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Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and the fifth
most common cause of female cancer death in the United States. Although important
advances in surgical and chemotherapeutic strategies over the last three decades have
significantly improved the median survival of EOC patients, the plateau of the survival
curve has not changed appreciably. Given that EOC is a genetically and biologically hetero-
geneous disease, identification of specific molecular abnormalities that can be targeted in
each individual ovarian cancer on the basis of predictive biomarkers promises to be an effec-
tive strategy to improve outcome in this disease. However, for this promise to materialize,
appropriate preclinical experimental platforms that recapitulate the complexity of these
neoplasms and reliably predict antitumor activity in the clinic are critically important. In this
review, we will present the current status and evolution of preclinical models of EOC, includ-
ing cell lines, immortalized normal cells, xenograft models, patient-derived xenografts, and
animal models, and will discuss their potential for oncology drug development.

Keywords: epithelial ovarian cancer, high-grade serous, preclinical models, personalized therapy, cell lines,
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INTRODUCTION
Epithelial ovarian cancer (EOC) is the most lethal gynecologic
malignancy and the fifth most common cause of female cancer
death in the United States (1). Advanced stage at diagnosis for
most women with this cancer and emergence of resistance to con-
ventional chemotherapy are primarily responsible for this dire out-
come. Although important advances in surgical and chemother-
apeutic strategies over the last three decades have significantly
improved the quality of life and median survival of EOC patients,
the overall cure rate has not improved appreciably (2–5). EOC
is a genetically and biologically heterogeneous disease and is tra-
ditionally divided into two types (types I and II) with distinct
genotypic and phenotypic characteristics which are summarized
in Table 1 (6–8). Type I tumors frequently harbor somatic muta-
tions in KRAS, BRAF, PIK3CA, PTEN, CTNNB1, and ARID1A
genes, and exhibit low genomic instability without genome-wide
copy number changes (9) while type II tumors are characterized
by high degree of genomic instability with high frequency of DNA
copy number changes and p53 mutations (6, 7, 10).

High-grade serous carcinomas (HGSCs) represent the most
common type II histologic subtype and account for approxi-
mately 70% of all EOCs. These tumors exhibit histological features
that are identical to those of primary peritoneal and fallopian
tube serous cancers and are treated similarly to these neoplasms.
A number of molecular studies and most recently The Cancer
Genome Atlas (TCGA) project have shown that HGSCs are char-
acterized by frequent genetic and epigenetic alterations in gene
members of the homologous recombination (HR) DNA repair
pathway, including the BRCA1 and BRCA2 genes (10). Further-
more, the NOTCH, FOXM1, RB, and PI3K/RAS signaling path-
ways have also been implicated in the pathogenesis of HGSCs

(10). These important advances in our understanding of the mol-
ecular pathogenesis and heterogeneity of EOC hold promise for
the development of novel therapies against these tumors. However,
for this promise to materialize, appropriate preclinical experimen-
tal platforms that recapitulate the complexity of these neoplasms
and reliably predict antitumor activity in the clinic are critically
important. In this review, we will discuss the current status and
evolution of preclinical models of EOC focusing on their potential
for oncology drug development.

CELL LINES
Historically, ovarian cancer cell lines have been the most frequently
used tumor models to prescreen experimental anticancer agents
in vitro and to select specific histologic subtypes of EOC for fur-
ther exploration of these agents. These cell lines have undergone
a high degree of evolutionary selection pressure in vitro as they
have been in passage for several years (or even decades in some
cases). As a result, their genomic profiles have been irreversibly
altered and rarely recapitulate the genetic and pathologic char-
acteristics of the parental cells (11–13). Furthermore, cancer cell
lines lack the molecular heterogeneity of the parental tumor and
are molecularly skewed toward affinity to grow in monolayers.

In a recently published study, Domcke and colleagues used
available molecular profiles (copy number changes, mutations,
and mRNA expression profiles) of cell lines from the Cancer Cell
Line Encyclopedia (CCLE) and of tumor samples from the TCGA
to evaluate the suitability of 47 EOC cell lines as in vitro models
of HGSCs (14). The investigators showed significant differences
in the molecular profiles between commonly used EOC cell lines
and HGSC samples and reported that the presumed histologic
subtype for several of these cell lines did not correspond to their
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Table 1 | Molecular and clinical characteristics of EOC subtypes.

