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Despite advances in surgical procedures, radiation, and chemotherapy the outcome for
patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that
are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune
responses by creating an immunosuppressive microenvironment.The advent of gene trans-
fer has allowed the rapid generation of antigen-specific T cells as well as T cells with
enhanced effector function. Here we review recent advances in the field of cell therapy
with genetically modified T cells and how these advances might improve outcomes for
patients with GBM in the future.

Keywords: glioblastoma, immunotherapy, T-cell therapy, genetically modified T cells

INTRODUCTION
Glioblastoma (GBM) is the second most common, but most
aggressive primary brain tumor (1). Despite aggressive, multi-
modal therapy consisting of surgery, radiation, and chemotherapy,
the outcome of patients with GBM remains poor with 5-year sur-
vival rates of <10% (1–3). Therapeutic resistance to conventional
therapies is most likely caused by several factors. First, GBMs are
protected by the blood-brain barrier, resulting in low concentra-
tions of therapeutic agents at tumor sites. Second, GBMs harbor
multiple mutations in key oncogenic signaling pathways including
RTK/RAS/PI3K, p53, and rb pathways (4). Third, glioma-initiating
cells, which are critical for the malignant phenotype of GBMs are
chemo- and radiation-resistant (5, 6). Lastly, GBMs create a hostile
immunosuppressive tumor microenvironment, which prevents
the induction of anti-GBM-specific immune responses (7).

Immunotherapy has the potential to improve outcomes for
patients with GBM since it does not rely on the cytotoxic path-
ways of the aforementioned conventional therapies. The most
widely pursued immunotherapy for GBM is vaccines (8–10).
While vaccines are safe and have prolonged survival in compar-
ison to historical controls, few complete remissions have been
observed. Nevertheless, several vaccines are currently in random-
ized Phase III clinical trials including one vaccine that targets
an EGFR splice variant (EGFRvIII) and another that consists of
tumor lysate pulsed dendritic cells (DCs) (10, 11). Conceptually,
the adoptive transfer of T cells has several advantages over vaccines.
T cells can be expanded ex vivo outside the immunosuppressive
tumor microenvironment, and T cells can be genetically manipu-
lated to confer specificity and enhance their effector function (12,
13). While clinical experience with genetically modified T cells
for GBM is limited, recent successes in patients with melanoma,
neuroblastoma, and hematological malignancies have highlighted
their potent antitumor activity (14–20). Here we will review gene

transfer into T cells (Table 1) and how this technology is being
adapted for the immunotherapy of GBM.

TUMOR-ASSOCIATED ANTIGENS EXPRESSED IN GBM
Glioblastomas express tumor-associated antigens (TAA) that are
potential targets for immunotherapy including T-cell therapy (21,
22). TAA expressed in GBM can be classified into four categories
based on their expression pattern: (i) antigens resulting from
mutations, translocations, or splice variants (e.g., EGFRvIII) (23),
(ii) antigens encoded by cancer-germ line genes [e.g., melanoma-
associated antigen (MAGE), sarcoma antigen (SAGE), and syn-
ovial sarcoma X (SSX) families] (21, 22), (iii) antigens encoded
by genes that are over expressed in GBMs [e.g., human epider-
mal growth factor receptor 2 (HER2), interleukin (IL)-13 receptor
α2 (IL-13Rα2), erythropoietin-producing hepatocellular receptor
A2 (EphA2)] (21, 24, 25), and (iv) viral antigens [e.g., pp65 and
IE1 antigen of cytomegalovirus (CMV)] (26–28). Besides TAA
expressed in malignant GBM cells, antigens expressed by vascular
endothelial cells [e.g., vasculature endothelial growth factor recep-
tor 2 (VEGFR2)] of the tumor vasculature or by other stromal cells
are potential targets for T-cell therapy.

GENETIC MODIFICATIONS TO RENDER T CELLS SPECIFIC
FOR GBM
Two genetic strategies are widely used to generate tumor-specific T
cells. One approach relies on modifying T cells with T-cell recep-
tor (TCR) genes and the other on introducing genes encoding
chimeric antigen receptors (CARs) into T cells.

α/β TCR GENE TRANSFER
Conventional TCRs consist of two chains (α and β) that form het-
erodimers. TCRs recognize peptides, which are derived from pro-
teins, in the context of major histocompatibility complex (MHC)
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Table 1 | Genetic modification of T cells.

