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Ionizing radiation is a non-specific but highly effective way to kill malignant cells. However,
tumor recurrence sustained by a minor fraction of surviving tumor cells is a commonplace
phenomenon caused by the activation of both cancer cell intrinsic resistance mechanisms,
and also extrinsic intermediaries of therapy resistance, represented by non-malignant
cells and structural components of the tumor stroma. The improved accuracy offered by
advanced radiotherapy (RT)-technology permits reduced volume of healthy tissue in the
irradiated field, and has been triggering an increase in the prescription of high-dose oligo-
fractionated regimens in the clinics. Given the remarkable clinical success of high-dose
RT and the current therapeutic shift occurring in the field, in this review we revise the
existing knowledge on the effects that different radiation regimens exert on the different
compartments of the tumor microenvironment, and highlight the importance of anti-tumor
immunity and other tumor cell extrinsic mechanisms influencing therapeutic responses to
high-dose radiation.
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INTRODUCTION
Radiotherapy (RT) is a long-standing pillar in both curative and
palliative cancer treatment, and about 50% of all cancer patients
are receiving RT some time during their disease (1). However,
despite the proved efficacy of RT, many treated cancer patients
suffer from locally recurrent disease and/or metastatic spread of
tumor growth (2). In the clinics, implementation of advanced
imaging, computer technology together with technical perfec-
tion in radiation therapy planning and performance, has rev-
olutionized the field (3). Consequently, a different therapeutic
strategy commonly referred to as stereotactic ablative radiother-
apy (SART), stereotactic body radiotherapy (SBRT), or stereotac-
tic radiosurgery (SRS) is now gaining terrain in the clinics for
the treatment of cancers with difficult cures such as lung, liver,
pancreas, or brain (4, 5).

In line with the notion that solid tumors are complex and
heterotypic tissues (6, 7), it is currently recognized that cancer
cell responses to therapeutic treatments are greatly influenced by
their microenvironment (8–10). This includes the physical con-
tact of tumor cells with structural elements such as ECM via
integrins, associations with resident and temporary host cells
such as inflammatory cells, vascular cells, fibroblasts, and circu-
lating progenitor cells, and interactions with miscellaneous dif-
fusible molecules of autocrine, paracrine, and endocrine origin
that influence cell behavior (2, 11). In RT, the nature of both
external and internal RT is unspecific in the sense that it does
not exclusively target neoplastic cells but necessarily affects all
tumor-associated cells. Accordingly, secondary effects inflicted by
RT on benign tumor constituents markedly guide the therapeu-
tic outcomes post-treatment. Intriguingly, the radiation-induced
changes in different stromal constituents of tumors have been

demonstrated to depend on physical parameters such as total radi-
ation dose, fraction-size, fraction intervals, or number of fractions.
In view of that, recent reports have underscored the existence of
threshold doses (and regimens) that are able to switch on differ-
ent damage programs that profoundly affect responses to therapy.
For instance, it has been suggested that local high-dose irradiation
exerts more potent immune-responses than standard low-dose
radiation, therefore promoting the eradication of cancer cells that
escape the radiation-induced death (12). Studies with experimen-
tal tumors show that irradiation with doses higher than 10 Gy in
a single-fractioned or up to 60 Gy in an oligo-fractionated man-
ner causes severe vascular damages leading to strong alterations
of the tumor microenvironment and indirect death of tumor
cells (13). Furthermore, exposure of tumor fibroblasts to high
radiation doses but not to small doses induces permanent DNA-
damage responses and irreversible cellular senescence, which in
turn might influence therapeutic upshots by the altered release
of cytokines, chemokines, and growth factors (14). Given the
acknowledged role played by the tumor microenvironment on
guiding responses to therapy and the growing interest on using
hypofractionated high-dose RT on cancers with poor progno-
sis, here we have aimed at presenting an overview on existing
knowledge on how the different cellular compartments in tumors
respond to different radiation schemes, and their potential impact
on treatment outcomes. Summarized key literature is presented in
Table 1.

THE EVOLUTION OF RADIATION THERAPY AND TREATMENT
REGIMENS
Landmark observations about 80 years ago suggested that nor-
mal tissues could be spared if the radiation dose was delivered in
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fractions over several days (15). Since then, curative RT has typi-
cally been delivered as multi-fractionated rather than single-dose
regimens, with daily doses of 2 Gy (5×/week), to an accumulative
dose of 50–70 Gy. Big leaps within RT-related imaging and tech-
nology have led to enhanced accuracy, thus reducing the need of
including large safety margins (of healthy normal tissue) in the
treatment field. Hence, on the condition of rigorous quality assur-
ances (16, 17), high-doses of ionizing radiation (IR) may now be
delivered safely to patients.

The first attempts to deliver ablative or high-dose RT to patients
in a single session derive from 1951, when neurosurgeon Leksell
constructed an immobilizing stereotactic head-frame for deliv-
ery of highly focused IR with extreme precision to small volumes
of non-malignant lesions of the brain (18). Later on, modified
versions of this non-invasive technique, named “SRS,” have been
applied to small primary tumors and single metastases of the brain
(19, 20). Single fractions of 20–30 Gy are typical in the context
of SRS, resulting in high rates of local tumor control, preser-
vation of cerebral functions, and option of repeated treatment
(21). Recently, oligo-fractionated SRS has proven beneficial also
for brain tumors that are large (>3 cm) (22, 23) or located near
critical structures (24), with a recommended radiation dose cor-
responding to 20 Gy× 1, 11.6 Gy× 2, or 8.5 Gy× 3 to gain local
tumor control (25). The clinical success of SRS encouraged the
development of a corresponding technique to treat extracranial
tumors, named SBRT or SART (26). Hence, SART is defined as a
method to deliver high-dose radiation by ultra-precision external-
beam RT to extracranial parts of the body using few fractions
(typically 1–5) (27).