Histology Type Molecular characteristics Clinical characteristics

Low grade serous

carcinoma

I KRAS, BRAF mutations Frequently arise from serous cystadenoma-borderline sequence
Relatively indolent growth

Poor response to platinum based chemotherapy

Low grade endometrioid

carcinoma

I CTNNB1, PTEN, PIK3CA, and KRAS mutations Frequently arise from endometriosis
Microsatellite instability Relatively indolent growth

Association with HNPCCa

Poor response to platinum based chemotherapy

Clear cell carcinoma I PIK3CA, ARID1A mutations May arise from endometriosis

MET amplification Association with HNPCCa

Worse prognosis and response to platinum based chemotherapy

Mucinous carcinoma I KRAS mutations May arise from cystadenoma-borderline sequence

HER2 amplification

High-grade serous and

high-grade endometrioid

carcinoma

II P53 mutations (almost universal), BRCA1,

BRCA2 mutations

May arise from fallopian tube intraepithelial carcinoma (TIC)

Association with HBOCb

Genomic instability and very high degree of

somatic copy number alterations

Rapid growth

Very good response to platinum based chemotherapy

aHNPCC, hereditary non-polyposis colorectal cancer syndrome due to germline mutations in mismatch repair genes.
bHBOC, hereditary breast ovarian cancer syndrome due to germline BRCA1 or BRCA2 mutations.

molecular profiles. Of note, the two most frequently used cell lines,
SKOV3, and A2780 were deemed unsuitable as HGSC models,
while other rarely used cell lines such as KURAMOCHI, OVSAHO,
and SNU119 closely resembled the molecular profiles of HGSC
samples. Interestingly, the suitability of these cell lines as HGSC
models did not correlate with time of their derivation suggesting
that number of passages may not correlate with model suitability.
Among the cell lines deemed most suitable to use as HGSC mod-
els, three cell lines harbored BRCA mutations i.e., KURAMACHI
(BRCA2), COV362 (BRCA1), and JHOS2 (BRCA1) and therefore
may be useful as in vitro models for BRCA-associated EOC.

This study may provide molecular explanation for the chal-
lenges of translating preclinical observations from ovarian cancer
cell lines into the clinic, a problem that is not unique to ovarian
cancer but transcends multiple tumor types (14, 15). However, this
study also highlights that certain EOC lines may still hold value as
HGSCs models and underscores the importance of evaluating and
screening them to confirm their origin and molecular resemblance
with HGSC. This is now feasible given the increasing availability of
large scale genomic data from studies such as the TCGA, the CCLE,
and the Sanger Cancer Cell Line project (10, 16). Cell line mod-
els whose molecular identity has been confirmed using targeted
sequencing and copy number profiling may be extremely valuable
as preclinical models, particularly those with well defined molec-
ular alterations such as BRCA1/2 or PI3K mutations in order to
assess the potential of experimental drugs in patient populations
with specific molecular alterations. In this regard, the promise of
PARP inhibitors in the management of BRCA-deficient EOC was
first realized in BRCA1/2 deficient cell lines (17, 18). In the era
of advanced molecular profiling, using cell lines with molecular
similarities with patient samples may increase the possibility that
in vitro observations will be eventually translatable to the clinic.

IMMORTALIZED NORMAL CELLS AND STEM CELLS
Several investigators have reported isolation, in vitro propagation
and immortalization of human ovarian surface epithelial (OSE)
and fallopian tube epithelial (FTE) cells which are considered
the cells of origin of ovarian carcinomas. Retroviral transduc-
tion of either the human papilloma virus E6/E7 oncogenes or
the simian virus 40 T-Antigen (SV40-TAg) in human OSE cells
leads to increased and sustained proliferation even after multi-
ple passages but does not induce transformation (19, 20). For
immortalization to occur, additional retroviral constructs target-
ing TP53, hTERT, or RB are required (21, 22). Besides retroviral
transduction, RNA interference technology has been successful
in immortalizing human OSE cells as exemplified by the work
of Yang and colleagues who successfully immortalized OSE cells
via siRNA knockdown of p53 and Rb (23, 24). As with human
OSE cells, Karst and colleagues immortalized normal human FTE
cells via retroviral transduction of hTERT and either of SV40-
TAg or an shRNA targeting p53 and mutant CDK4R24C, while
transformation occurred via further ectopic expression of either
MYC or HRAS oncogenes (25). When injected in immunocom-
promised mice, these cells developed tumors resembling HGSCs
both histologically and clinically. Shan and colleagues used a
similar approach of hTERT and SV40-TAg overexpression for
immortalization and of additional ectopic HRAS expression for
transformation of human FTE cells while similar results have been
reported by Jazaeri and colleagues (26, 27).

