by growth on oxidative carbon sources, such as galactose, that also
induces respiratory chain protein expression, increased cristae density and
formation of respiratory chain supercomplexes and increased OXPHOS.
Fusion likely also contributes to increased respiration and mitochondrial
metabolism by promoting increased diffusion of intermediate metabolites and
reducing agents. Fusion also limits mitophagy and apoptosis.

(B) Mitochondrial fission is promoted by the GTPase activity of the
dynamin-related protein (DRP1) that is recruited to mitochondria in response
to stresses, such as hypoxia, where DRP1 interacts with its mitochondrial
receptors (Mff1, Fis1 and others) to pinch off mitochondria into smaller units.
Mitochondrial fission depolarizes mitochondria but mitochondria generally
recover. Failure to restore membrane potential is thought to target
mitochondria for degradation by autophagy or depending on other stresses,
result in apoptosis. Cleavage of OPA-1 promotes apoptosis. (C) Biogenesis is
induced by nutrient deprivation and in response to oxidative stress and
requires the coordinated expression of nuclear and mitochondrial encoded
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genes that are co-regulated by transcription factors NRF1/2, PPARy, ERRa, B,
v, and the key transcriptional co-factor, PGC-1a. Mitochondrial biogenesis is
required for cell growth to produce increased metabolites and energy and
defects in biogenesis are frequently lethal to cells and organisms.

(D) Mitophagy is a specialized form of autophagy in which mitochondria are
targeted to nascent phagophores and engulfed by autophagosomes that fuse
with lysosomes to degrade the encapsulated mitochondria. Mitochondrial
fragmentation is required for mitophagy and induction of fusion protects
mitochondria from degradation under starvation conditions. Mitophagy is
promoted by a number of different mechanisms including
Pink1/Parkin-mediated pathways and also the BNIP3/NIX pathway.

(E) Apoptosis is a terminal event that is promoted by the activity of BH3-only
members of the Bcl-2 superfamily of cell death regulators. When apoptosis is
inhibited, novel functions for BAK/BAX and other Bcl-2 family members has
been revealed. (F) Mitochondrial spatial dynamics is relatively under-studied
but mitochondria respond to key stresses, including hypoxia and calcium flux
in the cell, by changing their sub-cellular localization, including coalescing
around the nucleus and changing their proximity to the ER. Mitochondrial
migration in cells is modulated by Miro, a Ca** dependent small G protein as
well as by poorly understood effects of Parkin and HDACG.

a “work in progress” relying on numerous systems and techni-
cal approaches. In Drosophila, Yorkie-mediated up-regulation of
Opa-1 and mitochondrial fusion was required for Yorkie/YAP-
dependent proliferation and tumorigenesis (66). In mammalian
systems, glucose deprivation and use of galactose as an alterna-
tive source of carbon, resulted in cells switching from glycolysis to
OXPHOS, as expected, but significantly caused a marked increase

in mitochondrial fusion and an accompanying increase in respi-
ratory chain protein expression and cristae density, without any
increase in mitochondrial mass (67).

Consistent with a critical role for mitochondrial fusion in
regulating metabolism, inactivation of Mitofusin 1, Mitofusin
2, or Opa-1 inhibits oxidative metabolism and cell growth (68,
69). If fusion promotes mitochondrial ATP production (63),
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it is reasonable to postulate that this is achieved by increas-
ing the efficiency of the electron transport chain (ETC) that is
key to OXPHOS. This may be achieved by increasing the num-
bers/density of ETC complexes through increased expression of
key components, as has been reported (67), or by altering the com-
position of specific respiratory chain components into different
supercomplexes to maximize utilization of specific substrates, such
as NADH in the presence of glucose versus FAD in the presence
of fatty acids (70). Recent data has shown that assembly of respi-
ratory chain complexes (RCC) into supercomplexes and increased
respiratory efficiency is promoted by tighter cristae formation
that is dependent on the fusion protein, Opa-1 (71). Conversely,
disruption of cristae formation by knockout of Opa-1 in mice
promoted mitochondrial fragmentation, cristae dissolution, and
reduced RCC formation and respiration (71). Thus fusion may
promote respiration through Opa-1 dependent effects on cristae
density and formation of respiratory chain supercomplexes. Addi-
tionally, fusion may induce mitochondrial membrane potential
changes that promote uptake of pyruvate or other substrates that
fuel OXPHOS. Clearly, a more continuous mitochondrial lumen
achieved by increased fusion is likely to promote more rapid dif-
fusion of ADP, NADH, FADH,, and other matrix metabolites
required to drive more efficient OXPHOS. In this way, fusion
would also likely promote increased carbon flux through the
Krebs’ cycle, more efficient rates of fatty acid oxidation and pos-
sibly increased activity of other metabolic pathways located at the
mitochondria.

It has been suggested that fusion may promote respiratory
efficiency by promoting complementation of mtDNA mutations
(51). While this may be the case in some instances, the failure
to detect homoplasmic mutations in mtDNA encoded subunits
of CO, ND, ATP synthase, or cytochrome b in primary cells, or
indeed more widely in tumor cells suggests that complementation
of mtDNA mutations is not the key role of mitochondrial fusion
in metabolism. Indeed, increased fusion has been shown to pro-
mote OXPHOS in very short time frames (67), indicating that the
effects of fusion on oxidative metabolism are post-translational
and not primarily dependent on gene complementation between
mitochondrial genomes.

The effects of mitochondrial fusion in promoting oxidative
metabolism at the mitochondria imply a contrasting role for
mitochondrial fission in inhibiting oxidative metabolism, perhaps
by decreasing substrate uptake, disrupting cristae, and respira-
tory complex formation and/or limiting diffusion of reducing
equivalents. Oxygen is the major electron acceptor from com-
plex IV of the respiratory chain, and thus it benefits the cell to
decrease OXPHOS under limiting oxygen conditions (hypoxia)
both to maximize efficient use of the smaller amounts of oxy-
gen available but also to prevent generation of damaging ROS.
Hypoxia limits OXPHOS in a number of ways but promoting
mitochondrial fission may be one of the key mechanisms. Hypoxia
promotes mitochondrial fission by modulating Drp1 activity and
interaction with Fisl (72). Hypoxia-induced expression of Siah2,
an E3 ubiquitin ligase (73) targets the mitochondrial scaffold
protein, anchoring protein 121 (AKAP121) for degradation (72)
thereby preventing protein kinase A (PKA) dependent inhibition
of Drpl. These observations, amongst others, are consistent with

an inhibitory role for mitochondrial fission in OXPHOS. Increased
fission linked to deregulated expression of Drpl (increased) and
Min2 (decreased) has been observed in tumor cells (74) but to
what extent this contributes to the Warburg effect or other aspects
of tumor growth remains to be determined.

COORDINATION OF RATES OF FUSION/FISSION WITH CELL CYCLE
Several reports indicate that increased mitochondrial fusion is
required not only for efficient oxidative metabolism (68, 69) but is
necessary for proliferation and entry into S-phase (63). In this lat-
ter study, mitochondrial membrane polarization and hyperfusion
of mitochondria occurring at the G1/S transition was required for
cyclin E (CCNE) expression and S-phase entry (63). Additional
studies have also shown that mitochondrial bioenergetics are
linked to cell cycle progression (75). However, artificially induc-
ing hyperfusion, either through treatment with mdivi (a drug that
inhibits Drp1) (63) or expression of dominant negative Drp1 (76),
resulted in untimely induction of hyperfusion and sustained cyclin
E over-expression at inappropriate phases of cell cycle, such as
G2/M (76). This in turn was accompanied by replication stress,
DNA damage, centrosomal amplification,and chromosomal insta-
bility (63, 76), all known features of cells over-expressing cyclin E
(77). Interestingly, while cyclin E over-expression was required
for proliferation and genome instability arising from hyperfusion
or dysfunctional fission (63, 76), the specific factors produced by
hyperfusion that resulted in cyclin E up-regulation have not been
identified. Increased ROS has been previously reported to modu-
late levels of key cell cycle proteins, such as Emi-1 (78) but neither
increased mitochondrial ROS nor altered ATP production (76)
explain increased proliferation induced by mitochondrial hyper-
fusion (although this arguably requires further validation), leaving
us with the unanswered question of what drives cyclin E expression
in these circumstances.

Glycolysis is also cell cycle regulated and increases at the G1/S-
phase boundary due in part to stabilization of 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase, isoform 3 (Ptkfb3) that is
normally turned over by APC/Cdhl in early stages of G1 phase of
cell cycle (79). Interestingly, Drp1 is also turned over by APC/Cdh1
in G1 phase of cell cycle in a CDK-dependent manner (47, 49) sug-
gesting a possible mechanism by which up-regulation of glycolysis
may be coordinated with mitochondrial dynamics. Evidence that
glutaminolysis is cell cycle regulated is sparse but since c-Myc and
RB/E2F both modulate glutamine uptake (80-83), it would not
be surprising if glutaminolysis, like glycolysis, was up-regulated as
cells enter S-phase.

DUAL ROLE OF BCL-2 FAMILY MEMBERS IN MITOCHONDRIAL
DYNAMICS AND APOPTOSIS

In addition to effects on cellular metabolism and cell cycle, mito-
chondrial fusion can delay cytochrome c release and apoptosis (46,
84), with Opa-1 oligomerization inhibiting pro-apoptotic cristae
remodeling independent of its role in fusion (85) (Figure 2). Dis-
ruption of Opa-1 oligomers in a Bax/Bak-dependent manner by
the pro-apoptotic BID protein was independent of mitochon-
drial membrane permeabilization (86) but was associated with
pro-apoptotic cristae remodeling (a requirement for cytochrome
¢ release) and Opa-1 deficient cells are more susceptible to
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their roles in mitochondrial dynamics but which involve members of the
Bcl-2 family. Conversely, Bcl-2 family members modulate mitochondrial
fission and fusion in a manner that appears to be independent of their
functions in apoptosis.

apoptosis (87, 88). Interestingly, prohibitins promote cellular pro-
liferation and resistance to apoptosis by inhibiting OPA-1 cleav-
age at the IMM thereby promoting fusion and normal cristae
morphology (89).

In contrast to mitochondrial fusion, mitochondrial fission pro-
motes mitochondrial membrane depolarization, cytochrome ¢
release and apoptosis (90), with Drpl promoting Bax oligomer-
ization through mechanisms independent of its GTPase activity
(91), possibly explaining how fragmented mitochondria are more
amenable to Bax/Bak channel formation. Thus both mitochon-
drial fission and fusion proteins appear to modulate apoptosis
through activities that are distinct from their roles in mitochon-
drial dynamics but which involve members of the Bcl-2 family
(Figure 2).