In lung cancers, high-dose RT-regimens have revolutionized
treatment outcome and overall survival for early stage inoperable
peripheral tumors (28–30), and are currently considered also for
operable lung cancers (31). In an overview by Heinzerling et al.
(28), stage I NSCLC lung tumors receiving 45–60 Gy in three frac-
tions versus 30–34 Gy in one single-fraction demonstrated 3-year
post-RT tumor control rates of 92–98% and 80%, respectively.
Centrally located lung tumors, being more prone to normal tis-
sue toxicity than peripheral tumors, may gain similar numbers of
tumor control (>85%) and acceptable toxicity with a less potent
dose per fraction, i.e., eight fractions of 7.5 Gy (32, 33). In addition
to lung cancers, SART (15–18 Gy× 3) has also generated encour-
aging results in primary and secondary (34, 35) hepatic tumors
(36–38) and metastatic spinal lesions (39, 40).

The successful application of high-dose RT to large brain
tumors and centrally located lung tumors illustrates the concept
of “risk-adapted” fractionation regimens, designed to avoid high-
grade toxicity upon high-dose RT for tumors located close to
critical organs (41). However, clinical data have indicated that
local tumor control is not only exclusively determined by dose
and fractionation but also influenced by dose-prescription (41)
and tumor size (42). Accordingly, recent tumor-volume-adapted
dosing-approaches demonstrated excellent local control also for
SART of large-volume lung tumors (43). Additionally, by re-
plotting clinical data for tumor control probability as a function
of biological effective dose for stage I non-small cell lung can-
cer, it was suggested that there is no difference in tumor control
for single-fraction versus multi-fraction SART (44). Important in

this context is a clear distinction between novel high-dose oligo-
fractionated regimens and standard protracted regimens with
25–36 fractions of 2 Gy.

In the clinics, effects of varying dose and fractionation are
usually guided by the linear–quadratic (LQ)-model (45–47). This
mathematical tool was developed to estimate radiation damage on
normal (and neoplastic tissue), and has proved useful for design-
ing and comparing effects of new fractionation protocols (48). The
LQ-model is suggested valid up to 8–10 Gy per fraction (49), but
considered inappropriate for the high-dose regimens delivered by
SRS and (lung) SART (50), presumably underestimating tumor
control in the high-dose range (51, 52). Therefore, based on the
recent success and widespread use of ablative RT, adapted tools for
comparing dose and fractionation are being discussed (53–56).

ENDOTHELIAL CELLS AND THE DIFFERENT RT-REGIMENS
The importance of angiogenesis and sprouting of resident
endothelial cells (ECs) for continued tumor growth and metasta-
sis has been advocated by Folkman since 1971, who also proposed
the idea of killing tumor cells indirectly by targeting the ECs
(57). The leaky and fragile ECs in tumors are proliferating con-
siderably faster than ECs in normal tissues, and were early on
suggested as a suitable therapeutic target (58). In the context of
RT, a computer model fitted to clinical data proposed that the
vascular effect contributes by 19–33% to the overall effect from
single high-dose (20 Gy) radiosurgery (59). Of note, radiation
effects on the tumor vasculature go beyond direct damage to the
nuclear matter. Kolesnick and coworkers have long suggested that
a rapid wave of ceramide-mediated apoptosis of ECs is the prin-
cipal target for radiation injury and epithelial stem cell damage
after high-dose RT (60–62). This group proposed a threshold dose
of ~10 Gy for induction of apoptosis in tumor-associated ECs in
culture (60, 63). More recently, anti-angiogenic agents (anti-VEGF
or anti-VEGFR2) introduced right before high-dose RT demon-
strated induction of up-regulated ceramide levels that resulted in
augmented fraction of apoptotic ECs (64).