Goal Transgenes

Antigen specificity αβ TCR, CAR

T-cell expansion & persistence Co-stimulatory molecules, cytokines

T-cell homing to tumor site Chemokine receptors

Counteracting immunosuppression

TGFβ Dominant-negative receptor

IL-4 Chimeric cytokine receptor

MDSC, Tregs IL-12, IL-15

FAS ligand shRNA to silence FAS ligand

Safety HSV-tk, inducible caspase, CD20

Integration of T-cell therapy with conventional therapies

TMZ resistance MGMT

Steroid resistance Zinc-finger nuclease to target steroid

receptor

molecules expressed on the cell surface. Isolating TCRs for adop-
tive T-cell therapy requires the generation of T-cell clones and
subsequent isolation and cloning of the specific TCRα andβ chains
(29). Following isolation, α and β chain genes are cloned into viral
vectors to introduce them into T cells (13). Initial studies high-
lighted that misspairing between endogenous α/β and transgenic
α/β TCR chains is a common problem; however several approaches
have been developed to overcome this limitation. For example,
the introduction of disulfide bonds or use of murine sequences
in the transgenic TCR genes results in preferential pairing of the
introduced α/β TCR chains (30, 31). Silencing the expression of
endogenous α/β TCR by shRNAs or zinc-finger nucleases are other
attractive options (32, 33) that result in preferential pairing of the
transgenic TCR.

α/β TCRs have been isolated for several TAA including CEA,
GP100, MAGE-A3, MART1, and NY-ESO-1 (14, 34–37). While not
tested in patients with GBM, some of these antigens are expressed
in GBMs. The safety and efficacy of α/β TCR T-cell therapy has
been evaluated in patients with melanoma, sarcoma, colon cancer,
and multiple myeloma. One of the first studies in humans with
α/β TCR T cells demonstrated that the infusion of autologous
polyclonal T cells expressing a MART1-specific α/β TCR was safe
and induced objective tumor responses in 2 out of 15 lymphode-
pleted patients with melanoma (34). To increase response rates, the
same group infused T cells expressing high affinity MART1- and
gp100-specific α/β TCRs. While response rates increased, several
patients developed toxicities, including skin rash, uveitis, and/or
hearing loss, that were not associated with antitumor responses
(14). NY-ESO-1-specific α/β TCR T cells have also been evaluated
in patients with synovial sarcoma, melanoma, and myeloma (37,
38), and encouraging antitumor responses have been observed
without off-target side effects. In contrast, recognition of low
levels of antigens on normal tissues by CEA-specific α/β TCR T
cells has been observed in humans (36). Additionally, two adverse
events have been reported in humans with affinity-matured TCRs,
which recognized similar antigens (35, 39). Specifically, infusion
of MAGE-A3-specific α/β TCR T cells caused both fatal neurotox-
icity due to recognition of MAGE-A12, and fatal cardiac toxicities
due to recognition of titin.

FIGURE 1 | Chimeric antigen receptors. (A) Scheme of prototypic CAR.
(B) First, second, and third generation CARs. See text for details.

In conclusion, clinical studies with α/β TCR-modified T cells
have not only demonstrated the potency of adoptively transferred
T cells, but also some of their clinical limitations. Nevertheless, α/β
TCR-modified T-cell therapy should be explored for patients with
GBM, especially, since local delivery of such cells should reduce
the risk of “non-CNS off target” effects.

CHIMERIC ANTIGEN RECEPTOR GENE TRANSFER
Chimeric antigen receptor design
Chimeric antigen receptors combine the antigen-binding prop-
erty of monoclonal antibodies (MAbs) with the lytic capacity and
self-renewal of T cells, and have several advantages over conven-
tional T cells (Figure 1) (40, 41). CAR-expressing T cells recognize
and kill tumor cells in an MHC unrestricted fashion, so that tar-
get cell recognition by CAR T cells is unaffected by some of the
major mechanisms by which tumors avoid MHC-restricted T-cell
recognition, such as downregulation of HLA class I molecules and
defective antigen processing.