Although presence of ovarian cancer stem cells has been
reported, definite characterization of these cells is still lacking (28).
Furthermore, the stem cell niche of the OSE which regenerates
after each ovulation has not been determined. There have been
several reports of ovarian cancer stem cells isolation which have
been based on markers and protocols used to define stem cells in
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other tumors including leukemia, colon, and breast cancers (29–
31). In a seminal study, Flesken-Nikitin and colleagues proposed
that the hilum region of the mouse ovary is a stem cell niche
of the OSE (32). Specifically, the investigators showed that hilum
cells express stem cell markers ALDH1, LGR5, LEF1, CD133, and
CK6B, display long-term stem cell properties ex vivo and in vivo
and exhibit increased transformation potential after inactivation
of TP53 and RB1.

XENOGRAFTS
Xenograft models have been extensively used in ovarian can-
cer research and are still very important experimental plat-
forms for preclinical drug development (33–36). These models
require use of immunodeficient mice strains, i.e., athymic nude
mice lacking T lymphocytes, severe combined immunodeficient
(SCID) mice which lack functional B and T lymphocytes, or
the NOD/SCID/IL2Rγnull mice which also exhibit inactive innate
immunity due to abrogation of maturation of natural killer (NK)
T cells (37). The requirement of immunodeficiency has often been
cited as one of the main reasons why xenografts have shown limited
predictive value in the clinic (38, 39). Specifically, tumor xenografts
in immunocompromised mice cannot recapitulate either the con-
tributions of immune factors on tumor development and pro-
gression or the extensive interactions of the human host tumor
microenvironment (stroma, extracellular matrix, and vasculature)
with the tumor cells.

Traditionally, xenograft models rely on implantation of estab-
lished EOC cell lines subcutaneously, intraperitoneally, or ortho-
topically. Subcutaneous implantation offers the advantage of easy
quantification of tumor volume which is ideal for assessing antitu-
mor efficacy of experimental agents,but rarely results in ascites for-
mation or intraperitoneal (IP) seeding of the tumor, and thereby
fails to reflect the clinical course of human EOC. Conversely, IP
and orthotopic implantation (OI) frequently result in peritoneal
carcinomatosis and development of malignant ascites. The most
commonly used xenograft model in ovarian cancer was developed
by IP injection of a subpopulation of the drug resistant cell line
NIH:OVCAR-3 (40) (isolated by serial in vitro and in vivo selec-
tion of cells) into athymic mice which resulted in development
of ascites and peritoneal carcinomatosis (33). The NIH:OVCAR-3
cell line has been molecularly ranked as possibly of HGSC origin
on a rank of likely, possibly and unlikely, and this xenograft model
is still widely used today (14). The OVCAR-3 and other xenograft
models have been used in the preclinical evaluation of antian-
giogenic agents (41, 42). Specifically, these models demonstrated
the ability of a monoclonal antibody (mAb) to human vascular
endothelial growth factor (VEGF) to prevent ascites formation
and that combination therapy with inhibitors of VEGF plus pacli-
taxel exhibits synergistic reduction of tumor growth and ascites in
ovarian cancer. These observations were subsequently confirmed
in clinical trials of bevacizumab as single agent and in combination
with paclitaxel in EOC (43–45).