Radiation-induced changes in tumor blood vessels are known
to be highly variable, depending markedly on the radiation dose
and regimens [review in Ref. (13)]. Thus, during conventional
(low-dose) fractionated RT, the status of the vasculature is some-
how preserved, and occasionally improved or normalized (65), at
least during the early part of a treatment course. These results are
in line with a reported low-dose (≤5 Gy) RT stimulation of angio-
genesis (66) and/or vasculogenesis (67, 68) in EC in vitro models.
Also, in a study of radiation responses to the microcirculation of
muscle flaps in vivo, a single dose of 8 Gy could only reduce capil-
lary perfusion by 4.3%, implying that 8 Gy causes minimal damage
to microvessels and the EC lining (69). However, at radiation doses
exceeding 10 Gy/fraction, the tumor vessels become severely dam-
aged (70) resulting in reduced blood perfusion and indirect tumor
cell killing due to starvation (13). Despite such potentially, bene-
ficial effects of high-dose RT, studies performed in animal models
of intracranial glioblastoma multiforme (GBM) suggest that fol-
lowing local irradiation and ablation of the tumor vasculature,
blood flow may be reconstituted several weeks after completed RT
(71). The phenomena of such in-field recurrences are particularly
common for the highly angiogenic glioblastomas, and represent
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a significant therapeutic challenge. Assuming that the process of
angiogenesis (sprouting of vital resident ECs) is largely abrogated
upon local high-dose RT (15–20 Gy), tumors rely on infiltration
of circulating endothelial and other progenitor cells for revascu-
larization and regrowth. This secondary“backup”pathway termed
vasculogenesis represents a novel strategy to enhance local tumor
control by RT (72, 73). Notably, even though endothelial prog-
enitor cells (EPCs) are recognized for homing to ischemic areas
where they contribute to neovascularization (74, 75), extensive
research efforts has lead to the conclusion that bone-marrow-
derived EPCs are contributing only marginally to (re)growth of
irradiated tumors (71, 76). The source of circulating ECs (or EPCs)
that are homing to irradiated tumors is therefore currently unde-
fined (72, 77). However, it is well established that recruitment of
pro-angiogenic myeloid (but not endothelial) (78) bone-marrow-
derived progenitor cells (BMDCs) (71, 79) is pivotal for vascular-
repair (80) and tumor regrowth, although they presumably do
not incorporate into the tumor vasculature (81). So far, the role
of non-bone-marrow-derived EPCs (75) in a setting of tumor
relapses post-RT has been little explored (81). Intriguingly, recent
studies in GBM-models point to the possibility that a fraction of
tumor-associated ECs may be derived from trans-differentiation
of (radioresistant) cancer stem-like cells (82–84).

Blood vessels of tumors are hyperpermeable and structurally
abnormal, with a tortuous and dilated appearance and low cov-
erage of pericytes that in total creates a microenvironment that is
hypoxic and acidic, with high interstitial pressure. Hence, around
90% of all solid tumors have median oxygen levels that are
lower than those appearing in normal tissues (85, 86). Tumor
hypoxia is a well-known cause of radiation resistance (85), due
to the fact that irradiated hypoxic cells are about 2.5–3 times less
radiosensitive than normoxic cells (87). The idea that low-oxygen
values contribute to radio-protect tumor cells correlates with
clinical observations; severely, hypoxic tumors and high expres-
sion of hypoxia-inducible genes are generally associated with an
aggressive phenotype, treatment failure, enhanced metastasis, and
poor prognosis (88, 89). Considerable endeavors have been ded-
icated to improve radioresponses by targeting hypoxia (2, 85, 90,
91). In patients, the benefit of fractionated and protracted (low-
dose) radiation regimens is partly explained by the phenomenon
of tumor re-oxygenation, where surviving hypoxic cells become
oxygenated between fractions (92). Conversely, a consequence
of single high-dose RT is disrupted vasculature and invalidated
angiogenesis, which may lead to a large increase in tumor hypoxia
(71). Currently, there is an ongoing debate among scholars whether
the dose-boosting offered by oligo-fractionated SART is sufficient
to counterbalance the loss/reduced contribution of re-oxygenation
(93) or if SART should be combined with a hypoxic radiosensitizer
(42, 94). The latter alternative offers the possibility of achieving
similar tumor control rates with a reduced radiation dose, and
hence reduced toxicity, in patients (42, 90).

Prevention of revascularization post-radiation represents an
appealing strategy to radio-sensitize tumors. Restoration of
(radiation-) damaged vasculature by colonizing progenitor cells
is initiated by HIF-1 (hypoxia-inducible factor-1) (95), the HIF-
1-dependent and -independent (67) expression of SDF-1 (stromal
cell-derived factor-1) (96) and the potent angiogenesis regulator

VEGF (vascular endothelial growth factor). In a preclinical study
with local (whole brain) irradiation of GBM-xenografts using a
single high-dose (15 Gy), perfusion was reduced to a minimum
after 2 weeks, whereas hypoxia, HIF-1 and SDF-1 was maximal
at the same time point (71). SDF-1, secreted mainly by reac-
tive tumor-associated fibroblasts (97), is retained in hypoxic tis-
sues where it binds to the receptors CXCR-4 (96) and CXCR-7
expressed on monocytes and ECs (72), respectively. Recent studies
indicate that hypoxia increases the expression of CXCR-7 in the
pulmonary endothelium (98). Moreover, CXCR-7 is a scavenger
receptor (99) responsible for uptake and degradation of SDF-1
(100) as well as mediating EC regeneration, repair, and prolifera-
tion (98, 101). Interestingly, inhibitors of CXCR-4, CXCR-7, and
SDF-1 have all demonstrated delayed (or blocked) tumor recur-
rence post-RT in animal tumor growth-delay experiments (72).
Regarding regulation of SDF-1 expression by RT, some opposite
observations have been reported. Whereas secreted levels of SDF-1
from cultured lung (NSCLC)-CAFs are significantly reduced after
18 Gy× 1 (14), local high-dose irradiation to mice xenografts of
GBM, breast, and lung tumors followed by detection in tissue-
sections has indicated increased intratumoral SDF-1 quantity
already 2 days post-RT (78), with maximum levels appearing after
14 days (71). In the latter system, the vasculogenesis-pathway could
be blocked by interfering with the SDF-1/CXCR-4 interactions,
and resulted in tumor control at radiation doses that alone were
insufficient for sterilizing the tumors (71). The HIF-1 target-
gene VEGF is another important factor required for homing and
retention of circulating mononuclear myeloid cells (80). However,
inhibition of VEGF was demonstrated to be less efficient than
inhibition of the SDF-1/CXCR-4 interactions in abrogating tumor
reperfusion and regrowth post-RT (71). Interestingly, in the same
GBM-model, the radiation-induced influx of BMDCs was demon-
strated to be dose-dependent, with doubled levels appearing after
local (whole brain) irradiation with 15 versus 8 Gy (71). Neverthe-
less, when combining inhibition of SDF-1/CXCR-4 interactions
with radiation, a fractionated low-dose regimen (2 Gy× 5) and
a single high-dose (15 Gy) both resulted in complete anti-tumor
responses (71).

