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Glioblastoma multiforme (GBM) is the most common primary intrinsic central nervous sys-
tem tumor and has an extremely poor overall survival with only 10% patients being alive
after 5 years. There has been interesting preliminary evidence suggesting that diabetic
patients receiving peroxisome proliferator-activated receptor gamma (PPARγ) agonists,
a group of anti-diabetic, thiazolidinedione drugs, have an increased median survival for
glioblastoma. Although thiazolidinediones are effective oral medications for type 2 diabetes,
certain agonists carry the risk for congestive heart failure, myocardial infarction, cardio-
vascular disease, bone loss, weight gain, and fluid retention as side-effects. The nuclear
receptor transcription factor PPARγ has been found to be expressed in high grade gliomas,
and its activation has been shown to have several antineoplastic effects on human and
rat glioma cell lines, and in some instances an additional protective increase in antioxidant
enzymes has been observed in normal astrocytes. At present, no clinical trials are under-
way with regards to treating glioma patients using PPARγ agonists. This review presents
the case for evaluating the potential of PPARγ agonists as novel adjuvants in the treatment
of refractory high grade glioma.
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INTRODUCTION
The PPARs are ligand-inducible transcription factors of the
nuclear receptor superfamily (1). There are three PPARs expressed
in mammalian tissues: PPARα is primarily expressed in the heart,
liver, and brown adipose tissue; PPARβ/δ is ubiquitously expressed;
and PPARγ is most highly expressed in white and brown adipose
tissue (2).

The PPARs control complex gene expression involved in lipid
metabolism and adipogenesis, as well as inflammation, and meta-
bolic homeostasis (3). Under healthy conditions, PPARs are
primarily receptors for dietary fats such as oleic, linoleic, and
linolenic acids, and also bind diverse lipid metabolites, for exam-
ple prostaglandin J2, 8S-hydroxyeicosatetraenoic acid, and oxi-
dized phospholipids (4). Ligand binding induces a conformational
change in the receptor that allows modulation of PPAR activity
via differential recruitment of cofactors and histone modifica-
tion enzymes. For a detailed account of PPARγ signaling and
metabolism, see the review by Ahmadian (5).

Recent studies using high throughput genome-wide transcrip-
tional regulation techniques have now revealed the comprehen-
sive distribution of binding-sites of PPARγ in adipocytes and
macrophages (6). PPARγ has been found to be key for adipocyte
differentiation using PPARγ knockout mice, which are entirely
devoid of adipose tissue (7). All PPARs have been isolated from
both developing and adult brain tissue (8), and it has been pos-
tulated that activation of the PPAR pathway could have a role in
determining neuron viability in the developing midbrain (9).

PPARγ has two isoforms due to differential promoter usage and
alternative splicing: PPARγ1 which is expressed in many tissues

and PPARγ2, which under normal conditions is present in adi-
pose tissue, but can be induced by a high fat diet to be expressed
in other tissues. PPARγ forms a heterodimer with retinoid-X-
receptor (RXR) to bind ligand efficiently, after which the receptor
ligand complex binds DNA and induces signal transactivation (10)
(see Figure 1).

PPARγ IN NEOPLASIA
A recent retrospective clinical review by Grommes showed that
diabetic GBM patients treated with PPARγ agonists exhibited an
increased median survival of 19 months compared to patients
receiving the standard treatment for GBM alone, for whom median
survival was 6 months (11). However, the group of patients eligi-
ble for statistical analysis was small so the negative correlation
between PPARγ agonist use and GBM development was not
found to be significant (11). A study has been conducted to
determine whether there is a somatic mutation of the PPARG
gene with high penetrance that might play a role in the devel-
opment of GBM (12). Although no high penetrance mutations
were found, two polymorphisms were identified, one at codon 12
(PPARGP12A) and the other at codon 449 (PPARGH449H) of the
PPARG gene, and these were found to be highly over-represented
in patients with GBM when compared to the matched control
group (12). Thirty-three percent of the GBM patients were found
to be heterozygous for the PPARGP12A allele (a CCA to GCA poly-
morphism causing a change from proline to alanine) (12). The
PPARGH449H polymorphism (a CAC to CAT change, though the
amino acid remains a histidine) appeared to have much higher
levels of over-representation, as it demonstrated homozygous
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FIGURE 1 | PPARγ and RXR heterodimer binding to the PPARγ genomic binding site in DNA causing transcriptional activation of target genes active
in cell-cycle arrest, reduced expression of stemness markers, initiation of apoptosis, and re-differentiation.

expression in 50% of GBM patients and only 12% of the control
group (12).