Members of the Bcl-2 superfamily of cell death regulators are
extensively characterized for their key role in regulating apopto-
sis (2, 44) but they also have an emerging role in mitochondrial
dynamics (44,92, 93). Bak and Bax are essential for apoptosis, such
that Bax/Bak double knockout cells are resistant to apoptosis (94,
95). When Bak and Bax are activated by pro-apoptotic signals, they
undergo oligomerization to form a channel in the OMM through
which cytochrome c is released resulting in the formation of the
apoptosome and activation of caspases (96). Apoptosis-resistant
Bax/Bak null cells exhibit extensive mitochondrial fragmenta-
tion that is rescued by over-expression of Bak in the absence
of apoptotic signaling suggesting that Bak and Bax can promote

mitochondrial fusion (92). Indeed, the soluble form of Bax inter-
acts directly with Mfn2 to promote its GTPase activity while both
Bak and Bax interact with Mfnl (90, 92, 97). Conversely, the
anti-apoptotic Bcl-Xy, has been shown to promote mitochondrial
fission in neurons through interactions with Drp1 that promote its
GTPase activity (98). More recently, Mcl-1 has been implicated in
modulating mitochondrial dynamics through an amino-terminal
truncated form that localizes to the mitochondrial matrix, in con-
trast to full-length Mcl-1 at the OMM (99). Truncated Mcl-1 in the
matrix is required for mitochondrial fusion and assembly of the
FoF;-ATP synthase and for efficient respiration (99). This novel
function for Mcl-1, distinct from its anti-apoptotic function may
explain the observed heart failure in Mcl-1 null mice, in which
cardiomyocytes exhibited aberrant mitochondrial structure and
defects in respiration that were not rescued by Bax/Bak deletion
(100), although the defects were partially rescued by deletion of
cyclophilin D, a key regulator of the mitochondrial permeability
transition pore (101). Thus there is regulation of the apoptotic
activity of Bcl-2 related proteins by fusion/fission proteins and
conversely regulation of fission/fusion protein activity by Bcl-2
related proteins. What is not clear is whether the activities of Bcl-2
proteins, and Bax/Bak in particular, in apoptosis and fission/fusion
are exclusive. The increase in mitochondrial fragmentation tak-
ing place during apoptosis suggests that the pro-fusion activity of
Bak/Bax is suppressed by their pro-apoptotic functions but formal
experimental evidence supporting this is lacking. Similarly, it is not
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known whether reduced OXPHOS resulting from increased fission
may contribute to cellular susceptibility to apoptosis. Finally, it is
not clear whether altered mitochondrial dynamics contributes to
the oncogenic activity of key Bcl-2 family members, such as Bcl-2
or Bcl-X| that are both over-expressed in certain human malig-
nancies (102). For example, increased Bcl-Xp expression in tumors
may promote mitochondrial fission, as seen in neurons (98), thatin
turn would be predicted to limit mitochondrial OXPHOS thereby
promoting the Warburg effect.

ALTERED MITOCHONDRIAL MASS IN CANCER — BIOGENESIS
VERSUS MITOPHAGY

Mitochondrial mass in cells is regulated by both changes in mito-
chondrial biogenesis and mitophagy, two processes that are tightly
regulated in response to cellular stress, including nutrient availabil-
ity, oxidative damage, and redox state. Mitochondrial biogenesis
and mitophagy are both influenced by the activity of key oncogenes
and tumor suppressors, and much has recently been discovered
about how these processes are coordinated in cultured cells and
in mouse models. However, surprisingly little evidence is avail-
able that examines changes in mitochondrial mass in primary
tumors in vivo. Based on what is known about regulation of
mitochondrial mass in tumor cell lines, one might expect that
changes in cancers might be linked to specific oncogenic lesions,
for example c-Myc amplification, or to localized regional effects of
hypoxia/ischemia, or indeed be reflective of or contribute to evolv-
ing tumor heterogeneity. Our data identifies significant variation
in mitochondrial mass between tumors in different individuals
(Figure 3) but whether this relates to tumor grade, molecular sub-
type, therapy response, and/or recurrence-free survival is not clear.
However, this would be clinically relevant if it allowed improved
stratification of cancer patients for treatment purposes.

MITOCHONDRIAL BIOGENESIS IN CANCER

Mitochondrial biogenesis involves replication of the mitochondr-
ial genome and coordinated expression of both nuclear and mito-
chondrial encoded gene products (3, 103, 104). Critical nuclear-
encoded mitochondrial proteins, such as Tfam, Tfb2, and the
mitochondrial RNA polymerase (Polrmt) are translated in the
cytosol and encode a mitochondrial targeting sequence allowing

their regulated import into the mitochondrial network where they
are sorted for function (105). Key ETC proteins (subunits of ND
and cytochrome b, for example) are encoded by the mitochondrial
genome and since these proteins are translated in the mitochon-
drial matrix, coordinated induction of mitochondrial encoded
tRNAs and rRNA expression is also required (104). The entire
process is highly responsive to redox stress, nutrient availability,
and mitochondrial function (104, 106) and defective mitochondr-
ial biogenesis results in embryonic lethality and disease (3, 107).
Mitochondrial mass increases in proportion to cell size (108)
although opinions differ on whether mitochondrial biogenesis is
cell cycle regulated (109, 110).

Mitochondrial biogenesis depends upon the activity of a hier-
archy of nuclear transcription factors, that includes peroxisome-
proliferator activator receptor-alpha (PPARa), PPAR-y, nuclear
respiratory factor 1 (NRF1), nuclear respiratory factor 2 (NRF2),
and estrogen related receptors (ERR) «, B, y (36, 103). NRF1
and NRF2 both modulate expression of respiratory chain com-
ponents, such as cytochrome ¢ and CO subunits in addition
to anti-oxidant genes, while ERR factors regulate expression of
genes involved in fatty acid oxidation, Krebs cycle, and OXPHOS
(103). All of these transcription factors are critically dependent for
their activity on PPAR-y co-activator 1-alpha (PGC-1a) that was
first identified as a co-activator of PPARy in brown adipocytes.
PGC-1a is now recognized as the major integrator of transcrip-
tional responses to nutrient stress (Figure 4) that together with
structurally and functionally related proteins, PGC-1p and PRC
(PGC-related co-activator) promotes mitochondrial biogenesis,
cellular metabolism, and anti-oxidant responses through coor-
dinated activation of the afore-mentioned transcription factors,
including NRF2, ERRa, and PPARy (103, 106).

Nutrient supply and energy balance in the cell modulates
PGC-1a activity at both the transcriptional and post-translational
level (106) (Figure 4). Cells respond to mitochondrial damage
by increasing mitochondrial biogenesis and this is also depen-
dent on up-regulated PGC-la expression (111, 112). PGC-1a
is transcriptionally activated by PPARs, mTOR (acting on YY1),
and CREB (downstream of PKA signaling) leading to increased
mitochondrial biogenesis (106). At the post-translational level,
PGC-1a is regulated by both phosphorylation and acetylation

Increasing mitochondrial staining
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FIGURE 3 | Variation in mitochondrial staining in human breast
cancers. Immunohistochemical staining for mitochondrial 60 kDa
antigen (Biogenex clone 113-1) reveals marked variations in
mitochondrial staining between different primary human breast cancers
with some tumors showing very low staining (left) and others very high

staining (right). Differences in mitochondrial mass between different
primary tumors examined in this study was greater than intra-tumor
heterogeneity in mitochondrial mass. The significance of these
differences in mitochondrial mass for tumor growth, progression, and
therapy response is unknown.
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FIGURE 4 | Signaling pathways regulating biogenesis in response to
stress. Mitochondrial mass is increased in response to nutrient stress
through increased mitochondrial biogenesis. The peroxisome-proliferator
activator receptorgamma co-activator 1-alpha (PGC-1a) is key to coordinating
responses to nutrient availability and induction of biogenesis through its
co-activation of NRF1/2, ERRa, B, v, and PPARy. These transcription factors
induce expression of key nuclearencoded genes, such as Tfam and
mitochondrial polymerases, but also induce expression of metabolic enzymes

MAINTENANCE OF MITOCHONDRIAL INTEGRITY

BIOGENESIS

active at the mitochondria and other proteins that are imported into the
mitochondria. Mitochondrial encoded proteins required for respiratory chain
function are also induced secondary to the actions of PGC-1a and its related
proteins, PGC-1B, and PRC. Both p53 (through inhibition of PGC-1a) and
¢c-MYC (through activation of PGC-1B) modulate biogenesis. Recent data
highlights a role for MITFinduced PGC-1a activity and mitochondrial
metabolism in a subset of human melanomas, that is sensitive to B-Raf
inhibitors (since B-Raf blocks the action of MITF on PGC-1a).

events. Phosphorylation by the energy sensor AMP-dependent
kinase (AMPK) activates PGC-1a while GCN5-mediated acetyla-
tion inhibits PGC-1a activity (106). Deacetylation of PGC-1a by
NAD+ dependent SIRT1 promotes mitochondrial biogenesis and
ensures that the activity of PGC-1a is sensitive to both the energy
and the redox balance in the cell (113). PGC-1a co-activation of
ERRa in turn promotes expression of mitochondrial SIRT3 that
ensures effective scavenging of ROS at the mitochondria through
activation of mitochondrial superoxide dismutase, amongst other
mitochondrial sirtuin targets (114).

Key tumor suppressors and oncogenes regulate mitochondrial
biogenesis. The c-Myc oncogene stimulates mitochondrial bio-
genesis through induction of PGC-1f expression (115) leading
to increased expression of key mitochondrial proteins, includ-
ing Tfam, Poly, and NRF1 (116, 117). Regulation by c-Myc may
explain how certain aspects of mitochondrial biogenesis, such as
mtDNA replication appears to be cell cycle regulated, at least in
some systems (109). HIF-1 by contrast inhibits biogenesis by pro-
moting c-Myc degradation and by activating Mxi-1, a repressor
of c-Myc transcriptional activity (115). Together with the role of

HIF-1 in promoting mitophagy (as will be discussed later), HIF-1
mediated repression of mitochondrial biogenesis explains in part
how mitochondrial mass is reduced in response to hypoxia. HIF-
la protein is stabilized by loss of SIRT3, a downstream target
of PGC-1a (118), suggesting that signals that promote biogen-
esis, such as starvation-induced PGC-1la activity act in part to
block ROS-induced HIF-1 stabilization and its inhibitory effect
on biogenesis.

