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The majority of women who are diagnosed with epithelial ovarian cancer present with
extensive peritoneal carcinomatosis and are rarely cured by conventional chemotherapy.
Ovarian cancer cells typically disseminate by shedding into the peritoneal fluid and implant
on the mesothelium-lined peritoneal surfaces that overlie connective and white adipose
tissues. Emerging evidence indicates that ovarian tumor progression is orchestrated by
dynamic interplay between tumor cells and a variety of stromal cells such as adipocytes,
endothelial cells, fibroblasts, mesenchymal stem cells, macrophages, and other immune
cells. This mini-review discusses the biological significance of the heterotypic cellular inter
actions in the ovarian tumor microenvironment and the therapeutic implications of targeting
these interactions.
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INTRODUCTION

The lethality of epithelial ovarian cancer primarily stems from late
diagnosis. Women who are diagnosed with early-stage, ovarian-
confined tumors have a 5-year survival rate of more than 90%
(1). However, 60% of ovarian cancer patients present with
advanced-stage, disseminated disease, and these women have a
5-year survival rate of less than 30% (1). Despite optimal tumor-
debulking surgery and initial high response rates to platinum—
taxane chemotherapy (70-80%), most patients with advanced-
stage ovarian cancer relapse within 18 months (2). The biological
behavior of ovarian cancer differs markedly from the hematoge-
nous or lymphatic metastasis found for many other types of
tumors. Ovarian cancer can initially progress by extending to adja-
cent pelvic tissues, but mainly disseminates by shedding into the
peritoneal fluid, which transports tumor cells throughout the peri-
toneal cavity (3—5). These cells then implant on the surfaces of
the cavity wall and abdominal organs. The omentum, a fat pad
that extends from the stomach and suspends over the bowel, is
the most frequently involved site (3-5). Seeding of the peritoneal
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CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand;
ECM, extracellular matrix; EGF, epidermal growth factor; FABP4, fatty acid-binding
protein 4; FAP, fibroblast activation protein; FGF, fibroblast growth factor; GFP, green
fluorescent protein; HA, hyaluronic acid; IL, interleukin; LIF, leukemia inhibitory
factor; mAb, monoclonal antibody; M-CSF, macrophage colony stimulating factor;
MMP, matrix metalloproteinase; MSCs, mesenchymal stem cells; PDGE, platelet-
derived growth factor; PDGFR, platelet-derived growth factor receptor; PLD, pegy-
lated liposomal doxorubicin; TAMs, tumor-associated macrophages; TGF-B, trans-
forming growth factor-B; TGFBRI, transforming growth factor-p type I receptor;
TKI, tyrosine kinase inhibitor; Treg, T regulatory; VEGEF, vascular endothelial growth
factor; VEGFR, vascular endothelial growth factor receptor.

cavity with tumor cells is often associated with ascites. It is increas-
ingly recognized that progression of virtually all types of tumors
is dynamically controlled by cross-talk between tumor cells and
stromal cells (6, 7). As discussed below, the peritoneal cavity is a
conducive environment for carcinomatosis, and the receptors and
ligands that mediate interactions between ovarian cancer cells and
stromal cells are candidate targets for new-generation therapies.
Thisarticle is not intended as an exhaustive review of therapies, but
provides an overview of the major cellular constituents of the ovar-
ian tumor microenvironment, the complexity of their regulation,
and focal points for therapeutic intervention.

MESOTHELIAL CELLS

Mesothelial cells are of mesodermal origin and form a pro-
tective monolayer that lines peritoneal, pleural, and pericardial
surfaces (8). Interactions between ovarian cancer cells and peri-
toneal mesothelial cells are mediated by a variety of cell surface
molecules (Figure 1). The ovarian cancer biomarker CA125 has
been implicated in facilitating tumor cell implantation by its
ability to bind mesothelin that is expressed by mesothelial cells
(9). Gonadotropin-releasing hormone receptor signaling stimu-
lates ovarian cancer cell attachment to mesothelial cells in part
by inducing P-cadherin that is expressed in ovarian cancer cells
and in mesothelial cells (10). Several integrins mediate attach-
ment of ovarian cancer cells to mesothelial cells and/or facili-
tate tumor cell interactions with the submesothelial extracellular
matrix (ECM) (11-15). Iwanicki and colleagues identified that
spheroids of ovarian cancer cells displace mesothelial cells to
gain access to the underlying stroma by using myosin-generated
mechanical force that is dependent on a5p1 integrin and talin I
(16). Mesothelial breach has also been found to be facilitated by
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FIGURE 1 | Peritoneal carcinomatosis is orchestrated by cross-talk between ovarian cancer cells, resident peritoneal cells, and other host cells that are
recruited to tumors. Examples of receptors and ligands that facilitate these reciprocal cellular interactions are shown.