Chimeric antigen receptors consist of an ectodomain, com-
monly derived from a single chain variable fragment (scFv), a
hinge, a transmembrane domain, and an endodomain with one
(first generation), two (second generation), or three (third genera-
tion) signaling domains derived from CD3ζ and/or co-stimulatory
molecules (41, 42). Besides scFvs, natural ligands of receptors or
peptides have also been used as antigen recognition domains (43–
46). While the potency of CARs correlates with the presence of
co-stimulatory domains, the structural components of the CAR,
like the hinge region or the transmembrane domain, and the level
of CAR expression, contribute to overall CAR function (47, 48).

While the majority of CARs only recognize target antigens
expressed on the cell surface, CARs can recognize carbohydrate
and glycolipid antigens, increasing the pool of potential targets.
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Table 2 | CAR T-cell therapy targets for GBM.

GBM antigen Studies

Animala Clinical

CSPG4 – –

EGFRvIII Yes (57, 58) In progress

EphA2 Yes (59) –

HER2 Yes (60) In progress

IL-13Rα2 Yes (43, 61) In progress (62)

NKG2D ligands – –

aGBM model.

Potential CAR targets expressed on the cell surface of GBMs
include IL-13Rα2, HER2, EphA2, EGFRvIII, chondroitin sulfate
proteoglycan 4 (CSPG4), and NKG2D ligands (Table 2) (21, 24,
25, 49, 50). Of these only EGFRvIII is solely expressed in GBM
cells, raising concerns of “on target, off organ” side effects when
EphA2, IL-13Rα2, or HER2 are targeted. Targeting multiple anti-
gens might solve this conundrum. For example, investigators have
engineered T cells expressing two CARs with complementary sig-
naling domains to allow full T-cell activation only at tumor sites
where both antigens are expressed (51–53), or have engineered
a single CAR with two antigen-binding domains (54). Targeting
multiple antigens is also advisable to offset immune escape, which
has been observed for cancer vaccine as well as T-cell therapy
studies in humans (10, 55, 56).

Preclinical studies with CAR T cells
Several investigators have evaluated the anti-GBM activity of CAR
T cells in preclinical models (43, 57–61, 63–65). T cells express-
ing CARs specific for EphA2, EGFRvIII, IL-13Rα2, or HER2
recognized GBM cell lines or primary GBM samples in an anti-
gen dependent manner as judged by cytokine production and
cytolytic activity. CAR T cells also recognized and killed CD133-
positive glioma-initiating cells, prevented neurosphere formation,
and were able to destroy preformed neurospheres, demonstrating
that radiation/chemotherapy-resistant glioma-initiating cells are
sensitive to this immune-mediated killing mechanism (59, 60, 63,
64). In vivo, CAR T cells had potent antitumor activity in U87
and U373 xenograft models after local T-cell injection (43, 58, 59,
61, 65). In addition, investigators have demonstrated antitumor
activity of CAR T cells using autologous GBM cells (60). Lastly, tar-
geting two GBM antigens resulted in improved antitumor effects
in one animal model (65). In summary, these studies demonstrate
the potent anti-GBM activity of CAR T cells in preclinical models,
warranting further active exploration. To date, CAR T-cell therapy
for GBM has not been evaluated in immune-competent murine
models. Immune-competent models will be critical to evaluate
future combinatorial therapies in which adoptive T-cell transfer is
combined with other agents to overcome the immunosuppressive
tumor microenvironment.

While not tested in a GBM model, targeting the tumor vascula-
ture with CARs is an attractive strategy to enhance the antitumor
activity of CAR T cells (66, 67). Targeting the tumor vascula-
ture with VEGFR2-specific CAR T cells in addition to tumor cells

synergized in inducing tumor regression in several syngeneic, pre-
clinical solid tumor models (68). In addition, transgenic expres-
sion of VEGFR2-specific CARs and IL-12 in T cells was sufficient
to eradicate tumors, indicating that overcoming the inhibitory
tumor microenvironment might potentiate effects of CAR T-cell
therapies (see Section Engineering T-Cell Resistance to Immune
Evasion Strategies Employed by GBMs) (69).