Increased PGC-1a expression has recently been implicated in
the etiology of a subset of human melanomas as a result of its
induction by the melanocyte-specific transcription factor, MITF
(119, 120) (Figure 4). PGC-1a expressing melanomas exhibited
high expression of mitochondrial proteins and a dependence
on oxidative metabolism, that contrasted with PGC-la low-
expressing melanomas that were more glycolytic (119, 120). PGC-
la expressing melanomas were highly dependent on PGC-1a for
growth and progression, possibly to protect against ROS-induced
apoptosis (120). Intriguingly, the key melanoma oncogene, B-
Raf was shown to suppress oxidative metabolism by inhibiting
MITF-induced induction of PGC-1a and melanomas treated with
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B-Raf inhibitors, such as vemurafenib, were critically dependent
on oxidative metabolism for survival suggesting that inhibitors of
mitochondrial metabolism may synergize with B-Raf inhibitors
in melanoma therapy (119). An obvious choice of such a drug is
Metformin/Phenformin that inhibits complex I of the respiratory
chain and is already approved for the treatment of type II diabetes.

PGC-1a has also been shown to drive HIF-independent expres-
sion of VEGF through co-activation of ERR-a and thus promote
angiogenesis, although the relevance of these findings for cancer
has not been directly tested (121).

Recent work demonstrated that PGC-1a is transcriptionally
repressed by p53 in response to telomere dysfunction (122), possi-
bly explaining reduced mitochondrial biogenesis during the aging
process and significantly, mitochondrial dysfunction and elevated
ROS in cancer when p53 is mutated (123, 124). When telomerase
was inactivated in Atm null T cell lymphomas, tumors initially
grew more slowly but over time, more aggressive tumors emerged
that had activated the alternative lengthening of telomeres (ALT)
pathway (125). Intriguingly, PGC-18 showed consistent copy-
number alteration in ALT+ tumors and increased expression of
PGC-1B and its targets, NRF2, TFAM, SOD2, and catalase were
also detected (125) suggesting that there was a selective advantage
to emerging tumors of increasing both mitochondrial biogenesis
and ROS scavenging. ALT+ tumors showed increased mitochon-
drial dysfunction and ROS, possibly as a result of transcriptional
inhibition of PGC-1a by p53 earlier in the pathogenesis of these
tumors (122).

In summary, evidence suggests that mitochondrial biogenesis
is tumor promoting by increasing metabolite and energy gener-
ation, and indeed biogenesis is positively regulated by the c-Myc
oncogene and repressed by the p53 tumor suppressor. However,
a different argument suggests that the production of new healthy
mitochondria may be tumor suppressive by promoting oxidative
metabolism, limiting ROS and HIF-a stabilization. Thus, whether
mitochondrial biogenesis promotes or limits cancer may depend
on context, such as tissue type, stage of tumor progression or on
specific exogenous stresses present in the microenvironment.

MITOPHAGY IN CANCER

Macro-autophagy is a catabolic process that plays a housekeep-
ing role in eliminating protein aggregates and malfunction-
ing organelles, such as mitochondria, and is also activated in
response to nutrient deprivation to provide energy (126-130).
The specialized form of autophagy in which mitochondria are
specifically targeted for degradation at the autophagolysosome
is known as mitophagy. Numerous studies indicate that mito-
chondrial fragmentation and mitochondrial membrane depolar-
ization precede mitophagy (64, 65, 131) and it has been sug-
gested that mitophagy and fusion are opposing fates of dys-
functional mitochondria (43). Mitochondrial fission is a major
source of depolarized mitochondria and conversely fusion is
selective for polarized and respiring mitochondria (131, 132). In
response to nutrient deprivation, healthy mitochondria are pro-
tected from mitophagy by mitochondrial fusion resulting from
PKA induced down-regulation of Drpl activity (64, 65) while
dysfunctional/depolarized mitochondria appear to be specifically
targeted for degradation possibly due to selective depletion of the

fusion protein Opa-1, that is proteolytically cleaved in response to
depolarization (133, 134).

Following on from fragmentation and depolarization, mito-
chondria are targeted to phagophore membranes through a grow-
ing number of mechanisms (Figure 5) including the Parkin/Pink1
gene products that are mutated in human Parkinson’s Disease (38)
as well as the BNIP3/NIX proteins that are hypoxia-inducible and
regulated by key tumor suppressors such as RB and p53 (135).

PARKIN AND PINK1 IN MITOPHAGY

PINK1 (Pten-induced putative kinase-1) is a serine/threonine
kinase that undergoes voltage-dependent proteolysis at the IMM in
healthy mitochondria but accumulates at the OMM in response to
depolarization (136, 137). PINK1 phosphorylates the fusion pro-
tein Mfn2 at the OMM and phosphorylated Mfn2 then acts as a
receptor for the E3 ubiquitin ligase Parkin (138) selectively recruit-
ing Parkin to damaged mitochondria from the cytosol (139, 140).
Parkin has a number of substrates at the OMM including its own
receptor, Mfn2 but also Mfn1, voltage-dependent anion channel
(VDAC), and Miro (38, 141, 142). These proteins are ubiquitinated
by Parkin and it was originally proposed that Parkin-mediated
ubiquitination of such proteins created a docking site for the
LC3-interacting protein p62/SQSTM1 (143-145) thereby linking
Parkin activity to mitochondrial degradation at the autophago-
some. However, it is now clear that a number of Parkin substrates
are targeted for degradation by the ubiquitin-proteasome system
independent of autophagy-mediated degradation (141). Further-
more, no single Parkin substrate has been shown to be required
for mitophagy (146) leading to the suggestion that Parkin pro-
motes mitophagy indirectly by either promoting fragmentation
(through degradation of Mfn1/Mfn2) or by removing a nega-
tive regulator of mitophagy from the surface of the mitochondria
(38, 141) (Figure 5). Alternatively, by promoting degradation of
mitochondrial proteins, Parkin may be inducing an imbalance in
mitochondrial versus nuclear-encoded proteins (particularly pro-
teins involved in respiration) that has been shown to induce the
mitochondrial unfolded protein response (UPR™!). This in turn
activates adaptive mitochondrial stress signaling that is reported
to improve “fitness” and promote longevity (147), so-called “mito-
hormesis” (123, 148, 149). Mitophagy along with mitochondrial
biogenesis may be part of such compensatory mechanisms needed
to restore mitochondrial function, although this has not been
properly examined.

In addition to promoting mitochondrial turnover through
increasing fragmentation, Parkin also modulates transport of
mitochondria along microtubules to a perinuclear region where
autophagosomes are concentrated (140, 146). This may be due
to Parkin-mediated turnover of Miro, a protein required to
tether kinesin motor protein complexes to the OMM (142).
Additionally, HDACS, a ubiquitin-binding protein deacetylase is
recruited to mitochondria by Parkin activity where it promotes
autophagosome-lysosome fusion and trafficking of mitochon-
dria along microtubules (144, 150). Interestingly, a more recently
discovered Parkin substrate termed PARIS represses mitochon-
drial biogenesis through transcriptional inhibition of PGC-la
expression (151), consistent with multiple roles for Parkin in
mitochondrial homeostasis. Clearly, there is still much to be
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A How does Parkin promote mitophagy?

1. Creates multiple docking sites for LC3?

2. Indirect effect by degrading Mfn2 and promoting fission?
3. Degrades a negative regulator of mitophagy?

4. Induces UPR™ by degrading mito proteins?

B How do BNIP3/NIX promote mitophagy?
1. Interacting with LC3 directly through defined LIR motifs?
2. Recruitment of Rheb to the mitochondria?
3. Indirect effect of inhibiting Opa1/promoting fission?

FIGURE 5 | Mitophagy pathways. Turnover of mitochondria at the
autophagosome (mitophagy) is required to maintain a healthy pool of
mitochondria. Defects in mitophagy result in accumulation of dysfunctional
mitochondria. Two major pathways have been identified that regulate
targeting of mitochondria to the autophagosome: (A) the Pink1/Parkin
pathway in which activation of Pink1 kinase following mitochondrial
depolarization leads to phosphorylation of Mitofusin by Pink1, that then acts
as a receptor for Parkin. Recruitment of Parkin, a E3 ubiquitin ligase, results in
ubiquitination of multiple mitochondrial substrates but how this leads to

mitophagy is still a matter for debate, and possible explanations for how
Parkin functions are highlighted in the inset box; (B) An alternative pathway
involves the activity of BNIP3 and NIX, both of which are hypoxia inducible but
also regulated by FoxOs, E2Fs, and p53. BNIP3 and NIX have both been
shown to interact directly with processed LC3 through a conserved LIR motif
in their amino terminal ends. This interaction has been proposed to explain
how BNIP3 and NIX target mitochondria to the autophagosome. Both BNIP3
and NIX are also known to interact with Rheb, and with Bcl-2/Bcl-X, but the
significance of these interactions for mitophagy are not clear.

understood about the significance of these interlinking func-
tions of Parkin/Pink1 in mitochondrial dynamics, mitophagy, and
biogenesis for cellular physiology.

Human Parkin has been mapped to a common fragile site at
chromosome 6q25-q26 that is found deleted in ovarian, lung, and
breast cancer (152) and Parkin mutant mice are susceptible to
spontaneous liver tumors (153). Parkin has also been shown to
promote lipid uptake by hepatocytes, by modulating turnover of
the fatty acid binding protein CD36. Further, Parkin null mice are
resistant to weight gain and insulin resistance induced by feeding
a high-fat diet (154). However, it is not clear whether this function
in lipid metabolism in the liver relates to the function of Parkin
in preventing liver tumors in mice. Parkin has also been identi-
fied as a p53 target gene and reported to prevent the Warburg
effect and promote oxidative metabolism, likely through effects
on mitochondrial integrity (155) providing another mechanism
to explain how Parkin functions as a tumor suppressor. However,
the role of Parkin as a tumor suppressor is at odds with data
suggesting that mitophagy is tumor-promoting and required to
maintain a healthy pool of mitochondria that are functional for

TCA cycle and other aspects of metabolism upon which tumor
cells depend for growth (156, 157). However, these latter studies
inhibited macro-autophagy generically, not just mitophagy, and
while the presence of abnormal mitochondria and defective mito-
chondrial metabolism suggested that defective mitophagy played a
partin the observed retardation of tumor growth, the contribution
of defects in turnover of ER, peroxisomes, or protein aggregates to
the tumor phenotype was not examined.