IMMUNE CELLS AND THE DIFFERENT RT-REGIMENS
Immune escape is the process in which malignant cells become
unrecognized by the host immune system. The steady integration
of multiple immune escape mechanisms by tumors during its pro-
gressive growth is now acknowledged as one of the hallmarks in
cancer (6). During tumor development, not only malignant cells
but also many other tumor-infiltrating cells undergo a process
of immune editing, developing mechanisms by which the tumor
tissue escapes immune recognition and elimination. Similar to
angiogenesis, IR may act as a double-edged sword on inflamma-
tion and the immune system. Originally, RT was considered to
be immuno-suppressive rather than immuno-stimulatory, largely
due to the procedure of whole-body-radiation to minimize the
immune-responses connected with bone-marrow transplantation.
Also, it has been clinically documented that low-dose X-ray irra-
diation exerts an anti-inflammatory effect on benign diseases
and chronic degenerative disorders (102). Additionally, immune-
suppressive effects may come from the collateral damage exerted
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on tissue-resident antigen-presenting cells. On the other hand,
irradiation may induce inflammation and immune reactions by
the generation of tumor antigens, oxygen radicals, and alarm sig-
nals (8). Interestingly, an abscopal off-target response to RT has
occasionally been reported in metastatic cancer patients, denoting
the phenomenon of remote tumor regression outside the irra-
diated field after local RT (103, 104). The renewed interest of
using RT as an immune adjuvant has already stimulated scien-
tific efforts to decipher the mechanisms behind radiation-induced
immune-responses and has generated novel concepts as“immuno-
genic cell death”to explain these events (105). In the following text,
we present some of the important immunogenic pathways regu-
lated by RT and the impact RT may exert on the different cellular
components of the immune system.

One of the principal mechanisms for immune escape of tumor
cells is the reduction of MHC-I levels on their plasma membrane.
Notably, RT has been shown to upregulate MHC-I expression (106,
107). Moreover, MHC-I up-regulation is dose and time depen-
dent, having a significant effect at doses above 4 Gy in melanoma
cell-lines and at 8–20 Gy in murine colon carcinoma MC38 cells
(108, 109). A potential explanation to this observation may be
found in the induction of IFN-γ in the tumor microenvironment
mainly by infiltrating T-lymphocytes and NK cells (110). RT is
also able to modulate other surface molecules with immune mod-
ulating functions. ICAM-1 induction by RT has been observed
in an array of different human and murine cell-lines, but mainly
after high-dose radiation (111). On the other hand, radiation-
induced up-regulation of the death-receptor CD95 is observed
in various tumor types after different doses of radiation (112).
The prominent role of RT on modulating phenotypic mark-
ers on neoplastic cells significant for their immunogenicity is
reflected by the clear synergistic effect between irradiation and
immunotherapeutic approaches using either specific blockage of
immune-regulatory receptors (113), intratumoral administration
of immune-stimulatory cytokines (114), or adoptive transfer of
tumor-specific CTLs (115).

Damage-associated molecular patterns (DAMPs), or danger
signals, are an important part for initiation of effective immune
activation. DAMPs are small molecules released by either tumor
cells or the miscellaneous inflammatory cells present in the tumor
stroma. These molecules are generally released in response to stress
situations as the ones created by RT. Some of the best characterized
are high motility group protein 1 (HMGB1), calreticulin (CRT),
heat shock proteins (HSPs) 70 and 90, adenosine triphosphate
(ATP) and uric acid (105). Radiation can induce different cell
death pathways depending on multiple factors such as fraction
numbers and doses, tumor-type, tumor stage, and microenvi-
ronment. Tumor cell apoptosis is triggered most likely at low
doses of radiation. Apoptotic cell death shows patterns of both
tolerogenic and immunogenic cell death, viewed as CD47 up-
regulation and oxidized HMGB1 release, and CRT externalization
and reduced HMGB1 release, respectively. Radiation at high-doses
on the other hand promotes necrotic cell death (116, 117). During
necrosis, the cell membrane becomes disintegrated, which lead to
an uncontrolled release of the cytoplasmic content into the extra-
cellular space; this could include DAMPs and pro-inflammatory
cytokines. Necrotic cell death is thus considered immunogenic

but only if the process is accompanied by the release of stress
signals. Radiation can also modulate the expression of certain
chemokines and cytokines released by both tumor cells and stro-
mal cells (8, 118). However, each single molecule can be both
stimulatory and inhibitory depending on the target cells, concen-
trations, microenvironmental conditions, as well as tumor stage
and type. Importantly, many of these factors are directly respon-
sible for the systemic effects of local irradiation. Among others,
factors such as IFN-γ, GM-CSF, TNF-α, IL-6, IL-10, or TGF-β
account as powerful immune-modulating molecules potentially
modified by IR with properties that can mediate systemic effects
(118–121). Of note, the origin of these cytokines is not restricted
to tumor cells, as also host cells from the tumor microenvironment
constitute an important source (14, 122, 123).