CD157, a glycoprotein that is expressed in normal mesothelium
and in 93% (82/88 cases) of ovarian cancers (17).

Because the mesothelium is the first point-of-contact for float-
ing ovarian cancer cells at distal sites, targeting molecules that
promote tumor—mesothelial interactions is a potential strategy
to impede disease progression. Studies of the glycoprotein CD44
highlight several limitations of this approach. CD44 is expressed in
ovarian cancers and binds hyaluronic acid (HA), a glycosamino-
glycan that is synthesized by mesothelial cells (18). Strobel and
colleagues found that treatment with neutralizing monoclonal
antibody (mAb) to CD44 inhibited the number of peritoneal
implants by 70% in ovarian cancer xenograft models, but did not

reduce growth rates of tumors (19). Blocking tumor cell implan-
tation alone might therefore not be therapeutically efficacious.
Furthermore, neutralization of CD44 did not completely block
implantation (19). Other studies have also shown that interac-
tions between ovarian cancer cells and mesothelial cells are only
partially inhibited by mAbs to a single adhesion molecule (13-16).
In a study by Cannistra and colleagues, CD44 was detected in 94%
(15/16 cases) of solid ovarian tumor tissues but in only 25% (2/8
cases) of ascitic tumor cells (18). To effectively block tumor cell
implantation, it is likely that multiple adhesion molecules need to
be targeted and these molecules need to be highly expressed on
free-floating tumor cells.
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ENDOTHELIAL CELLS

Tumor growth depends on the development of a neovascula-
ture that supplies oxygen, nutrients, and growth factors. Increased
angiogenesis as manifested by high tumor microvessel density has
been found by several studies to be predictive of poor outcomes
in ovarian cancer patients (20—22). Angiogenesis is a dynamic
process orchestrated by pro- and anti-angiogenic factors that con-
trol recruitment of endothelial progenitors, growth and matura-
tion of endothelial cells, and organization of endothelial cells into
tubular structures (23, 24). Ovarian cancers express a variety of
pro-angiogenic factors including the vascular endothelial growth
factors (VEGF), fibroblast growth factor (FGF)-2, interleukin (IL)-
6, IL-8, angiopoietin, and platelet-derived growth factor (PDGF)
(25). Stromal fibroblasts and macrophages are also rich sources
of pro-angiogenic factors (Figure 1). VEGF-A has emerged as the
predominant pro-angiogenic factor in ovarian cancer (25) and is
also the causative factor of ascites formation (26).

Agents that target VEGF signaling have been the focus of inten-
sive clinical investigation in ovarian cancer. One major class of
agents includes ligand inhibitors. Aflibercept is a fusion protein
that combines the Fc portion of human IgGl with the princi-
pal ligand-binding domains of VEGF receptor (VEGFR)-1 and
VEGFR-2 (27). Aflibercept is generally well-tolerated, but the end-
point of a >5% response rate was not reached in a Phase II
study of aflibercept in patients with recurrent ovarian cancer (28).
Bevacizumab is a humanized mAb that neutralizes all forms of
VEGE. Two phase Il studies (GOG 170D and AVF 2949g) evaluated
bevacizumab as a single agent in patients with recurrent ovarian
cancer and reported response rates of 21.0 and 15.9%, respectively
(29, 30). Combining bevacizumab with carboplatin and paclitaxel
increased progression-free survival (PFS) by ~3.6 months as com-
pared to standard chemotherapy alone in two phase III studies of
patients with recurrent ovarian cancer (31, 32). Tyrosine kinase
inhibitors (TKIs) are another class of agents that has attracted
substantial interest. Sorafenib inhibits several receptor tyrosine
kinases including VEGFR-2, VEGFR-3, PDGF receptor (PDGFR)-
B, c-kit and Flt-3, and also RAF serine/threonine kinases (33). In
a phase 1II trial of sorafenib, only 2 of 59 evaluable ovarian can-
cer patients had partial responses (34). Several TKIs that inhibit
all three VEGFRs, both PDGFRs and also the FGF receptor have
been undergoing clinical trials in ovarian cancer patients and are
discussed in several recent articles (35-37).