BNIP3 AND NIX IN MITOPHAGY AND MITOCHONDRIAL INTEGRITY

The hypoxia-inducible genes BNIP3 and NIX (also known as
BNIP3L) are also implicated in promoting mitophagy (135, 145,
158) (Figure 5). BNIP3 and NIX function as redox-resistant
homo-dimers at the OMM and their integration into the OMM
is dependent on dimerization. Both BNIP3 and NIX were orig-
inally thought to function as BH3-only proteins to promote cell
death (135) but more recent work indicates that the BH3 domain
in these proteins is weakly conserved and redundant for function
(159). Additionally, several normal tissues express these proteins at
high levels in the absence of cell death (160, 161) and it is now likely
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that additional signals/stresses are required for cell death associ-
ated with over-expression of either BNIP3 or NIX (162, 163). More
consistent with a role on the adaptive response to hypoxia (164),
both BNIP3 and NIX have been shown to promote mitophagy
through interactions with LC3-related molecules and to possess an
LC3-interacting region (LIR) at their unstructured amino-termini
(165, 166). Thus, it has been proposed that, similar to ATG32 in
yeast (167, 168), BNIP3 and NIX act as molecular adaptors target-
ing mitochondria directly to the autophagosome for degradation.
NIX has been shown to be required for mitochondrial clearance
from maturing reticulocytes (169, 170), while BNIP3 is involved in
modulating mitochondrial integrity through mitophagy in skeletal
muscle and liver (161, 171).

Interestingly, both BNIP3 and NIX interact with Bcl-2 and Bcl-
X, through their amino terminal 49 amino acids (172) suggesting
that binding of BNIP3/NIX to Bcl-2 or Bcl-Xp may interfere
with binding to processed LC3 that is dependent on an overlap-
ping LIR motif. While reducing mitochondrial mass in cells in
response to hypoxia seems likely to benefit the cell in terms of
preventing excess ROS generation when oxygen is limiting (164),
it is not clear whether the interaction of mitochondrial BNIP3
and/or NIX with processed LC3 at the autophagosome is a reg-
ulated interaction since not all mitochondria are turned over by
mitophagy under hypoxic conditions (173). It remains to be tested
whether additional events at the mitochondria, such as elevated
ROS, membrane depolarization, or indeed altered electron flux at
the respiratory chain modulates BNIP3/NIX structure to induce
interactions with LC3 or other proteins involved in mitophagy.
While not yet fully elucidated, it appears that in addition to
its role in regulating mitophagy through interactions with LC3-
related proteins, that BNIP3 may modulate OXPHOS and lipid
metabolism in additional ways that are relevant to understanding
tumor metabolism and disease (161, 174, Chourasia et al., under
review).

As is observed for mitophagy involving Parkin activity, BNIP3
associated mitophagy is preceded by mitochondrial fragmenta-
tion and perinuclear clustering of mitochondria under hypoxic
conditions (41, 173). Over-expression of exogenous BNIP3 pro-
motes mitochondrial fragmentation without necessarily inducing
mitophagy. This has been attributed to the inhibitory interaction
of BNIP3 with Opa-1 resulting in disruption of Opa-1 com-
plexes and cristae remodeling (175, 176). BNIP3 has also been
reported to induce translocation of Drpl to mitochondria and
over-expression of either Mfn1 or dominant negative Drpl inhib-
ited both mitochondrial fragmentation and mitophagy induced
by BNIP3 (56). This work also reported that BNIP3 induced
Parkin translocation to the mitochondria in a Drpl-dependent
manner. Similar to BNIP3, NIX has also been shown to promote
Parkin recruitment to mitochondria (177). Parkin recruitment in
this manner may reflect indirect effects of BNIP3/NIX on mito-
chondrial membrane potential and it remains to be determined
to what extent BNIP3 or NIX depends upon Parkin to promote
mitophagy.

BNIP3 has also been reported to interact with Rheb, a small
GTPase that acts positively upstream of mTOR to promote cell
growth (178). Similar to the interaction of BNIP3 with Bcl-2
and Bcl-Xp, (172), Rheb was reported to interact with BNIP3 in

a manner dependent on the transmembrane domain of BNIP3
consistent with Rheb only interacting with BNIP3 dimers at the
OMM. Rheb binding also required the 30 amino terminal residues
of BNIP3 (178) suggesting that Bcl-2 and Bcl-X; may modulate
the BNIP3-Rheb interaction although this has not been examined.
It was suggested that BNIP3 repressed Rheb activity resulting in
reduced mTOR activity and slower cell growth (178) but it is not
clear if this is consistent with the interaction of BNIP3 with Rheb
taking place exclusively at the OMM.

Interestingly, Rheb has recently been implicated in modulat-
ing mitophagy independent of mTOR in response to the altered
metabolic state of the cell (179). Growth of cells under condi-
tions that promote high levels of OXPHOS recruited Rheb to
the OMM where it was shown to interact directly with NIX and
with processed LC3. Furthermore, over-expression of Rheb in
cells promoted LC3 processing and increased mitophagy (179).
Intriguingly, this function of Rheb appeared to be independent
of mTOR activity but dependent on NIX expression (179). This
work suggested that NIX plays a role in recruiting Rheb to mito-
chondria under conditions of high OXPHOS leading to increased
mitophagy required to maintain a healthy pool of mitochondria
under high rates of oxidative metabolism. This contrasts with the
previous study showing a role for BNIP3 in repressing Rheb activ-
ity (178) and while it is possible that NIX functions distinctly from
BNIP3 with regards to regulation of Rheb, further work is needed
to reconcile these disparate findings.

Expression of both BNIP3 and NIX is tightly regulated. Both are
hypoxia-inducible HIF target genes (180, 181) although BNIP3 is
more readily induced by relatively small decreases in oxygen com-
pared to NIX that is only induced at much lower oxygen levels;
an observation that is attributed to the differential dependence of
BNIP3 and NIX expression on the two different transactivation
domains of HIF-1a (182-184). They both also show markedly
different tissue-specific patterns of expression with BNIP3 most
strongly expressed in heart, liver and muscle while NIX is expressed
strongly in hematopoietic tissues and in testes (160, 161). In addi-
tion to transcriptional regulation by HIFs, BNIP3 is regulated by
RB/E2Fs (173), NF-kB (185), FoxO3 (171), oncogenic Ras (186,
187), and p53 (188), while NIX is also regulated by p53 (189).

Both BNIP3 and NIX are deregulated in human cancer with
elevated expression of both genes detected at pre-malignant stages
of several different tumor types, but they appear to be down-
regulated upon progression to invasive and malignant cancers
(190-193). Epigenetic silencing of the BNIP3 promoter appears
to be the most common mechanism explaining down-regulation
of BNIP3 during malignant progression in lung, colorectal, hema-
tologic, liver, and pancreatic cancers (194-200) although genomic
deletion (201) and repression by specific microRNAs (202) has
also been reported. Knockdown of BNIP3 in the 4T07 orthotopic
mammary tumor model promoted tumor growth and metastasis
(203) while genetic targeting of BNip3 accelerated the growth and
metastasis of mammary tumors in the MMTV-PyVT mouse model
of breast cancer (Chourasia et al., under review), both results sup-
porting a tumor suppressor/metastasis suppressor function for
BNIP3. Thus, similar to effects of Parkin deletion, loss of BNIP3
appears to promote tumorigenesis in mouse models consistent
with a tumor suppressor function for mitophagy.
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ADDITIONAL LINKS BETWEEN MITOCHONDRIA AND AUTOPHAGY
Mitochondria contribute OMM lipids to nascent autophagosomes
(204) and autophagosomes form at the junction of mitochondria
with the ER (205). Given that ER associated with mitochondria
also regulates sites of mitochondrial fission (60), we postulate
that connections between the ER and the mitochondria may
be important in coordinating mitochondrial fragmentation with
autophagosome formation during mitophagy. Both BNIP3 and
NIX have been reported to localize to the ER as well as the
mitochondria (165, 206) but whether they are involved in such
coordination is not yet clear.

Inhibition of autophagy can to lead to apoptosis in part due to
accumulation of defective mitochondria that release cytochrome
¢ and activate the apoptosome (207). Autophagy and apoptosis
are coordinately regulated in part through modulation of Beclin-
1 activity by Bcl-2/Bcl-Xy, at the ER with Bcl-2/Bcl-Xy, inhibiting
autophagy by binding directly to Beclin-1 (208, 209). Conversely,
autophagy proteins have also been shown to function in apoptosis
with Atgl2 acting as a BH3-only protein to inhibit anti-apoptotic
Bcl-2 (210) while calpain cleavage of Atg5 induces a truncated
form of Atg5 that can bind to and inhibit Bcl-Xp (211). While
cleaved Atg5 promotes cytochrome c¢ release and apoptosis (211),
full-length Atg7 binds to p53 to prevent p53-dependent cell cycle
and cell death (212). Various signaling pathways modulate this
balance between autophagy and apoptosis. For example, starva-
tion — induced Jnkl signaling phosphorylates Bcl-2 disrupting
its interaction with Beclin-1 (209). Under conditions of oxida-
tive stress, nuclear HMGBI is released to interact with Beclin-1
displacing Bcl-2 to promote autophagy (213). Conversely, apop-
tosis is promoted at the expense of autophagy as a result of
calpain-mediated cleavage of key autophagy regulators, Atg5 and
Beclin-1 (211, 214) and caspase-3 cleavage of Beclin-1, Atg4D, and
GABARAPLI (215, 216).

UNANSWERED QUESTIONS ABOUT ROLE OF MITOPHAGY IN CELLULAR
METABOLISM AND CANCER

Currently it is not clear to what extent the two major
known mechanisms regulating mitophagy in mammalian cells
(PINK1/PARKIN and BNIP3/NIX) (Figure 5) are dependent on
each other or function independently. Interestingly, the mitophagy
defect observed in Nix null erythroblasts can be rescued by mito-
chondrial depolarization with CCCP (169) suggesting that dif-
ferent mitophagy mechanisms may be somewhat redundant and
explaining the lack of more severe phenotypes in mice genetically
deleted for Parkin, BNIP3, or NIX (154, 160, 217). Recent work
also identified a novel mechanism by which hypoxia promotes
mitophagy, through dephosphorylation of the FUNDCI protein
at the OMM (218). De-phosphorylated FUNDCI interacted with
LC3 through a conserved LIR motif in FUNDCI (218). This indi-
cates that additional mechanisms regulating mitophagy may yet
be discovered and suggest the existence of multiple redundant
pathways modulating mitochondrial turnover.