Macrophage (Mϕ) infiltration into tumors is a frequently
observed phenomenon, usually accumulated at the border of
malignant tissues and close to necrotic areas, with a highly vari-
able abundance that depends on tumor-type and stage (124, 125).
The role of Mϕ in anti-tumor immunity is reliant on their phe-
notype, type-1 being considered immune-stimulating and type-2
immune-suppressive. Previous reports have suggested that local
irradiation favors the Mϕ-2 phenotype with tolerogenic functions,
most likely due to RT-induction of immune inhibitory mole-
cules such as COX-2/PGE2 and NO (126). This behavior seems
to be associated with both single high-dose (20 Gy) and fraction-
ated regimens (4 Gy× 15). Moreover, some groups have observed
that tumor-associated Mø (TAM) in high numbers correlates
with increased radio-resistance of tumors (127). Likewise, others
have demonstrated that selective elimination of TAMs increases
radiosensitivity in B16 murine melanomas in vivo (128). Interest-
ingly, recent reports are indicating that low-dose irradiation redi-
rects macrophage differentiation from the immune-suppressive
state (M2) to one that enables recruitment of cytotoxic T-cells
(65) (M1). CD8+ T-cell recruitment and expansion in tumors is
a good prognostic factor in many tumor types, whereas intratu-
moral Tregs are important promoters and stabilizers of immuno-
suppressive conditions, therefore associated with poor prognosis
(129). Preclinical studies on radiation-mediated effects on lym-
phocyte levels and profiles are somewhat contradictory, with some
reports showing positive effects and others showing the oppo-
site (130, 131). Most likely, the conflicting literature available
underlines the fact that the immunological profile of cancers is
tumor-type specific, and that local microenvironmental parame-
ters such as degree of hypoxia, intratumoral pH, tumor stroma
composition, and cytokine milieu are indeed key factors influenc-
ing local and systemic immune-responses after RT. Dendritic cells
are also key elements for proper initiation of adaptive immune
reactions, but are frequently present at low numbers within the
tumor tissues, and very often the infiltrating DC is plasmacytoid
DC or immature DC with a clear immuno-suppressive pheno-
type (132). Immunotherapy aimed at reversing the immuno-
suppressive status of DC contemplates the administration of
cytokines that stimulate DC maturation and/or numbers, or the
local injection of exogenously activated autologous DC (133).
Radiation-induced DAMPs during cell death and the enhanced
amounts of tumor antigens released may exert an impact on
DC activation; thus, following the aforementioned explanations,
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Table 1 | Responses of the various cellular components of the tumor stroma to diverse radiation regimens.

Cell type Tumor type Experimental

model

Radiation

schemes

Effects Reference

Endothelial

cells

AVM (no tumor) Human specimens 15–50 Gy×1 Damage to EC is the earliest change after irradiation; >75% size

reduction in AVM (Arterio-Venous Malformation)

(70)

Brain

metastasis

In silico 20 Gy×1 Occlusion of ≥99% of vessels within 1 year post-RT

Vascular effect calculated to contribute by 19–33% of overall

effect

(59)

Sarcoma

Melanoma

In vivo

In vitro

10 Gy×1 In vitro: EC apoptosis above 10 Gy

In vivo: apoptosis induced in ECs above 15 Gy (local RT)

(61)

– In vivo (a) 8–13 Gy (a)Threshold-value for induction of EC-apoptosis, 1–6 h post-WBR (63)

(b) >17–18 Gy (b) Endothelial-independent GI damage activated; 8–24 h

post-WBR

Sarcoma

Melanoma

Xenografts in

asmase+/+ or −/−

mice

13.5 Gy×1

WBR

Anti-VEGFR2 given (0.5–2 h) before RT upregulates ceramide

levels, resulting in enhanced apoptotic fraction of ECs.

Anti-angiogenic effect fails without elevated ceramide levels

(64)

– Xenograft and

human specimens

(a) <5 Gy (a) Tumor vasculature preserved or improved (13)

(b) 5–10 Gy (b) Mild vascular damage

(c) <10 Gy (c) Severe vascular damage, indirect tumor cell death

Immune

cells

Sarcoma Mice 10 Gy×3 Complete tumor regression by combining DC-immunotherapy

and high-dose RT; no effect as single therapies

(160)

Melanoma

Sarcoma

Mice 8.5 Gy×5 Local and systemic anti-tumor response by combining DC

administration and local oligo-fractionated RT

(161)

Melanoma Mice 15 Gy×1 Increased accumulation of effector CD8+ T-cells upon local RT (131)

3 Gy×5 Stronger immune-responses by single high-dose RT

Melanoma In vitro (1, 4, 10, 25)

Gy×1

A marked increase in cell-surface MHC class-I expression

observed at higher doses (10–25 Gy) over a period of 3 days

(108)

Colon cancer Mice/humans 10 Gy×1 Danger signals released by dying cells after RT as key events for

mounting adaptive immune-responses

(117)
Breast cancer

Sarcoma

Melanoma Mice (15–25) Gy×1 Local and systemic anti-tumor effects after ablative RT depends

on CD8+ T-cell activation

(12)
Lung

Melanoma Mice 25 Gy×1 Local ablative RT trigger intratumoral production of IFN-β,

resulting in enhanced cross-priming ability of DCs and tumor

regression

(134)