Orthotopic implantation involves injecting EOC cells into their
natural position adjacent to the ovaries which in mice corresponds
to the ovarian bursa,a thin membrane that encapsulates the ovaries
(46). OI is usually accomplished by direct injection within the
ovarian bursa via the infundibulum (47, 48). OI recapitulates

initiation of EOC growth in the ovaries, does not require selec-
tion of EOC cell lines, and preserves tumor histology and the
potential for peritoneal dissemination and ascites formation. Fur-
thermore, several studies have indicated increased tumor take rates
with OI thereby reflecting a more favorable microenvironment
for tumor growth and metastatic dissemination (48, 49). Unlike
subcutaneous xenografts, orthotopic and IP xenografts pose a
challenge for accurately quantifying tumor volume and monitor-
ing disease progression thus making them less appealing as models
for preclinical drug development. However, this challenge may be
overcome by advances in non-invasive imaging of tumors in mice
[magnetic resonance imaging (MRI), ultrasound (US), positron
emission tomography (PET), computed tomography (CT), and
single photon emission computed tomography (SPECT)] and/or
use of fluorescent or bioluminescent reporters with optical imag-
ing [fluorescent imaging (FLI) or bioluminescent imaging (BLI)]
and/or use of serum tumor biomarkers such as CA125 (50).

PATIENT-DERIVED XENOGRAFTS
Patient-derived xenografts (PDXs) represent an evolution of the
cell line xenograft model whereby fresh tumor tissue, obtained
directly from patients, is implanted subcutaneously or orthotopi-
cally into immunodeficient mice (51, 52). After a variable period
of time, PDXs enter a logarithmic growth phase which allows
for harvesting and reimplantation in successive mice generations
with reported tumor engraftment rates higher than 75% (53–55).
The time to engraftment depends on the individual tumor, the
site of implantation and the type of immunodeficient mice used
(NOD/SCID/IL2Rγnull mice are associated with superior engraft-
ment efficiency) and is generally between 2 and 4 months. PDXs
have been successfully established from primary or metastatic
tumors (56, 57), from untreated or heavily pretreated tumors (58,
59) thereby potentially capturing chemotherapy-refractory tumor
populations and permitting the study of molecular changes that
occur at the time of development of resistance.

A growing body of literature suggests that PDXs hold signifi-
cant promise as models for preclinical drug development because
they closely resemble and recapitulate tumor growth in humans
(Table 2). In a seminal study by Hidalgo and colleagues, the investi-
gators treated PDXs from 14 patients with various advanced solid
tumors with 63 drugs in 232 treatment regimens, and showed
that there was an excellent correlation between response in the
PDX models and patient response to these regimens (60). Of
note, in some cases, the treatment administered to patients based
on the PDX response was not the first choice of the oncolo-
gist treating these patients. This study highlights the potential of
PDXs as experimental platforms for preclinical drug development.
PDXs represent significant improvement over the standard cell
line xenografts because they maintain the principal characteristics
of the original patients’ tumors including histology, mutational
status, DNA copy number changes, gene-expression patterns and
clinical behavior while they remain biologically stable when pas-
saged in mice. Specifically, genome-wide expression analysis in
non-small cell lung cancer has demonstrated that PDXs exhibit
similar gene-expression profiles and maintain the key gene and
pathway activity of the primary tumors (61). Furthermore, muta-
tional and expression analysis in pancreatic PDXs has shown that
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Table 2 | Advantages and disadvantages of PDX models.