How much mitochondrial damage or dysfunction can be toler-
ated by cells, and for how long, without loss of viability, is an addi-
tional unknown. Nor is it clear how rapidly cells accumulate dam-
aged mitochondria once mitophagy is inhibited. The kinetics of
mitochondrial damage accumulation will likely vary from cell type

to cell type and in proportion to how much oxidative or metabolic
stress is imposed. Studies examining a specific defect in mitophagy
in adult liver in BNip3 null mice indicated that accumulation of
defective mitochondria increased over time explaining increasing
defects in cellular metabolism and lipid metabolism as the mice
aged (161). Initially, there was accumulation of lipid and defective
mitochondria in young mice, but over time increased hepatocyte
cell death was observed and the mice developed steatohepatitis
(161). Mitochondrial defects due to inactivation of mtDNA poly-
merase activity have been linked previously to aging (219, 220)
with mtDNA mutations early in development causing respiration
defects particularly in aging neural and hematopoietic progeni-
tor cells (221, 222). Some of the aging effects are likely due to
accumulation of ROS-induced mtDNA mutations in line with
the “free radical theory of aging” since mouse life span can be
increased and age-related phenotypes can be ameliorated through
over-expression of mitochondrial catalase (223, 224). However,
it remains to be determined to what extent defective mitophagy
affects aging and which specific tissues are more susceptible to
aging due to defective mitophagy. Clearly, since cancer is a disease
of old age, defective mitophagy may contribute to tumorigenesis
in an age-dependent manner. However, this remains to be formally
tested.

SIGNIFICANCE OF MITOPHAGY FOR CANCER TREATMENT?

The duality of macro-autophagy function in cancer (both pro-
and anti-tumorigenic, likely as a function of tumor stage, driving
oncogene, and/or tissue type) makes it clinically questionable to
generically target the entire autophagy process. However, a more
effective therapeutic response in terms of long-term cancer patient
survival may be possible by specifically targeting mitophagy. Inhi-
bition of mitophagy increases ROS production at the mitochon-
dria that may promote cell killing for at least a subset of tumor
cells. Because mitochondria in normal cells are less likely to be
dysfunctional and therefore less sensitive to mitophagy inhibition,
by inducing ROS indirectly, we may avoid potentially harmful
effects of supra-physiological ROS levels on normal cells. Further-
more, inhibition of mitophagy may disrupt fatty acid oxidation
and Krebs cycle at the mitochondria and preferentially disrupt
tumor cell growth that is also more dependent on mitochondr-
ial citrate production for lipid synthesis than are normal cells.
The combined effect of increased ROS and reduced mitochon-
drial metabolism arising from inhibition of mitophagy may be
synergistic and promote efficient tumor cell killing. An alter-
native approach may be to combine mitophagy inhibition with
drugs that induce other forms of mitochondrial stress signal-
ing, such as Metformin that inhibits respiratory chain complex
I or with antibiotics, such as tetracycline/doxcycline that inhibit
mitochondrial protein translation, thereby inducing a “mitonu-
clear” protein imbalance and a mitochondrial unfolded protein
response (UPR™") (147, 148) that might be predicted to depend
on mitophagy to clear damaged/dysfunctional mitochondria.

RETROGRADE SIGNALING FROM THE MITOCHONDRIA TO
THE NUCLEUS IN CANCER

While most mitochondrial proteins are encoded by the nuclear
genome and control of nuclear gene expression is key to
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FIGURE 6 | Types of mitochondrial dysfunction. \We have attempted to
define “mitochondrial dysfunction” in this review and the figure summarizes
the major types of mitochondrial dysfunction that are known.

(A) Mitochondrial inner membrane de-polarization (AW) during which there is
loss of membrane potential; (B) mitochondrial membrane permeability
transition (MPT) during which opening of the permeability transition pore
(consisting of VDAC, ANT and usually association of Cyclophilin D) can lead to
non-apoptotic cell death; (C) defective respiration/oxygen consumption due to
altered expression of respiratory chain components, poisoning with
respiratory complex inhibitors or many other stresses; (D) the Unfolded
Mitochondrial Protein Response (UPR™) can arise when there is an imbalance
in expression of mitochondrial encoded mitochondrial proteins relative to
nuclear encoded mitochondrial proteins, resulting in dysfunctional
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mitochondria; (E) damage to the mitochondrial genome most commonly
reported as a result of oxidative damage to bases arising from respiratory
chain defects; (F) defects in the production of iron-sulfur complexes in the
mitochondrial matrix leading to defects not just in respiratory chain
components but also other cellular enzymes; (G) release of cytochrome ¢
anchored at the inner mitochondrial membrane via cardiolipin can result in
formation of the apoptosome and activation of caspases leading to apoptosis.
Some of these aberrant mitochondrial behaviors are inter-dependent, for
example, membrane depolarization is a factor in mitochondrial permeability
transition, defective respiration, and apoptosis amongst other consequences,
but frequently can stand alone as a signal, for example to promote mitophagy.
The consequences for the cell of these different forms of mitochondrial
dysfunction are described in the text and below in Figure 7.

mitochondrial function, it is also clear that mitochondria signal to
the nucleus and such “retrograde” signaling is an area of increas-
ingly important investigation (26). Mitochondrial dysfunction
(Figure 6), defined as loss of membrane potential, defective respi-
ration, defects in synthesis of iron-sulfur clusters, and/or the mito-
chondrial unfolded protein response (UPR™), has been shown
to alter nuclear gene expression through a variety of different
mechanisms. For example, mitochondrial dysfunction can induce
genome instability due to defective iron-sulfur complex synthesis
in the mitochondrial matrix (225). Clearly, release of cytochrome
¢ signals mitochondrial dysfunction and leads to apoptosis that is
tumor suppressive, but short of inducing apoptosis, there are sev-
eral other mechanisms of mitochondrial stress signaling that affect
tumor cell growth. Altered metabolite levels, increased calcium
(Ca*") release from the mitochondria, elevated ROS production,

reduced production of ATP or NADH arising from altered metabo-
lism, changes in activity of mitochondrial kinases or other cellular
enzymes/proteins dependent on redox state, Ca®" levels or Fe/S
complexes are among several major mechanisms put forward to
explain how mitochondrial stress signaling affects nuclear gene
expression (Figure 7), as discussed below.

MITOCHONDRIAL CONTROL OF EPIGENETICS

Epigenetic control of nuclear gene expression is highly sensi-
tive to mitochondrial function (226, 227). For example, levels
of histone acetylation are regulated by availability of acetyl CoA
produced from citrate exported from the mitochondria (228).
In addition, fumarate, succinate, and other TCA cycle inter-
mediates produced at the mitochondria regulate nuclear gene
expression through effects on histone modifying enzymes, DNA
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FIGURE 7 | Retrograde signaling from mitochondria to nucleus. The
role of the nucleus in regulating mitochondrial function has been
examined extensively but the importance of mitochondrial events in
signaling to the nucleus and to other cell growth mechanisms has been
relatively under-studied. The figure summarizes some key signaling
consequences of dysfunctional mitochondria. (A) Mitochondrial control
of nuclear gene expression through effects of altered production of
certain metabolites, such as a-ketoglutarate and succinate, on epigenetic
modification of histones, stabilization of key transcription factors, such as
HIF, in addition to effects on other enzymes and proteins. (B) Altered
production of NAD*, ATR and other changes in mitochondrial metabolism
can modulate key signaling molecules in the cell, such as AMPK and the

A Mitochondrial Metabolite regulation of Gene Expression.
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Sirtuins. (C) Mitochondria play a key role in buffering against Ca?* flux
into the cytosol from the extra-cellular environment or following release
from the ER and failure of the mitochondria to execute this key function
can result in altered Ca?* signaling in the cell. (D) Mitochondrial ROS
production has been one of the most extensively studied mediators of
mitochondrial dysfunction and activity that elicits its effects on
transcription factor activity as well as activity of key enzymes in the cell,
such as caspases and phosphatases. (E) Important cellular kinases are
known to localize to the mitochondria and altered mitochondrial
dynamics and function may modulate the activity of these kinases not
just at the mitochondria but at other sub-cellular locations if released
from the mitochondria.

demethylases, prolyl-hydroxylases, and other cellular dioxygenase
enzymes (6, 13, 18, 226, 227, 229). Recent research progress in
this area has been fueled by evidence showing that human cancer
development is linked to mutations in genes encoding enzymes in
the TCA cycle, such as isocitrate dehydrogenase-1 (IDH1) and -2
(IDH2) in glioblastoma and AML (230-232), as well as in fumarate
hydratase (FH) and succinate dehydrogenase (SDH) in other rarer
malignancies (6). Mutation of these genes in cancer leads to a
buildup of their substrates; fumarate and succinate in the case of
FH and SDH mutations (6,226), or conversion of their regular sub-
strate to a new “oncometabolite” in the case of mutant IDH1/IDH2
converting isocitrate to 2-hydroxyglutarate (229, 231). Inhibition
of respiration through binding of the mitochondrial chaperone
TRAP1 to SDH also resulted in elevated succinate levels and
promoted tumor growth (233).

The key mechanism of action of these “oncometabolites”is their
ability to compete with the structurally related a-ketoglutarate, a

required co-factor for the afore-mentioned cellular dioxygenase
enzymes (234—237) resulting in reduced activity of these key cel-
lular enzymes. Amongst these enzymes are the prolyl-hydroxylases
that promote turnover of HIF-a subunits, the TET2 DNA
demethylase and the JmjC histone lysine demethylases (227, 229).
Thus, the downstream consequences of increased fumarate, suc-
cinate, or 2HG include the accumulation of HIF-a and increased
HIF target gene expression (235, 238), defects in collagen mat-
uration (239), as well as hypermethylation and altered histone
code due to disruption of epigenetic control of gene expression
(236, 240, 241). This in turn was linked to altered gene expression
patterns, defects in cellular differentiation and accumulation of
immature stem cells and progenitors in affected tissues that can
lead to cancer (240-244).