Colon Mice 10 Gy×1 High-dose RT elicits tumor-specific immunity by activation of

tumor-associated DCs and CD8+ T-cells, but not via CD4+ or

macrophages

(135)
Lung

Melanoma

Normal

fibroblasts

Normal

fibroblasts

In vitro (0.5, 2, 5, 15,

50) Gy×1

Normal fibroblasts (NFs) survive a radiation dose of 50 Gy

Human NFs exposed to 15 Gy resulted in the highest number of

(140)

up- and down-regulated genes, peaking at 24 and 48 h post-IR

Squamous cell

carcinoma

In vitro 12 Gy

24 Gy

Irradiated NFs promoted growth and invasion of non-irradiated

SCC tumor cells. 12 Gy induced the greatest invasion. TGF-β

expressed only by irradiated fibroblasts

(162)

Skin fibroblasts In vitro 0.5 Gy×1

10 Gy×1

Persistent DNA-damage signaling only at 10 Gy. High-dose

induction of irreversible cell senescence and initiation of cytokine

response

(147)

(Continued)
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Table 1 | Continued

Cell type Tumor type Experimental

model

Radiation

schemes

Effects Reference

Lung Primary lung

fibroblasts

(5, 15, 20, 25)

Gy×1

Cytokine production by NFs exposed to escalating RT doses.

RT doses above 15 Gy triggers enhanced expression of TGF-β

(138)

IL-6, IL-8, and MCP-1 expression by NF unchanged post-RT

Lung In vitro

In vivo

4 Gy×12 Human NFs become senescent after an accumulative dose of

50 Gy, and turn pro-tumorigenic by increased expression of

MMP1

(145)

Cancer-

associated

fibroblasts

Pancreatic

cancer

Co-cultures: CAFs +

adeno-carcinoma

cells

5 Gy

10 Gy

Enhanced invasiveness of pancreatic cancer cells co-cultured

with irradiated CAFs, blocked by antagonist to HGF. Secreted

HGF-levels unchanged after high-dose RT; bFGF-levels enhanced

(157)

Pancreatic

cancer

In vitro

In vivo

100 Gy×1 Conditioned medium from human pancreatic stellate cells

protects pancreatic tumor cells from radiation-induced apoptosis

(163)

Breast cancer Primary CAF cultures 30 Gy×1 Breast CAFs and normal fibroblasts (NF) exhibit high

radio-resistance. CAFs proliferate faster than NFs, and express

higher levels of the tumor protecting factor Survivin

(144)

Pancreatic

cancer

Tumor-derived

primary cells and cell

lines

3.5 Gy×3 Pancreatic stellate cells promote radioprotection of cancer cells

in a β1-integrin dependent manner, and stimulate proliferation of

pancreatic cancer cells in direct co-culture

(164)

Non-small cell

lung cancer

(NSCLC)

In vitro human

primary CAFs

(2, 6, 12, 18)

Gy×1

>12 Gy permanent DDR and induction of cellular senescence (146)

At ablative RT doses: reduction of proliferative and migratory

abilities. Induction of cell surface focal contacts

NSCLC In vitro human

primary CAFs

18 Gy×1 Secretome-analysis after ablative RT: reduced expression of

angiogenic factors SDF-1, Angiopoietin-1, TSP-1; elevated levels

of bFGF; unchanged levels of HGF, IL-6, IL-8, Il-1β, and TNF-α

(14)

different radiation doses and regimens may influence differently
the activation of DC.

Apposite stimulation of the immune system by RT is probably
the most illustrative example of indirect mechanisms contributing
to tumor control, working in parallel to the more widely per-
ceived idea of DNA damage in neoplastic tumor cells. Some of
the first issues that need clarification for optimal induction of
immune-responses are related to radiation dose and fractiona-
tion (103). Several authors claim that high-dose RT mounts a
stronger immune attack against tumors than low-dose RT. This
effect is supported by activation of different immunogenic mech-
anisms such as (a) secretion of higher levels of alarmin protein
HMGB1 by dying tumor cells (10 Gy× 1) (117); (b) increased
intratumoral production of type-I IFN by tumor-associated DCs
(25 Gy× 1) (134); (c) increased number of CD45+ cells infiltrat-
ing tumors (15 Gy× 1), and a higher number of lymphocytes
expressing IFN-γ (131); (d) increased number of tumor-specific
CD8+ T-cells supported by the activation of tumor-infiltrating
DCs (10 Gy× 1) (135); or (e) inducing more efficient matura-
tion of antigen-presenting DCs (135) with enhanced cell-surface
expression of MHC-I (10 Gy× 1) (108). Notably, two reports
have suggested that RT-induced immune-responses depend on
(oligo)fractionated rather than single-dose regimens (113, 136).
Local irradiation of B16-OVA melanoma in mice revealed that a

single (medium-high) dose of 7.5 Gy and above, but not 5 Gy, gen-
erated tumor immunity (136). An intriguing observation in that
study was the fact that at the highest dose tested (15 Gy× 1), the
authors reported intratumoral accumulation of T-regulatory cells,
a reaction that could hinder the adaptive tumor immunity exerted
by RT. In line with the last observation, the immuno-suppressive
cytokine TGF-β (137) in growth medium of irradiated fibroblasts
demonstrated base-line levels after 5 Gy, but significantly increased
levels after 15 and 20 Gy (138). In the study by Dewan et al.
(113), an abscopal effect was observed only when immunotherapy
(anti-CTLA-4 antibodies) was combined with (3–5) fractions of
medium–high-dose RT but not with single-high-dose (20 Gy× 1).
The introduction of such medium–high radiation doses in the
clinics has resulted in corresponding novel oligo-fractionated reg-
imens that clearly contrasts the classical protracted 2 Gy-regimens
typically utilized in curative settings for the last 80 years.