The study was repeated with German participants and no
deviation was found from the normal representation in the pop-
ulation of either polymorphism (12). However, this could be
explained by the variants in the original study being in a link-
age disequilibrium, which would be corollary to the founder effect
with a relatively new founding allele (12). Preliminary analysis
of the PPARGP12A and PPARGH449H polymorphisms found that
there was no over-representation or under-representation of these
alleles in patient populations with other types of cancers (e.g.,
melanoma or breast), which suggests that the effect is specific for
glioma (12).

PPARγ expression has been described in a range of other neo-
plasias including colon, lung, prostate, bladder, breast, duodenal,
and thyroid (13–19). Interestingly in colon cancer there are dif-
fering older reports as to the effect of PPARγ agonists. Some
in vitro studies describe differentiation, reduction of malignancy,
and inhibition of anchorage-independence in colon cancer (20)
whereas in other mouse models enhancement of polyp formation
has been observed (21). It has been put forward by Sarraf et al.
(13) that PPARγ exhibits tumor suppressive activities in colon
cancer because several functionally deleterious PPARG mutations
have been found in cases of sporadic colon cancer. However, in
the case of colon cancers with known deletions in the APC (ade-
nomatous polyposis coli) tumor suppressor gene, PPARγ agonists
appear to promote tumor growth, and increase the number of
colon polyps, possibly by increasing the uptake of dietary fat (21).
In human bladder cancer, PPARγ agonists troglitazone and 15d-
PGJ2 have shown to inhibit tumor growth (22). By contrast, in
an investigation in rats of the effect of Naveglitazar, a PPARα/γ
dual agonist showed a significant increase in bladder neoplasms.
(23). In another study to determine if rosiglitazone had chemo-
preventive activity, female rats were treated with different doses
of rosiglitazone plus a urinary bladder-specific carcinogen, and

it was found that larger cancers developed compared with rats
treated with the bladder carcinogen alone (24). However, no
apparent activity of rosiglitazone as a complete carcinogen was
observed. (24). Additionally, the effects were only recorded in
females and it was postulated that this could be due to irritant
effects. However, the effects were observed rapidly after adminis-
tration with rosiglitazone, contesting a long-term chemical irritant
effect (24).

It is important to mention that many of the carcinogenic effects
of the agonists for the nuclear receptor PPARγ are highly species
specific; i.e., observed in rodents but not humans or other higher
order mammals.

CURRENT RESEARCH INTO PPARγ AGONISTS AND
GLIOBLASTOMA MULTIFORME
BRAIN TUMOR GROWTH INHIBITION
One of the important hallmarks of cancer is a proliferative advan-
tage over normal tissue. One possible mechanism by which PPARγ

agonists can inhibit cell proliferation is by induction of cell-cycle
arrest in G0/G1 phase (25–27), and a reduction of the proportion
of cells entering S-phase (25, 27). In concordance with this finding,
decreased levels of MYC have also been detected upstream of the
S-phase transition (25, 28), as well as possible down-regulation
of CCND1 (cyclin D1) and associated cyclin-dependent kinases
(25, 28). The decreased proportion of cells entering S-phase in
response to PPARγ agonists has also been linked to up-regulation
of the cyclin-dependent kinase inhibitors CDKN1A, CDKN1B,
and CDKN2B (25, 27).

PPARγ agonists have also been found to inhibit the expan-
sion and proliferation of CD133+ brain tumors stem cells
(BTSCs, also termed Brain Tumor Initiating Cells) by inhibiting
the Janus kinase/signal transducer and activator of transcrip-
tion (JAK/STAT) pathway using ciglitazone, 15-deoxy-∆12,14-
prostaglandin J2 (15d-PGJ2), and all-trans retinoic acid (ATRA)
(26, 29).
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JAK/STAT signaling is particularly important in the anti-
tumor activity of PPARγ agonists because the inhibition of JAK2
(upstream regulator of STAT3) has been shown to have a role
in slowing the disease progression of GBM in vivo and in vitro
models (30), and troglitazone has been described as an antagonist
for STAT3 signaling (31). Antagonists for the JAK/STAT pathway
work by phosphorylating tyrosine 705 of STAT3 leading to down-
regulation of CCND1 and BCL2L1 (B-cell lymphoma protein 2
extra large) which act to push cells through the cell-cycle and
prevent apoptotic cell death (30). High levels of STAT3 signal-
ing have been noted in BTSCs, and inhibition of this has been
shown to decrease BTSC resistance to temozolomide (32), which
is promising with regards to use of PPARγ agonists as an adju-
vant therapy in GBM. Glioma cell lines have been found to have a
much higher rate of cellular metabolism, which can be significantly
increased by addition of troglitazone (33). Therefore, glioma cells
will suffer nutrient deprivation and could be more susceptible to
cytotoxic killing than normal astrocytes (33), an effect which is
thought to be mediated by reactive oxygen species produced by
mitochondria (34).