In addition to a role in inhibiting dioxygenases by competing
with a-ketoglutarate for reversible binding, fumarate and succi-
nate can also modulate cell growth by covalently modifying key
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signaling molecules. For example, elevated fumarate levels have
been shown to stabilize HIF by covalently reacting with glu-
tathione to produce an alternative substrate for glutathione reduc-
tase resulting in increased ROS production, as well as decreased
NADPH (245). Succinylation of cysteine residues in KEAP1 in
the cytosol results in activation of the NRF2 anti-oxidant path-
way and up-regulated expression of stress response genes, such as
heme oxygenase (246, 247). Similarly, succinylation of mitochon-
drial aconitase causes defects in iron-sulfur cluster binding (248).
Tumor cells can tolerate such defects in the TCA cycle brought
about by IDH1, FH or SDH mutation by redirecting the use of
metabolites. In particular, glutamine can be used to generate cit-
rate by reductive carboxylation (249, 250) or diverted to heme
biosynthesis and degradation, thereby partially restoring NADH
production and limiting accumulation of fumarate and succinate
(251). This latter pathway is up-regulated in FH mutant tumor cells
and inhibition of heme oxygenase specifically killed FH mutant
tumor cells suggesting a novel therapeutic approach to treating
cancers with FH mutation (251). Finally, the identification of novel
protein modifications, including malonylation, succinylation, and
butyrylation suggest the existence of novel regulatory pathways
that may be sensitive to mitochondrial metabolites (252). Clearly,
the more we understand about how metabolic pathways at the
mitochondria are deregulated in cancer, the more likely it seems
that we will identify novel signaling pathways that are aberrantly
activated by accumulation or alternate fates of specific metabolites.

EFFECTS OF MITOCHONDRIAL DYSFUNCTION ON CALCIUM
HOMEOSTASIS

Mitochondria play a critical role in buffering intracellular calcium
levels in part due to their localization close to calcium channels
in the ER, such as the inositol-1,4,5-triphosphate-sensitive chan-
nels [Ins(1,4,5)P3R] that release Ca?* from the ER in response to
inositol-1,4,5-triphosphate (253). Mitochondria located at such
microdomains of high Ca** concentrations rapidly take up the
released divalent cation through the VDAC at the OMM and the
mitochondrial calcium uniporter (MCU) at the IMM (253). While
Ca?*-binding proteins can buffer cytosolic Ca’* to some extent,
the quantity of Ca®* that the mitochondria can take up and buffer
against is significantly larger. While VDACs are readily perme-
able to Ca** at the OMM and interact with Ins(1,4,5)P3Rs at
the ER (254, 255), it has been suggested that levels and activ-
ity of VDAC may regulate the amount of Ca?" that crosses the
OMM (256). VDACs are subject to multiple levels of regulation
including expression levels, post-translational modification, and
protein—protein interactions all of which can limit Ca>* uptake.
Mitochondrial dysfunction results in increased cytosolic Ca2+,
since only energized mitochondria can take up Ca?* (253). Inter-
estingly, members of the Bcl-2 family localized at the ER can
modulate activity of the Ins(1,4,5)P3R and thereby regulate Ca>*
release and uptake by the mitochondria, with attendant effects on
mitochondrial function and apoptosis (257).

The failure of mitochondria to take up Ca?" effectively in
response to its release from the ER or influx through the plasma
membrane, directly affects mitochondrial activity. For example,
key mitochondrial enzymes, including several TCA cycle enzymes
are Ca?t modulated (254, 258). Also, changes in mitochondrial

matrix volume induced by altered Ca?t uptake impact the activity
of the ETC (258) and altered cytosolic Ca®* concentration affects
mitochondrial localization in the cell (259). Calcium inhibits
mitochondrial movement in the cell through regulation of Miro
(mitochondrial Rho GTPase), a Ca’t binding Ras-like small G
protein at the OMM that controls the interaction and movement
of mitochondria along microtubules (259).

Failure of mitochondria to take up Ca®* also results in aberrant
activation of cytosolic enzymes such as calpain proteases (260) and
Ca”*/calmodulin-dependent kinases (261) that can in turn alter
cellular signaling cascades with dramatic effects on cell growth
and viability leading to cancer (262). For example, mitochondr-
ial stress induced in cultured cells through depletion of mtDNA
(following growth in ethidium bromide) resulted in loss of mito-
chondrial membrane potential and elevated cytosolic Ca** levels
that in turn led to increased glycolysis, increased ERK1/ERK2 and
PKC activity (these enzymes are Ca’t dependent), and increased
tumor cell invasion associated with increased expression of cathep-
sin L and TGF-B (263, 264). Significantly, activation of calcineurin
protein phosphatase by increased cytosolic Ca** in this system
lead to dephosphorylation of IkBp, and activation of NF-kB, as
well as ATF2 and NFAT (265, 266). The pro-tumorigenic activities
of NF-kB are well documented and include promoting resistance
to apoptosis in addition to effects on cell migration and cell
metabolism, through effects on HIF-1a (267-269). In summary,
deregulated calcium homeostasis is one of the major consequences
for the cell of dysfunctional mitochondria (Figure 7) that can
result in dramatic changes in gene expression.

MITOCHONDRIAL REACTIVE OXYGEN SIGNALING MODULATES CELL
GROWTH AND DIFFERENTIATION

As already mentioned above, mitochondria are the major source of
cellular ROS and the contribution of ROS to mitochondrial stress
signaling in cell growth, cellular senescence, and differentiation is
significant (27, 29, 78, 270, 271). For example, ROS is required for
KRas driven tumorigenesis (272) and anti-oxidants that quench
ROS are anti-tumorigenic in certain systems (273, 274).

There are numerous mechanisms by which mitochondrial ROS
can alter cell signaling but one of the major consequences of
increased ROS and altered cellular redox state is the oxidation of
thiol groups in cysteine residues in relevant proteins (27, 275). For
example, the cysteine at the active site of caspases is inhibited by
ROS production (276) as is the cysteine at the active site of many
cellular phosphatases, including the Pten tumor suppressor (277),
the CDC25B oncogene (278), and MAPK phosphatases (279).

The other key mechanism by which mitochondrial ROS is
known to modulate cell signaling is through stabilization of HIF-
1 subunits (280-284), as a result of prolyl hydroxylase inhibition
(29). Increased HIF levels feed back to modulate mitochondrial
respiration through induction of target genes such pyruvate dehy-
drogenase kinase-1 (PDK1) that inhibits conversion of pyruvate to
acetyl CoA to feed the Krebs cycle and provide reducing agents for
OXPHOS (285, 286), as well as the LON protease that degrades the
regular COX4-1 subunit, and induction of COX4-2, an alternative
isoform of COX4, that allows more efficient oxygen utilization and
respiration under limiting oxygen conditions (287). NDUFA4L2,
an inhibitory subunit of ND/complex I, is also induced by HIF-1a
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and limits respiration and ROS production (288). HIF-1a also
protects cells from apoptosis associated with increased ROS, for
example through induction of molecules such as ATTA that main-
tains mitochondrial thioredoxin 2 in a reduced form required for
its anti-oxidant activity (289). Significantly, ATTA is up-regulated
in human glioblastoma (289). Mitochondrial ROS-induced stabi-
lization of HIF-a also explains in large part the pro-tumorigenic
effect of deleting key regulatory molecules, including SirT3 (118),
REDD1 (290), and BNIP3 (Chourasia et al., under review). Sta-
bilization of HIF either through effects on accumulation of TCA
cycle intermediates, as discussed above, or due to elevated mito-
chondrial ROS production, leads to increased angiogenesis, EMT, a
switch to glycolytic metabolism, and priming of the pre-metastatic
niche amongst many of the known tumorigenic effects of HIF
activity (291-296).

FoxO transcription factors are another key signaling compo-
nent in the response to elevated ROS levels and their induction
activates not only anti-oxidant responses (increased expression of
catalase and SOD2) but also cell cycle arrest and/or cell death (297,
298). For example, mitochondrial ROS in Drosophila as a result of
inhibition of mitochondrial respiration lead to activation of a G1
cell cycle arrest in part due to activation of FoxO transcription fac-
tors (299). Interestingly, by antagonizing c-Myc, FoxO3a has also
been shown to limit nuclear-encoded mitochondrial gene expres-
sion thereby limiting mitochondrial biogenesis under conditions
of oxidative stress (300-302).

Finally, the KEAP1-NRF2 anti-oxidant signaling axis is acti-
vated by increased ROS due to the redox sensitivity of KEAP1
(303, 304). KEAP1 normally binds to NRF2 in the cytosol and
promotes its degradation at the proteasome. ROS-induced dis-
sociation of KEAP1 stabilizes NRF2 allowing it to translocate to
the nucleus where it induces genes involved in quenching ROS
(303). NRF2 is also stabilized by accumulation of p62/Sqstml
that is often linked to defects in autophagy (305, 306). NRF2
stabilization promotes metabolic reprograming toward anabolic
pathways, such as nucleotide biosynthesis thereby promoting
tumor cell growth (307). NRF2 also promotes tumor cell survival
by limiting levels of damaging ROS and constitutive activation of
the KEAP1-NRF2 pathway has been detected in human cancers,
either through activating mutations in NRF2 or through inacti-
vating mutations in KEAP1 (308-310) and activation of NRF2 is
associated with poor prognosis and therapy resistance (311). As
a key regulator of mitochondrial biogenesis, as well as responses
to ROS and autophagy defects, NRF2 activity is thus intimately
linked to determining how the cell responds to mitochondrial
dysfunction in terms of cell growth and tumorigenesis.

It is important to consider however that ROS has a relatively
short diffusion distance in solution and thus mitochondrial ROS
signaling may rely on proximity of ROS-producing mitochondria
to their sites of action/targets. Intriguingly, perinuclear clustering
of mitochondria induced by hypoxia was associated with increased
nuclear ROS and was required for maximal HIF-1a DNA binding
and target gene (VEGF) expression (41). These observations sug-
gest that mitochondrial movement may play a role in allowing
mitochondrial ROS to signal more directly to the nucleus. Perin-
uclear mitochondrial hubs that form in response to hypoxia and
ROS (41) may also act to limit mitochondrial uptake of Ca** from

the ER or the plasma membrane, thereby spatially regulating the
effects of Ca>* signaling in the cell.