FIBROBLASTS AND THE DIFFERENT RT-REGIMENS
Much of our acquired knowledge on fibroblast responses to
IR emerge from studies aimed at understanding normal tissue
reactions to RT, using normal connective tissue fibroblasts as
experimental models. Genome-wide studies have tried to decode
the overall changes in gene-expression on normal tissue fibrob-
lasts exposed to IR (139–141). After functional categorization
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of differentially expressed genes, those reports clearly reveal that
some central cellular pathways become persistently altered by radi-
ation including DNA-damage responses, regulation of cell-cycle
and proliferation, programed cell death, p53 target-genes, and
some growth factor receptor signaling pathways (142). Similar
responses have been described also for lung-CAFs (143). From
a clinical point-of-view, parameters such as fraction-size and
number of fractions seem to play an important role on fibrob-
last responses to IR. Hence, studies on transcriptome alterations
induced by IR on fibroblasts have revealed marked differences at
escalating radiation doses (140). In another study, ROS scaveng-
ing pathways and ECM remodeling pathways were more potently
altered when fibroblasts were challenged with larger total dose and
fractionated regimens than with single low doses (139).

A common observation made by many laboratories is that
the fibroblast is a rather radioresistant cell-type, surviving sin-
gle doses above 50 Gy in cell culture (140, 144–146). However,
when the radiation dose exceeds 10 Gy, the cellular phenotype
becomes profoundly altered, characterized by induction of irre-
versible DNA-damage response and concomitant development of
stress-induced cellular senescence (146, 147). Senescent fibroblasts
are by definition trapped in a state of permanent growth-arrest,
but are still metabolically active and may therefore influence tissue
responses to damage. In fact, numerous reports have highlighted
the strong influence of senescent fibroblasts in the regulation of
inflammation and the growth of adjacent epithelial cells (148).
In a cancer setting, senescent fibroblasts are considered to play
deleterious roles by contributing to sustained chronic inflamma-
tory reactions, promoting angiogenesis and nourishing growth
and invasion of neoplastic cells. These pro-malignant events are
primarily driven by the release of soluble paracrine factors glob-
ally referred to as the senescence-associated secretory phenotype or
SASP (149, 150). The SASP involves secretion of numerous inflam-
matory mediators, extracellular matrix proteins, proteases, and
growth factors that collectively can render the microenvironment
favorable to tumor growth. However, some authors argue in the
opposite direction. Studies performed on tissue specimens from
the post-irradiated breast indicate that malignant cells may be
observed in irradiated tissues, while tumors often remain in a dor-
mant state (151). A potential explanation to this observation may
rely not only on the intrinsic susceptibility of cancer cells to the
therapy but also on changes in the supportive stroma that makes
the environment non-permissible for tumor regrowth (152).

CANCER-ASSOCIATED FIBROBLASTS AND THE DIFFERENT
RT-REGIMENS
Collectively, most previous literature highlights the pro-malignant
phenotype acquired by fibroblasts after radiation exposure. How-
ever, it should be noticed that the large majority of these studies
have been conducted with normal tissue fibroblasts and/or fibrob-
last cell-lines, but not with resident and activated tumor-associated
fibroblasts. To understand the contribution of CAFs to therapeutic
outcomes after RT, it is utterly important to take into consideration
the activated nature of tumor-resident fibroblasts (123, 153, 154).
Non-irradiated reactive lung-CAFs actively produce numerous
tumor-promoting molecules such as matrix metalloproteases,
inflammatory cytokines, pro-angiogenic factors, and other growth

factors (14). Also non-irradiated (activated) CAFs from skin,
breast, and pancreatic cancer possess a pro-inflammatory signa-
ture, including up-regulated levels of IL-6 (155), SDF-1 (97), and
TGF-β (156). Lung-CAFs exposed to ablative RT (18 Gy) demon-
strated reduced expression of pro-angiogenic molecules such as
SDF-1, angiogenin, and angiopoietin-1, and a concomitant reduc-
tion in migration-rates of ECs. In the context of high-dose RT,
while human diploid fibroblasts demonstrated enhanced levels of
IL-6 (147), primary normal fibroblasts (138) or lung-CAFs did not
show altered expression of this cytokine. Regarding the growth fac-
tors HGF and bFGF, two separate reports have shown unchanged
levels of the first and enhanced levels of the second, after high-dose
RT in lung-CAFs (14) and PCC-CAFs (157). Activation of HGF-
receptor is suggested to contribute to the enhanced invasiveness of
PCCs grown in co-culture with CAFs (157). In xenograft models,
senescent fibroblasts co-transplanted with cancer cells were found
to increase tumorigenic effects on cancer cells (145, 158). However,
the overall tumor regulatory properties of senescent fibroblasts
remain controversial. It is still unresolved if this phenomenon is
tumor-type specific or organ specific, or whether the senescent
phenotype acquired after high-dose radiation exposure is compa-
rable to other forms of senescence. In this regard, some authors
have suggested that cancer promotion by senescent stromal cells
may be restricted to certain organs and tissue types and claim
that the importance of senescent cells needs to be validated in
other tissues than subcutaneously grown tumors (159). All in all,
existing literature on the contribution of irradiated fibroblasts to
cancer relapse or eradication remains puzzling. Dose and fraction-
ation regimens may play a central role on the ultimate response
of CAFs to treatment. Additionally, important aspects such as the
fibroblast-mediated immune-regulatory effects after irradiation
still need to be explored.