GLIOMA CELL DIFFERENTIATION
One of the ways that PPARγ could counteract the malignant prop-
erties of BTSCs is via regulation of genes involved in maintaining
a stem cell state termed “stemness genes” as well as differentia-
tion. This is important in the cases of grade III and IV glioma,
as the BTSCs may be responsible for the recurrence and growth
of the malignant tissue through mechanisms such as self-renewal
(35, 36).

Many stemness genes have been found to be down-regulated
by activation of the PPARγ pathway by the agonists ciglitazone
and 15-PGJ2, though ATRA treated cells showed no significant
difference. An example of a stemness gene down-regulated by
PPARγ agonists is SOX2, which is important in maintaining
pluripotency in stem cells, and plays a role in repressing neural
differentiation as it is over-expressed in BTSCs but remains at
low levels of expression in normal tissue (37). In studies assess-
ing the decrease in expression of stemness genes, mouse neural
stem cells were cultured using epidermal growth factor and
basic fibroblast growth factor to stimulate expression of stem-
ness markers, and the changes in levels of expression were ana-
lyzed using TaqMan low density gene arrays following treatment
with PPAR agonists (35, 36). Most stemness genes monitored
exhibited down-regulated expression; however expression of NOG
appeared to be up-regulated, possibly because it is involved in
neurogenesis and developmental patterning of the brain across
the anterior–posterior axis (38). It has been suggested that the
change in expression of stemness genes means that PPARγ agonists
can modulate differentiation via regulation of stemness factors
(35, 36).

Another way that PPARγ has been found to regulate differ-
entiation of neural stem cells is by inducing expression of dif-
ferentiation genes (35, 36). Expression of differentiation markers
was also analyzed in similar experiments to those described above,
and it was found that PPARγ agonists increased expression of
glial cell markers in T98G and DB29 BTSCs. Compared to a
dimethyl sulfoxide control, ciglitazone, ATRA, and 15d-PGJ2 all

resulted in an increased expression of genes such as GFAP (glial
fibrillary acidic protein) and TUBB3 (βIII-tubulin), specific to
neuronal cells (35, 36). Also, human and rat cell lines treated
with PPARγ agonists have been found to transiently increase
their expression of CDH2 (N-cadherin), a neural differentia-
tion marker, as well as showing outgrowth with a morphology
similar to that of normal astrocytes (39). This suggests that acti-
vation of the PPARγ pathway can control differentiation of neural
progenitor cells via modulating expression of neural differentia-
tion genes as well as those involved in maintaining pluripotency
(35, 36).

REDUCTION OF LOCAL INVASIVENESS
Another effect of PPARγ agonists on glioma tissue is to reduce local
tissue invasiveness (28, 40, 41). Invasion of malignant cells into
nearby healthy brain tissue in glioma patients may be mainly medi-
ated by matrix metalloproteinases MMP-2 and MMP-9 which
exhibit elevated expression in tumor progression (42). MMP-
2 and MMP-9 expression has been monitored before and after
administration of pioglitazone using immunohistochemical assays
(40, 41). Both MMP-2 and MMP-9 have independently been
found to be down-regulated after treatment with pioglitazone,
suggesting the role of PPARγ agonists in reducing glioma cell
invasiveness (28, 40, 41). Also, as differentiation marker expres-
sion increases in expression after addition of PPARγ agonists, this
implies that the cellular phenotype becomes less invasive via dif-
ferentiation as well as reduction of expression of malignant cell
markers (41).

Pioglitazone has also been found to reduce CTNNB1 (β-
catenin) expression without changing its cellular localization (28).
CTNNB1 controls the expression levels of CDH1 (E-cadherin) to
mediate cellular attachments and is often over-expressed in high
grade glioma when compared to low grade or normal tissue (43).
This is a possible mechanism by which reduction of CTNNB1
expression by PPARγ agonists could contribute to inhibition of
the loss of cellular attachments, as well as reducing the transcrip-
tion of tumor-promoting target genes of CTNNB1 such as CCND1
and MYC (28).