ALTERED MITOCHONDRIAL METABOLISM SIGNALING VIA AMPK AND
SIRTUINS

Defective oxidative metabolism and reduced ATP levels in cells
activate AMPK (312) and certain drugs are known to induce
AMPK as a result of inhibiting mitochondrial respiration, such
as Metformin that inhibits complex I of the ETC and resveratrol
that inhibits the FoF; ATPase (313). AMPK plays a key role in
mitochondrial homeostasis and while activated by mitochondrial
dysfunction, feeds back to promote both mitochondrial biogenesis
through activation of PGC-1a (314, 315) and mitophagy by acti-
vating ULK1 and inhibiting mTOR (316, 317), thereby improving
the overall “health” of the mitochondrial pool in cells.

In addition to AMPK, the sirtuins serve as metabolic sen-
sors of mitochondrial well-being due to their function as NAD+
dependent deacetylases (318). In particular, the mitochondrial
sirtuins (SirT3, SirT4, and SirT5) are sensitive to the mitochon-
drial pool of NAD+ that is in turn determined by metabolic
activity at the mitochondrion, with NAD+ levels increased by
OXPHOS and reduced by fatty acid oxidation. The best character-
ized mitochondrial sirtuin, SirT3 deacetylates a number of critical
enzymes involved in fatty acid metabolism (LCAD), the TCA cycle
(IDH2), and OXPHOS (SDHB, complex [, II, V) in addition to
cyclophilin D and UCP2 that modulate mitochondrial permeabil-
ity and electron flow respectively (318, 319). The cytosolic and
mitochondrial pools of NAD+/NADH are separate but can equi-
librate through transfer via the malate-aspartate shuttle and thus
mitochondrial metabolism may also influence nuclear and cytoso-
lic sirtuins. Interestingly, nuclear SirT1 promotes mitochondrial
biogenesis in response to nutrient deprivation through deacety-
lation and activation of PGC-1a (320), as discussed above, and
similar to AMPK, SirtT1 may also promote mitophagy in response
to nutrient deprivation through deacetylation of key autophagy
genes, including Atg5, Atg7, and Atg8 (321).

MITOCHONDRIAL LOCALIZATION OF KINASES INVOLVED IN STRESS
RESPONSE SIGNALING

Kinases known to play key roles in cellular stress responses have
been detected at the mitochondria, including AKT, GSK-38, PKA,
ABL, PKC, AMPK, SRC, ATM, and others (313, 322-328). While
substrates for some of these kinases at the mitochondria have been
identified, the significance of localization of some of the other
kinases is less clear.

AKT is a major growth promoting kinase that acts by inhibit-
ing apoptosis in the presence of glucose and by activating mTOR
(329). AKT also promotes glycolysis by phosphorylating hexoki-
nase II (HKII) and promoting its interaction with VDAC at the
mitochondria (328). HKII is required for tumor initiation and
maintenance in mouse models (330). Failure of HKII to inter-
act at the mitochondria with VDAC results in apoptosis (328), and
thus, AKT plays a role in coupling mitochondrial metabolism with
cell viability.

AKT also phosphorylates and inactivates GSK-3p a cellu-
lar kinase that localizes to the mitochondria under certain cir-
cumstances. Mitochondrial GSK-3f phosphorylates MCL-1 and
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VDAC amongst other mitochondrial targets (325,331, 332). GSK-
3P mediated phosphorylation of MCL-1 promoted its degradation
and increased apoptosis (331), while phosphorylation of VDAC by
GSK-3f resulted in increased mitochondrial membrane perme-
ability, again predisposing to apoptosis (325, 333). Interestingly,
GSK-3f also phosphorylates Drpl resulting in elongated mito-
chondrial morphology that mitigates against cell death (334). This
suggests that GSK-3f activity (either pro- or anti-apoptotic) is
modulated by mitochondrial stress, although the precise mecha-
nism of such a regulatory switch at the mitochondria is unclear.
Obviously, GSK-3 is also known to phosphorylate and promote
the proteasomal degradation of c-Myc, cyclin D1, and B-catenin
(335-338) and thus one may postulate that activities of GSK-3p at
the mitochondria influence nuclear oncogene activity. This would
represent a novel perspective on retrograde signaling from the
mitochondria to the nucleus.

Other kinases located at the mitochondria include PKA that
associates with the mitochondria via adaptor molecules such as
Rab32 and other A-kinase AKAPs (322, 339, 340) where it has
been shown to phosphorylate VDAC (323), Drpl (72), and other
mitochondrial proteins. Localization of PKA to the mitochon-
dria via AKAPs is subject to regulation by hypoxia and other
physiological stresses (72, 341). For example, hypoxia destabilizes
AKAPI121 through induction of SIAH2, a mitochondrial ubig-
uitin ligase, thereby limiting oxidative capacity under conditions
of low oxygen. Interestingly, AKAP121 also appears to promote
mitochondrial localization of SRC-tyrosine kinase (342) where
SRC appears to regulate CO activity and respiratory activity (342,
343), and other mitochondrial substrates for SRC family kinases
are likely (344).

Association of protein kinase C-delta (PKC3) with the mito-
chondria is induced by increased ROS (327) and this is turn
recruits other signaling molecules, including the ABL tyrosine
kinase that is associated with loss of membrane potential and
non-apoptotic cell death (326). Again, whether these important
kinases also play a role in mitochondrial function and signaling
independent of cell death is not clear.

The localization of AMPK to the mitochondria is likely linked
to its ability to modulate mitochondrial metabolism. Acetyl CoA
carboxylase-2 (ACC2) is a well-established AMPK target that
localizes to the OMM where it regulates lipid metabolism by con-
trolling production of malonyl CoA (313). Inhibition of ACC2
(and ACC1) by AMPK boosts NADPH homeostasis under energy
crisis and promotes tumor cell survival, anchorage independent
growth, and tumor formation in vivo (345).

Finally, mitochondrial uncoupling activates ATM kinase, a frac-
tion of which was shown to be located at the mitochondria (346).
Loss of Atm in genetically engineered mouse models led to mito-
chondrial dysfunction suggesting the presence of a feedback loop,
although the key substrates of ATM kinase in modulating mito-
chondrial homeostasis are not known (346). Of note, it has been
reported that p53 tumor suppressor expression is sensitive to
inhibition of mitochondrial respiration by unknown mechanisms
(347) but whether p53 is the key substrate of mitochondrial ATM
in mitochondrial stress signaling has not been examined.

In summary, there are numerous ways in which the mito-
chondria signals to the nucleus (Figure 7) and the consequences

of mitochondrial dysfunction can therefore impact cell growth
significantly.

ONCOGENIC CONTROL OF MITOCHONDRIAL FUNCTION

A growing number of tumor suppressor genes and oncogenes are
being investigated for their ability to regulate mitochondrial func-
tion either through effects on the expression and/or activity of
components of the ETC or other key metabolic enzymes at the
mitochondria or through effects on mitochondrial biogenesis and
mitophagy. Some more recent findings in this area of seminal inter-
est about two key tumor suppressors (p53 and RB) and two key
oncogenes (Myc and KRas) and how they modulate mitochondrial
function and metabolism are discussed here.

THE p53 TUMOR SUPPRESSOR REGULATES MITOCHONDRIAL
FUNCTION AT MULTIPLE LEVELS

The p53 tumor suppressor gene is the most commonly mutated
gene in human cancer with inactivating mutations found in its
DNA binding domain that result in loss of its normal tran-
scriptional properties with gain of dominant negative or novel
functions frequently the result (348, 349). Many of the tumor
suppressor functions of p53 are attributed to its role as a transcrip-
tional regulator of nuclear-encoded genes in response to stresses
such as DNA damage, nutrient deprivation, and aberrant oncogene
activity (350). The outcome of activating normal p53 in response
to these stresses is induction of downstream target genes, such as
p21Y*f! that induces a G1 cell cycle arrest or induction of pro-
apoptotic genes like Puma and Bax (350, 351). While p21Waf! s
key to the ability of p53 to induce growth arrest (352), there are
numerous downstream effectors of p53-induced apoptosis (350),
including p53 itself (353, 354).

In recent years, the ability of p53 to regulate cell growth
processes, other than proliferation or apoptosis, has emerged,
including roles for p53 in modulating expression of genes involved
in mitochondrial biogenesis (through repression of PGC-1a),
autophagy (355, 356), and mitochondrial metabolism (356, 357)
(Figure 8). P53 indirectly affects mitophagy and mitochondr-
ial quality control through induction of genes that regulate
autophagy, such as Dram and Atg7 (355, 356). Recent work has
identified a role for p53 in limiting the accumulation of damaged
mitochondria in cancer by enforcing a growth arrest. Specifically,
loss of Atg7 in KRas driven lung cancers caused accumulation
of damaged mitochondria, defective fatty acid oxidation, and a
growth arrest that retarded tumor growth (157). Inactivation of
p53 alleviated growth arrest to some extent, although autophagy
deficient tumor cells were unable to mobilize lipid stores and
tumors continued to grow more slowly than control tumors that
were functional for autophagy (157). Nevertheless, these results
are consistent with a role for p53 in sensing defects in autophagy
and/or mitochondrial function. Indeed, p53 may act more directly
to modulate autophagy and responses to defects in autophagy
(358) by interacting with Atg7 (212).

p53 also regulates expression of genes encoding regulators of
the ETC [such as CO/Sco2 (359)], TCA cycle enzymes [such as
malic enzymes ME1/ME2 (360)] in addition to modulators of glu-
cose metabolism [such as HKII and specific glucose transporters
(357)], and the pentose phosphate pathway [such as TIGAR (361)]
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significant tumor related genes in the human genome, have been shown to
modulate several different aspects of mitochondrial function and in some
instances, this has been shown to be key to their role in cancer, as
discussed in greater length in the text.

in the cytosol. This transcriptional activity of p53 in metabolism
has major significance for cell growth. For example, suppres-
sion of malic enzymes by p53 results in markedly lower NADPH
production required for lipid synthesis and glutaminolysis (360).

P53 has been reported to be induced by AMPK through phos-
phorylation on serine 15 in response to nutrient stress resulting
in a starvation-induced growth arrest (362) although it has been
pointed out that the AMPK phosphorylation site in p53 (serine
15) is a weak AMPK consensus site (313) and thus perhaps that
effects of AMPK activation on p53 are indirect. Given that ser-
ine 15 phosphorylation modulates the interaction of p53 with
MDM2 to promote p53 degradation, reduced activity of AKT
under nutrient deprivation resulting in lower nuclear MDM2 lev-
els [AKT promotes nuclear localization of MDM?2 and inhibits its
interaction with pl19/ARF (363)] may be a more likely explana-
tion for increased levels of p53 in response to starvation. Never-
theless, p53 is induced by nutrient deprivation and its activity
limits glycolysis and promotes OXPHOS, and indeed p53 null
mice exhibit deficiencies in respiration and exercise performance
(359).