CONCLUSIONS AND FUTURE PERSPECTIVES
Today it is widely acknowledged that the non-malignant compo-
nents of solid neoplasms play central roles in the overall responses
of cancers to therapies. Radiation therapy is a unique therapeu-
tic modality that targets a defined tumor-volume, which implies
that all cell types within the radiation field receive the prescribed
radiation dose. This insult provokes the activation of cell death
mechanisms and cell damage programs that greatly influence
the therapeutic outcomes. Accordingly, it becomes a priority task
for the scientific community to uncover all potential side signals
and events occurring during and after the course of radiation in
non-malignant tumor components that could influence tumor
evolution and even the fate of distant metastasis.

Stereotactic ablative RT has recently emerged as a therapeutic
alternative that is already proving its efficacy for treating cancers
with very poor prognosis. The hype created around this therapeu-
tic modality is fostering the interest of scientists to investigate
on the different radiobiological responses elicited on different
tumor constituents by different radiation regimens. In the context
of RT in general, it is utterly important to consider the differ-
ent scenarios represented by variables such as dose-per-fraction,
number of fractions, total dose, and overall treatment time. Thus,
conventional protracted regimens in the clinics comprise mul-
tiple doses (20–36) given at low doses (~2 Gy). On the other
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hand, SART-regimens are meant to be given in few fractions (1–5)
and higher doses (5–30 Gy). However, in vivo and in vitro radio-
biological studies have revealed substantially different responses
triggered by different regimens. For instance, important varia-
tions are observed between single high- or oligo high-doses, both
regimens within the frame of SART. Also, medium–high-doses
(5–10 Gy) may exert critically different responses than high-doses
(>10 Gy). All these observations should alert researchers and prac-
titioners at the time of choosing radiation regimens that are meant
to give optimal outcomes.

Not only malignant cells, but also tumor-infiltrating host cells
respond differently to different radiation regimens. ECs and the
tumor vasculature seem to be preserved at the low doses used in
conventional RT-regimens. On the contrary, damages to tumor
blood vessels are mild at doses ranging 5–10 Gy, and severe at
doses above 10 Gy. On the consequences brought by damages
inflicted to the vasculature by RT, still two confronted argu-
ments remain: does the preservation and/or normalization of
tumor blood vessels in conventional protracted regimens per-
mit a better oxygenation of tumor cells and thus provide higher
radiosensitivity, or will severe ablation of tumor vasculature by
SART aid to a more efficient tumor cell killing by starvation?
The rate of EC damage and the extent of hypoxia are two
important and interconnected factors that add certain degree of
complexity to predict beneficial or detrimental effects elicited
by SART. With the recent enthusiasm and extended clinical
application of high-dose RT in curative settings, exemplified by
SART for lung cancers, these previous results are gaining clinical
relevance.

Tumor-associated fibroblasts are able to repair DNA damages
induced by low radiation doses; however, at doses above 10–12 Gy,
the DNA-damage response becomes permanent and the cells enter
in a permanent stage of senescence. Senescent fibroblasts are meta-
bolically active and may secrete soluble signals and enzymes that
in turn could regulate the growth and behavior of neighboring
cancer cells. It remains to be elucidated if irradiated fibroblasts
or CAFs certainly contribute to tumor evolution post-RT, and if
so which molecules and pathways are implicated in this regula-
tion. Also, it remains uncertain if normal tissue fibroblasts and
CAFs respond in the same way to RT, or if medium–high-doses
(8–10 Gy) exert different effects than higher doses (15–20 Gy) in
these cells.

The notion of using RT for boosting anti-tumor immunity
is not new; however, at present we know that conventional RT
is unable to mount efficient anti-tumor immune-responses as a
single treatment modality. In the new era of SART, the interest
on using radiation as an efficacious immune-stimulant is being
renewed. Evidences in this field are demonstrating that high-dose
regimens are more efficient to trigger both innate and adap-
tive anti-tumor immunity than low-dose regimens. Expression of
alarm signals, induced intratumoral levels of interferons, efficient
maturation of DCs, and controlled immune-regulatory mecha-
nisms count as some of the important mechanisms behind the
effect. Importantly, some reports argue that oligo-fractionated reg-
imens work better than single-high-dose regimens, and also that
medium–high (7–10 Gy) doses may work better than very high
doses (>15 Gy). It is now most widely assumed that radiation

probably can only amplify or augment the pro-immunogenic
status in tumors but will hardly be able to change by itself a
well-settled immuno-suppressive environment into an immune-
stimulating one. Therefore, current research is now focused on the
successful combination of immune modulating therapies and the
optimal RT protocols.

Different cellular components are found in tumors, and as such,
different responses are taking place at the same time incited by
RT. Only if we globally consider all events, in a system biology
way of thinking, could we predict more precisely the ultimate
consequences of the therapy. Dissecting the responses undergone
by the different constituents of the tumor stroma under different
RT-regimens is aiding us to more efficiently choose the adequate
treatment schedules in RT. Finally, concepts such as stereotactic
radiation or high-dose radiation are getting too broad and may
lead to undesired misinterpretations. Given the striking different
responses of cells to small variations in the schedules, a more pre-
cise terminology would be needed among professionals to define
radiation regimens and treatment schedules.
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