Advantages Disadvantages

Unlike cell lines, PDXs do not undergo evolutionary selection

pressure from in vitro culture

Immunocompromised mice cannot adequately capture the intact human

immune component of primary tumors and thus may not recapitulate the

complex cross talk between tumor cells and the human immune system

PDXs maintain the characteristics and heterogeneity of the original

tumor i.e., histology, mutational status, DNA copy number changes

and gene expression

Human stroma is eventually replaced by murine stroma thereby limiting the

ability to recapitulate tumor-stroma interactions in late passages PDXs

PDXs maintain their molecular similarity with the primary tumors

during sequential passage

Orthotopic implantation is technically challenging

PDXs include a component of the primary tumor’s stroma including

microvasculature, stem cells, and memory T cells, although it is

unclear for how long this is maintained

Expensive to establish and maintain PDX banks thus requiring significant

funding resources or institutional support

PDXs offer the opportunity to evaluate tumors from metastatic sites

or tumors that have developed resistance to multiple treatments

Establishment of PDX banks requires prompt processing of primary tumor

and significant coordination between departments

Studies have shown very good correlation between response in PDX

models and clinical response in patients

Possible regulatory challenges i.e., IRB approval and HIPPA and intellectual

property issues

there is excellent concordance between primary tumors and PDX
models (62). Several studies have also shown that PDXs maintain
their molecular similarity (histology, protein expression, tumor
biomarkers, genomic, and genetic status) with the primary tumors
during sequential passage (63–65). This molecular similarity is
even higher when PDX models are generated using patient tumors
that are immediately implanted into immunocompromised mice
without an intermediate in vitro culture step (66, 67). Another key
feature of PDXs is the maintenance of the original tumor architec-
ture and histopathological characteristics, including a component
of human stroma as well as tumor microvasculature although there
is a controversy over how long this is maintained. Specifically, in
one study of pancreatic PDXs, vessels with human endothelial
cells were maintained or even increased over time while in a simi-
lar study with renal cell cancer PDXs, a decrease in human-derived
tumor microvasculature was observed (68, 69). Of note, mainte-
nance of human tumor-associated leukocytes including memory
T cells for up to 9 weeks after implantation has been reported
in lung cancer PDXs implanted into NOD/SCID/IL2Rγnull mice.
Furthermore, preservation of pluripotent CD133+ stem cells in
PDXs following repeated orthotopic subtransplantations has been
reported and in these studies the CD133+ cells continued to
exhibit multi-lineage differentiation capacity in vitro (70–73).
PDXs (particularly early passage PDXs) may therefore be excel-
lent preclinical platforms to study stromal-tumor interactions and
cancer stem cell biology as well as to assess novel anticancer agents
or drug combinations.

Several limitations of PDXs exist (Table 2). A major limita-
tion of PDXs is the requirement to use immunodeficient mice
which limits the number of drugs that can be evaluated (i.e.,
alternative models are necessary for immune-modulating agents)
(74, 75). Furthermore, severely immunocompromised mice can-
not adequately capture the intact human immune component of
the primary tumors and thus may not recapitulate the complex

cross talk between tumor cells, stroma, and the human immune
system. One approach to circumvent this problem may be trans-
plantation of human CD34+ cord blood cells enriched for human
hematopoietic stem cells that may reconstitute a human innate
and adaptive immune system in mice (76). However, develop-
ment of PDX models in mice with a reconstituted human immune
system is technically challenging and would require that the
xenografted tumors and the human immune cell component are
HLA matched. Furthermore, the eventual replacement of human
stroma by murine stroma is an important disadvantage of PDX
models given the importance of tumor-stroma interactions in
mediating drug response and resistance. Therefore drugs that tar-
get the tumor-stroma or microvasculature such as antiangiogenic
agents may also require alternative models for evaluation. Murine
models are also known to be imperfect models of drug metabo-
lism and distribution in humans. For example, an overestimation
of response may occur when drugs are tolerated at higher doses
in mice while an underestimation may occur when mice are less
tolerant to drugs compared to humans. There also several logis-
tic challenges including financial and personnel resources that are
necessary to establish and maintain PDX banks and the ability to
freeze and reestablish tumors after months of storage. Compared
to the inexpensive cell line experiments, the cost burden of PDX
tumor models is substantial and will likely require significant insti-
tutional and national funding to support widespread use of PDXs
as experimental models.

In EOC, Kolfschoten and colleagues have reported develop-
ment of a panel of 15 human ovarian cancer xenografts (12 from
fresh tumor derived from patients and 3 from EOC cell lines)
grown subcutaneously in the flank of athymic nude mice (77).
They assessed the sensitivity of these xenografts to six commonly
used anticancer agents and showed that their panel reflected the
response rates known for similar drugs in ovarian cancer patients.
This study, together with several analogous studies in other tumor
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types, suggests that PDXs may be used for drug screening in EOC.
In our institution, in collaboration with the Belfer Institute of
Applied Cancer Research we have embarked on building a platform
of ovarian cancer PDXs. The goal of this project is to provide a
resource for evaluating efficacy of experimental agents and to iden-
tify novel predictive and pharmacodynamic biomarkers. Ovarian
cancer cells taken from consented patients are implanted intraperi-
toneally into immunodeficient mice and these tumors grow and
disseminate in the peritoneal cavity similar to human EOC (man-
uscript in progress, personal communication, Joyce Liu). In order
to accurately quantify tumor growth and assess response to exper-
imental therapies, ovarian cancer cells derived from the initial pas-
sages are tagged with luciferase and reimplanted into mice for non-
invasive BLI. In addition, surrogate biomarkers such as CA125 are
evaluated in each of the models to monitor response to therapy.