In addition to these important functions as a transcrip-
tional activator of genes that modulate mitochondrial turnover
and metabolism at the mitochondria, p53 also plays a direct
non-transcriptional role at the mitochondria. P53 has been
detected at the mitochondria itself where it has been reported
to promote cytochrome ¢ release and apoptosis (353, 354).
Specifically, mitochondrial p53 can function as a BH3-only
protein that interacts with anti-apoptotic Bcl-2 and Bd-Xp
potentiating the pro-apoptotic activity of Puma, a target of
nuclear p53 (364). More recently, mitochondrial p53 has
been shown under conditions of oxidative stress to inter-
act directly with cyclophilin D in the mitochondrial matrix.

P53 uptake by mitochondria was dependent on mitochondrial
membrane potential and interaction with mitochondrial chap-
erones (365). This resulted in opening of the mitochondrial
permeability transition pore and induction of necrosis (365)
that was not mitigated by nuclear functions of p53 in anti-
oxidant gene expression induction (sestrins, glutathione per-
oxidase) but was blocked by cyclosporine-A, an inhibitor of
cyclophilin D. Thus, p53 functions not just as a “guardian of
the genome,” but also as a guardian of mitochondrial integrity and
function.

MODULATION OF MITOCHONDRIAL METABOLISM AND CELL VIABILITY
BY THE RB TUMOR SUPPRESSOR

The RB tumor suppressor gene is commonly deleted in human
retinoblastoma, osteosarcoma, and small cell lung carcinoma, but
other genes upstream in the RB pathway, including p16/INK4A
(CDKN2A) and Cyclin D1 (CCND1) are more commonly dereg-
ulated in human cancer than the RB tumor suppressor gene itself
(366, 367). Indeed some cancers maintain functional RB at late
stages in disease progression (368, 369) and it is not yet clear what
the selective pressures are to maintain functional pRB at late stages
of some tumor types but not others.

The RB tumor suppressor is considered primarily as a regu-
lator of cell cycle checkpoints and induces a G1 arrest through
repression of E2F transcription factors in response to numer-
ous stresses, including growth factor deprivation, DNA damage,
and hypoxia (370, 371). The role of pRB in establishing a cell
cycle arrest has also been key to our understanding of how pRB
promotes both cellular senescence (372, 373) and terminal differ-
entiation (374-379). pRB/E2F complexes have also been shown to
regulate genes involved in programed cell death, such as caspase-3,
P73, and Apafl (380).
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In addition to regulating genes involved in cell cycle control
and cell death however, there has been over the past decade a
growing appreciation that pRB and E2Fs together can modu-
late genes involved in metabolism and mitochondrial homeostasis
(381), including BNIP3 (173), pyruvate dehydrogenase kinase 4
(382), as well as other mitochondrial genes (383). Recently, a
role for RB in inhibiting glutaminolysis has emerged from stud-
ies in mammalian cells (83) and from metabolomic analyses in
Drosophila (82). pRB was shown to repress expression of the glu-
tamine transporter, and glutaminase-1 (83) and loss of RBF1 in
flies led to metabolic reprograming such that glutamine flux to
glutathione was increased and RBF1 deficient flies were more sen-
sitive to oxidative stress (82). Thus RB/E2Fs are now considered
to be significant modulators of cellular metabolism, although the
relevance of these functions to the role of RB as a tumor suppressor
in vivo remains to be determined.

Given the canonical role of RB/E2Fs as transcriptional regula-
tors, it is not surprising that until recently attention was focused
on effects of RB loss on expression of E2F regulated metabo-
lism and mitochondrial genes (383, 384). However, like p53, pRB
has also now been detected at the mitochondria (385, 386). pRB
was shown to interact with and conformationally activate Bax to
induce apoptosis (386), a function consistent with its role as a
tumor suppressor. However, it remains to be seen whether other
functions for pRB at the mitochondria can be determined that
may explain the unexplained dependence on functional pRB at
late stages of certain cancers (368, 369).

OVER-EXPRESSION OF c-MYC IN CANCER PROMOTES DEPENDENCE
ON FUNCTIONAL MITOCHONDRIA

The c-Myc oncogene is over-expressed in over 70% of all human
cancers where it functions as a transcriptional regulator of genes
involved in cell cycle (p21"2f1, cdc25A, Cdk4, cyclin D2), cell death
(Bim, p53), replicative senescence (Tert, Bmil) (387), genome
stability [BRCA1/2, MUTS (388, 389), protein translation (riboso-
mal RNAs) (390)], cell adhesion (collagen, fibronectin, integrins)
(391), angiogenesis (thrombospondin) (392), the tumor microen-
vironment (393), mitochondrial biogenesis (PGC-18) (115), mito-
chondrial function (VDAC), and metabolism (glutaminase, lactate
dehydrogenase-A/LDHA) (81, 394).

Myc-driven tumors regress rapidly when Myc is inhib-
ited/turned off, as demonstrated in elegant switchable mouse
models (395) and it has also been recently reported that KRas
driven lung tumors are also dependent on Myc activity (396), high-
lighting the importance of c-Myc as a driving oncogene (81) and
emphasizing the importance of how tumors become “addicted”
to Myc. Induction of glutaminolysis at the mitochondria is a key
factor explaining how tumors become “addicted” to Myc (80).
Myc induces expression of key enzymes in glutaminolysis such as
glutaminase (through repression of miR23a/b) (397) and ACST2
(the glutamine transporter) (80). Thus, Myc expressing tumors
are dependent on glutamine as an anapleurotic source of car-
bon for the TCA cycle, as a source of nitrogen for nucleotide
biosynthesis, to produce ATP and to generate lipids via reduc-
tive carboxylation at the mitochondria (249, 250). Withdrawal
of glutamine causes Myc-driven tumor cells to apoptose (398,
399) and this is now being exploited for therapeutic purposes, as

recently reported for N-Myc-driven neuroblastomas (400). A syn-
thetic lethal screen identified Myc regulated molecules required to
support glutaminolysis in c-Myc-driven tumors (401). Specifically,
Myc was shown to induce expression of AMPK-related kinase 5
(ARK5) thereby promoting increased mitochondrial respiratory
chain capacity required for glutaminolysis. Significantly, inhibi-
tion of ARKS led to apoptosis of Myc-driven tumor cells (401),
again with important therapeutic implications.

In addition to glutaminolysis, Myc regulates glucose metabo-
lism by inducing expression of key glycolytic enzymes, including
LDHA, HKII. Glycolysis is important in tumors not just as a low
level source of ATP but also to provide precursors for biosyn-
thetic pathways, including serine and nucleotide biosynthesis,
and Myc promotes biosynthetic processes through induction of
carbamoyl phosphate synthase, aspartate transcarbamylase, dihy-
droorotase (CAD), and ornithine decarboxylase (ODC) among
other genes (81). Like Myc, HIF-1a also promotes glycolysis by
inducing expression of glycolytic enzymes and when Myc expres-
sion is deregulated in cancers due to translocation or amplification,
Myc, and HIF-1a cooperate to regulate glucose metabolism. How-
ever, hypoxia induces a growth arrest in normal cells and when
Myc is expressed at normal levels in cells (not amplified or translo-
cated), HIF-1a antagonizes Myc by displacing it from complexes
with Max, by inducing Mxi-1, a repressive binding partner of Myc
and by promoting Myc protein degradation at the proteasome
(115, 296, 402). In this way, HIF-1a uncouples glycolysis from
biosynthesis under hypoxic conditions and promotes mitophagy
at the expense of biogenesis. By contrast, HIF-2a synergizes with
Myc to stabilize Myc-Max dimers and to promote Myc target gene
expression, cell growth, and genome stability (296, 388), although
HIF-2a expression is more tissue restricted.

In summary, by increasing mitochondrial mass through induc-
tion of mitochondrial biogenesis (117) and promoting gluta-
minolysis at the mitochondria (80) (Figure 8), Myc oncogenes
make tumors more dependent on mitochondrial function, not
less. This may suggest that Myc-dependent tumors would be more
susceptible to defects in mitophagy, mitochondrial fusion, or other
key processes required for mitochondrial quality control.

ACTIVATION OF KRas

Activated KRas is one of the most prevalent oncogenic events in
cancer of the pancreas, lung, and small intestine (403). In pancre-
atic cancer, activated KRas is linked to reprograming of tumor
metabolism both through increased glycolytic flux to lactate,
hexosamine biosynthesis, and non-oxidative pentose phosphate
pathway (404). Also, KRas induces up-regulation of an alter-
native glutaminolysis pathway that converts glutamine-derived
aspartate to oxaloacetate in the cytosol allowing pancreatic tumor
cells to buffer against ROS through increased glutathione pro-
duction (405). These results indicate that KRas driven tumors
have evolved to be independent of mitochondrial metabolism
(since both glycolysis and the alternative use of glutamine take
place in the cytosol). However, other work points to a critical
role for autophagy in KRas driven tumorigenesis by promoting
mitochondrial metabolism (156, 157) suggesting that mitochon-
drial function is required for KRas tumorigenesis. It was suggested
that KRas activation causes mitochondrial dysfunction, including
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increased ROS and reduced OXPHOS (406) but these studies
were performed using a doxycycline inducible system that by itself
induces mitochondrial dysfunction due to inhibition of mitochon-
drial protein synthesis and the UPR™", Cells expressing activated
KRas do exhibit reduced respiration associated with decreased
expression of components of complex I of the respiratory chain
(407) and activation of KRas does lead to increased c-Myc protein
stability (408) suggesting that some alterations in mitochondr-
ial function associated with KRas activation are in fact driven by
increased levels of c-Myc.

CONCLUSION

As the major energy and metabolite source in the cell, it stands
to reason that mitochondrial function is deregulated in cancer
and there is growing interest in understanding how altered mito-
chondrial function may be targeted to inhibit tumor growth.
Emerging data identifies key oncogenes and tumor suppressors
as modulators of different aspects of mitochondrial metabolism
and dynamics. Interestingly, different tumor types may be more or
less sensitive to modulation of mitochondrial function depending
on which oncogenic lesions drive that tumor type. This is a new
and exciting avenue in the continued “war on cancer.”
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