ADIPOCYTES

Omental, mesenteric, and gonadal tissues are major repositories of
visceral white adipose tissues and are frequently colonized by ovar-
ian cancer cells (3, 4). Adipocytes (fat cells) are the predominant
component of adipose tissue. Adipocytes promote proliferation of
breast, colon, and prostate cancer cells and this stimulatory effect is
mediated in part by the adipokine leptin (38—40). Leptin also stim-
ulates ovarian cancer cell growth (41). The mechanism by which
adipocytes promote ovarian cancer growth is a relatively new area
of investigation. Nieman and colleagues identified that omen-
tal adipocytes secrete IL-6, IL-8, chemokine (C-C motif) ligand
2 (CCL2), and tissue inhibitor of metalloproteinases-1, and that
mAbs to each of these factors inhibited chemotaxis of ovarian can-
cer cells toward adipocytes by at least 50% (42). Using co-cultures

of omental adipocytes and ovarian cancer cells, the authors found
that adipocytes stimulate tumor cell proliferation by directly trans-
ferring lipids to tumor cells (42). They also identified that fatty
acid-binding protein 4 (FABP4), a lipid transporter, is more highly
expressed in omental metastases than in primary ovarian tumors
(42). Furthermore, the number of metastatic nodules that devel-
oped in a Fabp4-deficient orthotopic model of ovarian cancer was
only 2% of the number of metastatic nodules that developed in
the wild-type model (42). This elegant study demonstrated that
adipocytes recruit ovarian cancer cells and support tumor growth
through provision of energy (Figure 1), and raises the possibil-
ity that targeting lipid metabolism and/or trafficking could be a
strategy to impede peritoneal growth and spread of ovarian cancer.

CANCER-ASSOCIATED FIBROBLASTS
Cancer-associated fibroblasts (CAFs) are a predominant compo-
nent of the tumor stroma and have a profoundly negative impact
on outcomes of cancer patients (7, 43). CAFs are often distin-
guished from normal fibroblasts by their expression of markers of
myofibroblasts and activated fibroblasts such as a-smooth muscle
actin (aSMA) and fibroblast activation protein (FAP) (7,43). CAFs
derive from various cell types. Endothelial-to-mesenchymal tran-
sition has been identified as a source of CAFs in mouse models of
melanoma and pancreatic cancer (44). CAFs can also derive from
breast cancer cells that have undergone epithelial-to-mesenchymal
transition (45). A study in which xenografts were generated from
green fluorescent protein (GFP)-transfected ovarian cancer cells
found that virtually all aSMA+ stromal cells lacked GFP, sug-
gesting that CAFs did not derive from ovarian cancer cells (46).
Tissue-resident fibroblasts are a major source of CAFs (43, 47)
(Figure 1). Ko and colleagues demonstrated that ovarian cancer
cells induce normal omental fibroblasts to express CAF mark-
ers and mitogenic factors such as IL-6 and chemokine (C-X-C
motif) ligand 12 (CXCL12) that stimulated tumor cell prolifera-
tion (46). Overexpression of the patterning gene HOXA9 increased
the CAF-promoting ability of ovarian cancer cells by activating the
expression of transforming growth factor-p2 (TGF-f2). In turn,
TGF-B2 acted in a paracrine manner on omental fibroblasts and
stimulated a TGF-f auto-regulatory loop in the stroma (46). Inhi-
bition of ovarian cancer cell-derived TGF-B2 in xenograft models
reduced the number of «SMA+ stromal cells in omental implants
by 90% and the tumor mitotic activity by 75% (46). These findings
support a model in which ovarian cancer cells “educate” omental
fibroblasts to become permissive for tumor growth. Studies of
Mitra and colleagues indicate that this programing is controlled in
part by specific microRNAs. These authors identified differences
in microRNA expression patterns in normal omental fibroblasts
and in CAFs isolated from omental tumors, and demonstrated
that altering expression of three microRNAs (miR-31, miR-155,
miR-214) induces normal fibroblasts into CAFs (48).
Mesenchymal stem cells (MSCs) are adult stem cells that can
differentiate into the osteogenic, myogenic, chondrogenic, and adi-
pogenic lineages, and are another source of CAFs. Studies using
animal models of ovarian cancer and other solid tumors have
shown that bone marrow-derived MSCs home to tumors and
transition into CAFs (49-51). White adipose tissues contain abun-
dant MSCs that have multi-potency comparable to that of bone
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marrow MSCs (52). Ovarian cancer cells induce normal adipose
MSCs to acquire features of CAFs (46). Lysophosphatidic acid
is abundant in ovarian cancer ascites and induces CAF features in
adipose MSCs by stimulating TGF- signaling (53). Because of the
propensity of ovarian cancer to involve adipose tissue-rich peri-
toneal sites, adipose MSCs could be a significant source of CAFs
in this disease. Normal cells that express CAF markers have been
detected in omental tissues of ovarian cancer patients without
overt omental metastasis (54). This raises the intriguing possibil-
ity that tumor-derived factors fertilize the omental “soil” before
tumor cells implant.