Clinical trials with T cells expressing CARs
So far clinical experience with CART-cell therapy for patients with
GBM is limited. The safety and efficacy of intratumoral injec-
tion of T cells expressing a first generation IL-13Rα2-specific CAR
(IL13-Rα2-CAR T cells) has been evaluated in one clinical study
(62, 70). Infusion of IL13-Rα2-CAR T cells was well tolerated and
associated with clinical benefit in several patients. In addition,
two Phase I/II studies are currently in progress. In the first study
the safety and efficacy of CMV-specific T cells expressing a sec-
ond generation HER2-specific CAR is being evaluated in patients
with recurrent GBM (NCT01109095). In the second study patients
with recurrent GBM receive escalating doses of T cells expressing
a third generation EGFRvIII-specific CAR after lymphodepleting
chemotherapy (NCT01454596). Both studies are in progress, and
clinical results should be available in the near future.

ENGINEERING T-CELL RESISTANCE TO IMMUNE EVASION
STRATEGIES EMPLOYED BY GBMs
Similar to other malignancies, GBMs create a hostile, immunosup-
pressive microenvironment (7, 71–73). They: (1) secrete immuno-
suppressive cytokines such as transforming growth factor β (TGF-
β) or IL10, (2) attract immunosuppressive cells such regulatory
T cells (Tregs) or myeloid derived suppressor cells (MDSCs), (3)
inhibit DC maturation, (4) express molecules on the cell surface
that suppress immune cells including FAS ligand (FAS-L) and PD-
L1, and (5) create a metabolic environment (e.g., high lactate, low
tryptophan) that is immunosuppressive.

Different approaches are being explored to overcome tumor
induced immunosuppression. Such strategies include: (1) enhanc-
ing CAR T-cell expansion and persistence by providing co-
stimulation and/or lymphodepletion, (2) transgenic expression of
cytokines, (3) silencing negative regulators, and (4) expression of
chimeric cytokine/chemokine receptors or signaling molecules.

INCREASING CAR T-CELL EXPANSION AND PERSISTENCE
Since T-cell expansion post antigen recognition requires the pro-
vision of co-stimulation, investigators have included signaling
domains in CAR endodomains derived from co-stimulatory mole-
cules including CD27, CD28, 4-1BB, and OX40. Several preclinical
studies have highlighted the benefit of added co-stimulation (74–
77); however only one study so far has done a “head to head com-
parison” of CD19-specific CARs with a ζ− or CD28. ζ-Domain
in individual patients (78). While CD28 co-stimulation resulted
in enhanced expansion of adoptively transferred T cells, the effect
was limited.

Thus genetic modification alone might not be sufficient to
allow for T-cell expansion in vivo. Dramatic T-cell expansion and
long-term persistence post infusion of adoptively transferred T
cells occurs in lymphodepleted patients post hematopoietic stem
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cell transplantation (79, 80). Investigators have therefore lym-
phodepleted patients outside the transplant setting prior to T-cell
transfer. The extent of lymphodepletion correlated with antitu-
mor effects (81), and therefore many investigators currently prefer
to give lymphodepleting chemotherapy before adoptive transfer
of conventional or CAR T cells. Another option to boost expan-
sion of T cells in vivo is vaccination. For example expressing CARs
in T cells that are specific for viruses allows for vaccination (e.g.,
influenza) (82) or stimulation by latently infected cells in humans
(e.g., Epstein–Barr virus) (15). Besides co-stimulation, and the sta-
tus of the lymphoid compartment, it is also apparent that subsets
of T cells differ in their behavior in vivo. For example, expressing
CARs in effector memory T cells can enhance T-cell persistence
in vivo (83, 84). In addition, the presence of CD4-positive CAR
T cells in the T-cell product has correlated with long-term T-cell
persistence (16).

TRANSGENIC EXPRESSION OF CYTOKINES
Chimeric antigen receptor T cells can be engineered to produce
immunostimulatory cytokines. For example transgenic expres-
sion of IL-12 in CAR T cells reverses the immunosuppres-
sive tumor environment by triggering apoptosis of inhibitory
tumor-infiltrating macrophages, DCs, and MDSCs through a FAS-
dependent pathway (85). While effective, there are safety concerns
in regards to constitutive IL-12 expression. This obstacle can be
overcome by using inducible promoters that are linked to the acti-
vation status of T cells, restricting IL-12 expression to tumor sites
at which T cells are activated (86). Another attractive cytokine
is IL-15. Transgenic expression of IL-15 (87, 88) renders T cells
resistant to the inhibitory effects of Tregs through activation of
the phosphoinositide 3-kinase (PI3K) (89), and improves CAR
T-cell expansion and persistence in vivo.