INDUCTION OF APOPTOSIS
One of the most well understood responses of glioma cells
to PPARγ agonists is a reduction of cellular viability which
leads to the induction of apoptosis (26–28, 33, 39, 41). Many
papers have shown that treatment of cell lines with pioglita-
zone and related TZDs can lead to specific apoptosis of glioma
cells in a concentration-dependent fashion associated with cell-
cycle arrest, while sparing normal primary astrocytes (26–28, 33,
39, 41).

This effect could be mediated by BAX-dependent mechanisms,
as BAX up-regulation is often detected via an increase in pro-
tein levels after activation of PPARγ (25, 27, 39, 41). Further-
more, studies have shown that transfection of cells with anti-
sense oligonucleotides for BAX nullified the effect of the PPARγ

agonist treatment (39). Alternatively, BCL2 has been found to
be down-regulated following administration of the same treat-
ment (25, 27). Increases of protein activity of major execu-
tioner caspases CASP3 (27, 33, 41) and CASP7 (33) have also
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been described in response to a PPARα/γ dual agonist and
troglitazone.

CATALASE ACTIVITY
Catalase is an enzyme involved in the neutralization of reactive
oxygen species and its gene contains a PPAR genomic binding site
(44). Studies have suggested that the cytotoxic effect of PPARγ

agonists on glioma cells is partially mediated by enhanced redox
reactions (44).

In in vitro rat cell models, activation of PPARγ transcription
has been shown to upregulate catalase activity in normal astro-
cytes, but not in the glioma C6 cell line (44).Moreover, this effect
was abolished in cells transfected with a dominant negative PPARγ

construct (44).
This area requires further experimentation using human cell

lines, as catalase could be a possible redox-dependent target for

Table 1 | A summary of the PPARγ agonists referred to in this review

and their current status with regards to clinical application.

PPARγ

agonist

Clinical use Extra information

Pioglitazone FDA-approved

for diabetes

mellitus type II

Activates PPARγ to increase insulin

sensitivity, also activates PPARα to alter

lipid metabolism (46)

Rosiglitazone FDA-approved

for diabetes

mellitus type II

Reduced use due to increased

association with myocardial infarction

and death compared to pioglitazone (47)

Troglitazone Withdrawn due

to severe liver

complications

Had additional anti-inflammatory effect

as well as antioxidant effects via PPARα

and PPARγ activation (48)

Ciglitazone N/A The prototypic glitazone in treatment of

diabetes from which other PPAR

agonists were designed (49)

15d-PGJ2 N/A Prostaglandin recognized as the

endogenous ligand for the PPARγ

receptor (50)

protection of normal astrocytes from the reactive oxygen species
produced by intensive therapies such as radiation.

LIMITING FACTORS
Rosiglitazone and pioglitazone are currently the only TZDs FDA-
approved for clinical use, summarized in Table 1. It has been
found that use of certain thiazolidinediones in treatment of
diabetes mellitus can increase risk of congestive heart failure,
myocardial infarction, cardiovascular disease, bone loss, weight
gain, and fluid retention. Meta-analysis of eight studies involving
945,286 patients found that compared to pioglitazone, rosiglita-
zone administration conferred an increased risk of overall mor-
tality as well as heart failure and myocardial infarction (4). The
findings of this meta-analysis and the issue of cardiovascular
side-effects due to administration of rosiglitazone remains con-
troversial, and this has lead to a dramatic reduction in its use
in clinical treatment of diabetes (45) with some countries with-
drawing it from the market altogether. Additionally the doses
used experimentally to activate the antineoplastic effects medi-
ated by PPARγ have been observed to be much higher than
the doses used in treatment of diabetes, even with differences
of orders of magnitude (19, 35). The constitutively high lev-
els of PPARγ expression in adipose tissues (when compared to
expression levels in the brain) raises the possibility of systemic
adverse side-effects from off-target activation of the PPARγ path-
way by TZDs in increased. The biological benefits and detri-
mental side-effects of PPARγ use in GBM are summarized in
Figure 2.

In conclusion, we examined the biological rationale for the
use of PPAR agonists in glioblastoma, in particular brain tumor
growth inhibition, glioma cell differentiation, inhibition of apop-
tosis, and increased catalase activity. The potential for the use of
these agents in this GBM may be limited by recently described
side-effects in this group of agents, and the variation between
expression levels of PPARγ in different tissues.

However, in patients with such a universal poor prognosis fur-
ther investigation into this pathway is justified on the basis of
preliminary epidemiological data. Advances in knowledge of the
PPAR pathway in GBM may identify new cellular targets for brain
tumor therapies.

FIGURE 2 | A summary of the biological effects induced by PPARγ agonist use in GBM in vitro and in vivo, and the drawbacks associated with PPARγ

agonist use in clinical treatment of diabetes mellitus.
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