In the era of personalized medicine, patient-centric PDX mod-
els for tumor growth and assessment of drug efficacy may be a
valuable resource for the preclinical development of experimen-
tal anticancer agents. However, as in the case of cell lines, periodic
molecular assessment of these models examining the fidelity to the
patients’ original tumors in terms of genetics and histology, two
factors that are major determinants of their eventual predictive
ability.

ANIMAL MODELS
Spontaneous EOC models including the aging hen, the cynomol-
gus macaque, and the rhesus macaque are rarely used in preclinical
drug development due to their low incidence rates and long inter-
val until cancer development (78–80). However, because of its
anatomic resemblance to humans, the cynomolgus macaque has
been occasionally used to evaluate novel agents such as chimeric
antibodies or antibody-cytotoxic conjugates (81, 82). Similar to
spontaneous EOC models, chemically or hormonally induced
models of EOC are rarely used because their histopathological
features are not always predictable and their individual molecular
alterations are not well defined (83). Conversely, genetically engi-
neered animal models may be promising platforms for preclinical
drug development and will be reviewed below (48, 84).

VIRUS-MEDIATED GENE DELIVERY
The first successful mouse model of EOC using a retroviral gene
delivery system was reported in 2002 by Orsulic and colleagues
(85) who isolated OSE cells from transgenic mice which carried the
avian tumor virus receptor A (TVA) under the transcriptional con-
trol of the b-actin or keratin 5. Using this TVA retroviral delivery
system, they infected OSE cells from TVA; p53−/− mice with any
combination of two or three of the c-MYC, KRAS, and AKT onco-
genes, and reimplanted them in the TVA; p53−/− mice resulting
in rapid formation of tumors 8 weeks later. The resulting tumors
exhibited poorly differentiated histology with areas of papillary
structures resembling HGSCs. This model was subsequently used
to assess sensitivity to molecular pathway inhibitors; for exam-
ple tumors with AKT and c-MYC oncogenes or AKT and KRAS
were sensitive to mTOR inhibitor rapamycin while tumors with
all three oncogenes (KRAS, c-MYC, and AKT) were resistant to
rapamycin but sensitive to a combination of mTOR inhibitor and
MEK inhibitor (i.e., rapamycin and PD98059). These experiments

highlight how such models may be used to test the efficacy of mol-
ecular targeted agents in EOC. A similar experimental strategy
was also employed for development of a BRCA1-associated EOC
model whereby expression of c-MYC resulted in transformation
of BRCA1 and p53 deficient murine OSEs (86). When implanted
intraperitoneally in mice, these cells developed tumors with several
characteristic of BRCA1-associated HGSCs, i.e., papillary architec-
ture, peritoneal carcinomatosis, development of malignant ascites,
and enhanced sensitivity to cisplatin.

TRANSGENIC MODELS
A transgenic EOC model was developed by Connolly and col-
leagues (87) by expressing the early region of SV40-TAg under the
transcriptional control of Mullerian Inhibitory Substance Recep-
tor II (MISRII). Fifty percent of the transgenic founder mice
developed very aggressive tumors (poorly differentiated carcino-
mas with rapid development of peritoneal carcinomatosis and
ascites) but none of them were fertile. In a subsequent report
(88), the same group reported a stable transgenic line from a male
transgenic founder (TgMISRII-Tag-DR26) whereby all female off-
springs developed bilateral EOCs resembling HGSCs. This is the
first transgenic model of HGSC and it has been used for evaluation
of experimental agents in clinical trials (89).