Cancer-associated fibroblasts express many pro-angiogenic
growth factors, ECM molecules, and matrix metallo-proteinases
(MMPs) (7, 43). CAFs stimulate ovarian cancer cell invasiveness
and the abundance of CAFs in ovarian cancers correlates with
microvessel density (54). Omental fibroblasts that are stimulated
by ovarian cancer cells have been found to secrete levels of VEGF-A
and IL-6 that are, respectively, 5- and 10-fold higher than the lev-
els secreted by unstimulated fibroblasts (46). A study by McLean
and colleagues revealed that CAFs might drive ovarian tumor pro-
gression by expanding the cancer stem cell pool. These authors
identified that propagating ovarian cancer cells with MSCs isolated
from ovarian tumor tissues increased the number of cancer stem
cells and that this enhancement was due in part to MSC-derived
bone morphogenetic protein 2 (55).

Because CAFs express growth factors that stimulate tumor cell
proliferation, metastasis, and angiogenesis (Figure 1), one strat-
egy to inhibit the tumor-promoting ability of CAFs is to use agents
that neutralize these growth factors. Another approach is to pre-
vent normal fibroblasts and MSCs from transitioning into CAFs by
inhibiting TGF-f signaling. A number of TGF-f inhibitors, such as
ligand traps, antisense oligonucleotides, and TGF-f type I recep-
tor (TGFBRI) kinase inhibitors, have been evaluated in pre-clinical
and clinical studies (56, 57). Cai and colleagues found that treating
mice with the TGFBRI inhibitor A83-01 reduced the abundance of
aSMA+ stromal cells in ovarian tumor xenografts by 50% but did
not increase survival (58). CAFs express PDGFRs (43) and could
be inhibited by TKIs that target these receptors. Several studies
have targeted the serine protease FAP. Depletion of FAP inhibited
stromagenesis, tumor growth, and angiogenesis in mouse models
of lung and colon cancers (59). A FAP mAb has been found to
be well-tolerated but failed to show efficacy in a clinical trial of
patients with colorectal cancer (60). A prodrug that consists of a
FAP-specific peptide coupled to a cytotoxic analog of thapsigargin,
induced stromal cell death in prostate and breast tumor xenografts
and decreased tumor volumes by ~70% (61).

TUMOR-ASSOCIATED MACROPHAGES AND OTHER IMMUNE
CELLS

Tumor-associated macrophages (TAMs) are the major immune
component of the tumor stroma and derive from monocyte pre-
cursors that are recruited to tumors (6, 62—-64). Ovarian cancer
cells express factors that stimulate monocyte chemotaxis and mat-
uration such as CCL2 and macrophage colony stimulating factor
(M-CSF) (65, 66). Analogous to the Th1/Th2 dichotomy of T cell
responses, macrophages exhibit polarized phenotypes in response
to different signals. Stimulation of macrophages with microbial

agents or interferon-y induces an M1 phenotype that is character-
ized by expression of immunostimulatory cytokines. In contrast,
stimulation with IL-4, IL-10, or IL-13 induces an M2 pheno-
type that is characterized by the expression of immunosuppressive
cytokines (62, 63). It is widely recognized that TAMs exhibit an M2
phenotype and that normal macrophages are “educated” by tumor
cells to transition into TAMs (62—64) (Figure 1). Macrophages
polarize toward an M2 phenotype when stimulated with ovarian
cancer ascites (67, 68). This polarization was initially attributed
to IL-10 because ascites contain only low levels of IL-4 and IL-
13 (62). However, IL-6 and leukemia inhibitory factor (LIF) are
present at high levels in patient ascites and also induce differentia-
tion of monocytes into TAMs (67). It has also been recently shown
that ovarian tumor-derived TGF-B2 and CCL2 stimulate normal
peritoneal macrophages to acquire features of TAMs (69).