SILENCING NEGATIVE REGULATORS
Silencing genes that render T cells susceptible to inhibitory signals
in the tumor microenvironment has the potential to improve T-cell
function. For example many tumor cells express FAS-L, and silenc-
ing FAS in T cells prevents FAS-induced apoptosis (90). Other
options include silencing genes that encode inhibitory molecules
expressed on the T-cell surface such as CTLA-4 or PD-1 (91).

EXPRESSION OF CHIMERIC CYTOKINE/CHEMOKINE RECEPTORS OR
SIGNALING MOLECULES
Transforming growth factor β is widely used by tumors as an
immune evasion strategy (92), since it promotes tumor growth,
limits effector T-cell function, and activates Tregs. These detri-
mental effects of TGF-β can be negated by modifying T cells
to express a dominant-negative TGF-β receptor type II (DNR),
which lacks most of the cytoplasmic kinase domain (93, 94).
DNR expression interferes with TGF-β-signaling and restores T-
cell effector function in the presence of TGF-β. The safety and
efficacy of DNR-modified EBV-specific T cells is currently being
evaluated in a Phase I/II clinical trial for patients with lymphoma
(95), and if successful could be readily adapted to T-cell therapy
for GBM.

T cells can also be engineered to convert inhibitory signals into
stimulatory signals (96–98). For example, linking the extracellular

domain of the TGF-β RII to the endodomain of toll-like receptor
(TLR) four results in a chimeric receptor that not only renders T
cells resistant to TGF-β, but also induces T-cell activation and
expansion (98). Chimeric IL-4 receptors are another example
of these “signal converters.” Many tumors secrete IL-4 to create
a TH2-polarized environment, and two groups of investigators
have shown that expression of chimeric IL-4 receptors, consisting
of the ectodomain of the IL-4 receptor and the endodomain of
the IL-7Rα or the IL-2Rβ chain, enable T cells to proliferate in
the presence of IL-4 and retain their effector function including
TH1-polarization (96, 97).

Another strategy to render T cells resistant to the inhibitory
GBM environment is to express constitutively active signaling
molecules. For example, expression of a constitutively active form
of serine/threonine AKT (caAKT), which is a major component
of the PI3K pathway, in T cells results in higher levels of NF-κB
and elevated levels of anti-apoptotic genes such as Bcl2 conferring
resistance to Tregs and TGFβ (99).

GENETIC MODIFICATION OF T CELLS TO IMPROVE HOMING
TO TUMOR SITES
While the intravenous administration of EBV-specific T cells
resulted in the regression of CNS lymphoma (100), and the adop-
tive transfer of tumor-infiltrating lymphocytes (TILs) resulted in
the regression of brain metastases (101), the homing of T cells
to GBM sites might be suboptimal, similar to clinical experi-
ence with T-cell therapy for solid tumors. For example, in one
clinical study with first generation folate receptor (FR)-α spe-
cific CAR T cells for patients with ovarian cancer, infused cells
did not specifically home to tumor sites as judged by 111Indium
scintigraphy, and no antitumor activity was observed (102). Since
then, several investigators have shown in preclinical models that
the expression of chemokine receptors in CAR T cells that rec-
ognize chemokines secreted by solid tumors can enhance T-
cell homing. For example, transgenic expression of chemokine
receptors CCR2b or CXCR2 in T cells enhances trafficking to
CCL2- or CXCL1-secreting solid tumors including melanoma and
neuroblastoma (103, 104). Thus, expressing chemokine recep-
tors in T cells or adhesion molecules that potentially facilitate
the infiltration of T cells into GBM tumors has the poten-
tial to enhance the antitumor efficacy of adoptively transferred
T cells.