CONDITIONAL MODELS
Genetically engineered mouse models using conditional expres-
sion of tumor suppressor genes via Cre-recombinase-mediated
excision of LoxP flanked sequences have been reported exten-
sively in ovarian cancer literature. Given that there are cur-
rently no transgenic mice that express Cre-recombinase only in
ovarian epithelial cells, localized delivery of recombinant aden-
ovirus expressing Cre-recombinase in the ovarian bursa of mice is
required to achieve Cre-LoxP-mediated gene inactivation solely
in the ovarian epithelium. Flesken-Nikitin and colleagues (90)
first reported intrabursal administration of Ad-Cre for condi-
tional inactivation of p53 and Rb in p53LoxP/LoxP; RbLoxP/LoxP mice
which resulted in ovarian tumor formation in 97% of them (39%
low grade serous, 45% poorly differentiated, and 15% undiffer-
entiated carcinomas). Peritoneal carcinomatosis and ascites were
present in 27 and 24% of the cases respectively. Dinulescu and
colleagues (91) developed the first model of endometrioid EOC
by conditional expression of an activating KRAS mutation and
inactivation of PTEN via intrabursal administration of Ad-Cre in
LoxP-Stop-LoxP-KRASG12D/+; PTENLoxP/LoxP mice. Endometri-
oid EOCs developed in all mice as early as 7 weeks after injection
and were associated with ascites, peritoneal carcinomatosis, and
lymph node involvement. Endometrioid EOCs also developed
in PTENLoxP/LoxP; APCLoxP/LoxP mice after conditional inactiva-
tion of PTEN and APC using intrabursal injection with Ad-Cre
(92). These tumors had short latency, 100% penetrance and were
associated with peritoneal carcinomatosis and ascites in 21 and
76% of the cases. Importantly, the gene-expression profiles of
these tumors closely resembled those of human endometrioid
EOCs, particularly those with mutations in the Wnt/b-catenin
and PI3K/PTEN pathways suggesting that these models may be
promising preclinical experimental platforms for evaluation of
novel anticancer agents for these tumors. Another conditional
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model was reported by Kinross and colleagues (93) whereby intra-
bursal administration of Ad-Cre for conditional activation of the
PI3KCA-H1047R mutation and inactivation of PTEN resulted in
ovarian serous adenocarcinomas and granulosa cell tumors.

Finally, a HGSC model was reported by Kim and colleagues
(94) by conditionally deleting DICER, a key gene for microRNA
synthesis, and PTEN using anti-Mullerian hormone receptor type
2-directed Cre (Amhr2-Cre). HGSCs developed from the fallop-
ian tube in DICERLoxP/LoxP; PTENLoxP/LoxP; Amhr2cre/+ mice and
spread to encapsulate the ovaries and then metastasize throughout
the abdominal cavity killing all mice by 13 months. These fallopian
tube HGSCs exhibited molecular similarity with human high-
grade serous ovarian cancers suggesting that they may be used as
preclinical models for drug development. Interestingly, removal of
fallopian tubes but not of the ovaries prevented cancer formation
confirming the fallopian tube origin of these cancers and provid-
ing further support to the hypothesis that the fallopian tube is the
primary origin of high-grade serous ovarian cancer (95).

LIMITATIONS OF ANIMAL MODELS FOR PRECLINICAL EVALUATION OF
EXPERIMENTAL AGENTS
Although certain genetically engineered mouse models of EOC
mimic the origin, histopathology, clinical behavior (peritoneal car-
cinomatosis, ascites formation, lymph node involvement, and sen-
sitivity to platinum), and molecular fingerprints (gene-expression
profiling and mutational events) of EOC, there are several lim-
itations of these models particularly relevant to their use for
preclinical evaluation of novel anticancer agents (84). The most
significant challenge is the species-specific differences between
humans and mice. Telomerase is active in most mouse cells (unlike
human cells where it is inactive) and therefore mice tumors require
fewer genetic alterations for malignant transformation compared

to human tumors. Mouse telomerase activity prevents adequate
modeling of the genomic instability of human tumors, particu-
larly of HGSCs which are characterized by high degree of genomic
instability. Furthermore, fundamental differences in drug metab-
olism (protein binding, metabolic rate, and pathways of metabo-
lism) between mice and humans represent a major challenge when
mouse models are used for preclinical testing.