TAMs are strongly associated with poor outcomes in cancer
patients (64). Studies of breast cancer have revealed that TAMs
are rich sources of epidermal growth factor (EGF), MMPs, and
pro-angiogenic factors such as VEGF-A (70, 71). An important
mechanism by which TAMs promote tumor progression is by sup-
pressing adaptive immunity. TAMs have poor antigen presentation
capability and highly express IL-10, TGF-8, CCL17, CCL18, and
CCL22 (62, 63). IL-10 and TGF-B inhibit dendritic cell matura-
tion and T cell proliferation (62, 63). CCL18 induces naive T cell
anergy and has been found to be the most abundant chemokine
present in ovarian cancer ascites (72). CCL17 and CCL22 skew T
cells toward a Th2 direction (62, 63). In a study of ovarian cancers,
Curiel and colleagues identified that TAMs and also tumor cells
produce CCL22, which mediated the recruitment of T regulatory
(Treg) cells to tumors (73). Treg cells were found to contribute
to ovarian tumor growth by suppressing tumor-specific T cell
immunity and to be predictive of poor patient survival (73). Rec-
iprocally, Treg cells can promote TAMs as Treg cells express IL-4,
IL-10, and IL-13 that induce M2 polarization of macrophages (74)
(Figure 1).

Targeting of TAMs is still in its infancy, but has a strong appli-
cation to ovarian cancer because macrophages are abundant in
ascites. One potential strategy is to “re-educate” TAMs toward
a tumoridical M1 phenotype. Inhibition of NF-kB signaling in
TAMs has been found to induce an M2-to-M1 switch and lead
to regression of ovarian tumor xenografts (75). Another possibil-
ity is to inhibit Stat3, which is activated in macrophages that are
polarized toward an M2 phenotype by ovarian cancer ascites (68).
Because of its ability to stimulate monocyte chemotaxis and M2
polarization, CCL2 is an attractive target. Treatment of mice bear-
ing metastatic prostate cancer with CCL2 mADb has been reported
to inhibit the overall tumor burden by 96% (76). Trabectedin is a
DNA-damaging alkaloid that has been found to also inhibit CCL2
and IL-6 production and to inhibit differentiation of monocytes
into macrophages (77). Selective toxicity of trabectedin for TAMs
has been demonstrated in ovarian cancer xenograft models and in
patient specimens (77,78). Trabectedin in combination with pegy-
lated liposomal doxorubicin (PLD) has been approved in Europe
for treatment of platinum-sensitive recurrent ovarian cancer. In
a pivotal Phase III trial (OVA-301), the combination of trabecte-
din and PLD was found to be more effective than PLD alone for
patients with platinum-sensitive recurrent disease, with a higher
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response rate (35.3 vs. 22.6%) and increased PFS (median PFS 9.2
vs. 7.5 months) (79).

CONCLUSION

The studies to date have revealed that the peritoneal cavity is a
highly receptive environment for carcinomatosis, and that pro-
gression of ovarian cancer is dynamically orchestrated by a com-
plex network of receptor/ligand-mediated interactions between
tumor cells, resident peritoneal cells, and other host cells that are
recruited to tumors. Several of these receptors and ligands are
targeted by agents that are in clinical use, while others are under
clinical development. Because many of the ligands stimulate mul-
tiple cell types, a priority for future studies is to delineate the
impact on different cell populations of neutralizing these ligands.
In addition, the effects of inhibitory agents on ovarian cancer cells
need to be evaluated in solid tumor tissues and also in free-floating
tumor cells. Furthermore, determining the optimal combinations
of stromal-targeting agents with conventional chemotherapy or
other targeted therapies and the appropriate clinical setting for
their use are key priorities for future studies.
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