GENETIC MODIFICATION TO IMPROVE SAFETY OF T-CELL
THERAPY
Potential toxicities can be divided into five categories: (1) toxicities
due to genetic modification, (2)“on target organ”toxicities, (3)“on
target, off organ”toxicities, (4)“off target, off organ”toxicities, and
(5) systemic inflammatory syndromes. Toxicities due to genetic
modification of T cells have not been observed in humans so far
(105). An example of “on target organ” toxicity is the depletion of
normal B cells after the infusion of CD19-speciifc CAR T cells for
the treatment of B-cell malignancies (17). “On target, off organ”
toxicity is exemplified by the liver toxicity observed after the infu-
sion of carbonic anhydrase IX-specific CAR T cells to treat renal
cell carcinoma (106). “Off target, off organ” toxicity is demon-
strated by the recognition of MAGE-A12 in the brain or titin in
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the heart after the infusion of MAGE-A3-specific α/β TCR T cells
for the treatment of melanoma, esophageal cancer, or myeloma
(35, 39). Systemic inflammatory syndromes have been observed
after CD19-specific CAR T-cell infusions for the immunotherapy
of B-cell malignancies (17, 18, 107).

Genetic safety switches have been developed to selectively
destroy genetically modified T cells once adverse events occur.
The most widely used safety switch for T-cell therapy is the herpes
simplex virus thymidine kinase (HSV-tk). HSV-tk phosphorylates
acyclovir, valacyclovir, and ganciclovir to toxic nucleosides (108),
and T cells transduced with the HSV-tk gene are killed in the
presence of these medications. While clinical studies have demon-
strated the effectiveness of this strategy, drawbacks to utilizing
HSV-tk as a safety switch include the immunogenicity of HSV-tk,
and that some patients require acyclovir, valacyclovir, or ganci-
clovir to treat herpetic diseases. Therefore, genetic safety switches
using non-immunogenic human components have been devel-
oped, such as inducible caspase 9 (109, 110). With this strategy,
once exposed to the dimerizer, genetically modified T cells rapidly
undergo apoptosis. Another approach includes the transgenic
expression of CD20, rendering T cells sensitive to the clinically
approved CD20 MAb rituximab (111). While suicide gene switches
can selectively kill infused cells, systemic inflammatory syndromes
might be difficult to control since resident immune cells, activated
by the infused T cells, most likely contribute. IL6 plays a critical
role, and the infusion of the IL6 receptor MAb (tocilizumab) alone
or in combinations with TNFα MAbs (infliximab) and steroids has
proved to be effective (17, 18, 107).

While suicide switches are one strategy to prevent “on target,
off organ” toxicities, T cells can also be engineered to only be
fully activated if they encounter a unique “antigen address” at
tumor sites. For example T cells expressing two CARs with dif-
ferent specificity of which one provides ζ-signaling and the other
co-stimulation, will only be activated at tumor sites that express
both antigens (51–53).

GENETIC MODIFICATION OF T CELLS TO FACILITATE
INTEGRATION OF CELL THERAPY WITH CURRENT THERAPIES
T cells are inherently sensitive to agents that are currently used
for the treatment of GBMs including steroids and temozolomide
(TMZ). Gene transfer can now be used to render T cells resis-
tant to these agents. For example, disruption of the glucocorticoid
receptor gene in T cells with zinc-finger nucleases results in T
cells that function in the presence of steroids (112), and this
strategy is currently being evaluated in a Phase I clinical trial
(NCT01082926). TMZ resistance can be conferred by express-
ing O(6)-methylguanine-DNA-methyltransferase (MGMT) in T
cells (113), potentially allowing the infusion of T cells while GBM
patients receive TMZ.

CONCLUSION
Preclinical studies and early clinical studies indicate that the
genetic modification of T cells is a potent strategy to generate
tumor-specific T cells with enhanced effector function. Not sur-
prisingly, the greatest clinical success so far has been achieved for
hematological malignancies targeting CD19. In order to develop

effective CAR T-cell therapies for GBM several questions have to
be addressed: which GBM antigen can be targeted without caus-
ing “on target/off cancer” side effects? How many antigens do we
need to target to prevent immune escape? Do we have to tar-
get antigens expressed on non-malignant cells within the GBM
microenvironment? Do we have to engineer T cells to enhance their
homing to GBM sites and render them resistant to the immuno-
suppressive GBM environment? Do patients with GBM need to be
lymphodepleted prior to T-cell transfer? Despite these unresolved
issues, we believe that the results obtained so far with geneti-
cally modified T cells to target GBM are encouraging, warranting
further active exploration. While genetically modified T cells are
likely not the long awaited “GBM panacea,” integrating these cells
into our current treatment armamentarium or combining them
with other emerging targeted GBM therapies has the potential
to improve outcomes for patients afflicted with this devastating
cancer.
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