Another issue is that mouse models rely on specific onco-
genes and tumor suppressor genes while ignoring other aspects
of tumor development such as the host immune system and the
tumor microenvironment. Due to the limited number of genetic
alterations that induce the development of mouse tumors, mouse
models are relatively homogeneous and thus may not adequately
recapitulate the significant molecular heterogeneity of human
tumors which is an essential element of a good preclinical model.
Finally, logistical issues including cost, technical challenges in
generating GEM models especially GEMs with multiple genetic
alterations, long interval until development of tumors and vari-
able penetrance are important limitations of GEM models for
preclinical evaluation of novel anticancer drugs.

CONCLUSION
Despite significant advances in surgical and medical management,
EOC remains a highly lethal malignancy for which new thera-
peutic strategies are urgently needed. Appropriate experimental
platforms that recapitulate the complexity of these tumors are
critically important for evaluation of novel therapeutics. Table 3
presents the cell/animal models used for preclinical evaluation of
selected experimental agents in EOC and shows the outcome of
clinical phase II/III evaluation of these agents. In the first two
cases (antiangiogenic agents and PARP inhibitors), cell lines and
xenograft models successfully predicted the activity of these agents

Table 3 | Preclinical evaluation of selected experimental agents used against EOC.

Agents Preclinical models Reference Comments

Antiangiogenic agents

e.g., bevacizumab

NIH:OVCAR-3 and other cell line xenografts were used

for preclinical evaluation of antiangiogenic agents as

single agents and in combination with other cytotoxics

e.g., paclitaxel

(41, 42, 96) Clinical evaluation of antiangiogenic agents as single

agents and in combination in phase II and phase III trials

in ovarian cancer confirmed the preclinical observations

(43, 44, 97, 98)

PARP inhibitors

(PARPis) e.g., olaparib

Proof of principle in BRCA-deficient cell lines

(embryonic stem cells and Chinese hamster cells) and

xenografts from these cell lines

(17, 99) Clinical evaluation of PARP inhibitors in patients with

BRCA-associated tumors confirmed the preclinical

observations in breast and ovarian cancers (18, 103, 104)

In vivo evaluation in PDX model of BRCA2-associated

ovarian cancer and in genetically engineered mouse

models of BRCA1 and BRCA2-associated breast cancer

(100–102) PARPis are currently in phase III clinical trials

Anti-CA125 antibodies

e.g., oregovomab,

abagovomab

Xenografts with the CA125 positive NIH:OVCAR-3 cell

line were used for preclinical evaluation of these agents

(105, 106) No PFS or OS benefit was detected in large randomized

phase III trials for either oregovomab and abagovomab

(107, 108)

Anti-HER-2 agents

e.g., trastuzumab,

pertuzumab

NIH:OVCAR-3, SKOV3, and OVCA433 cell lines and

associated xenografts were used for preclinical

evaluation of anti-HER-2 drugs as single agents

(109, 110) Limited single agent activity of trastuzumab and

pertuzumab in ovarian cancer (111, 112)
Improved PFS with pertuzumab and gemcitabine in

platinum resistant ovarian cancer (113)
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in phase II/III clinical trials, while in the case of anti-CA125
antibodies and anti-HER-2 agents, preclinical evaluation did not
correlate with their phase II/III evaluation. These examples high-
light the challenges of preclinical evaluation of novel agents in EOC
and underscore the need for appropriate preclinical platforms
for a wide variety of experimental agents, i.e., immunotherapies,
targeted agents, etc.

In conclusion, cell lines with confirmed molecular identity
using targeted sequencing and copy number profiling may be
extremely valuable as in vitro models, particularly those with well
defined molecular alterations such as BRCA1/2 or PI3K muta-
tions. Xenograft models of established EOC cell lines are still
commonly used in preclinical drug development, but are increas-
ingly giving place to PDXs which offer the important advantage of
closely resembling original patients’ tumors and adequately cap-
turing the molecular and intratumoral heterogeneity of the orig-
inal tumors. Finally, genetically engineered mouse models hold
promise as they may mimic all major elements of human EOCs
including stromal-tumor interactions without the requirement of
an immunodeficient background. Clearly, there is no one best
preclinical EOC model. Rather, preclinical evaluation of experi-
mental anticancer agents should include multiple model systems
in order to increase the possibility of correctly predicting their
clinical activity.
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