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The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists
to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s
genetic material and can lead to genomic instability, apoptosis, or senescence. Incor
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due to unregulated growth and errors in repair opens up a potential therapeutic window in
the treatment of cancers.The cellular response to DNA DSBs is comprised of two pathways
to ensure DNA breaks are repaired: homologous recombination and non-homologous end
joining. ldentifying chemotherapeutic compounds targeting proteins involved in these DNA
repair pathways has shown promise as a cancer therapy for patients, either as a monother
apy or in combination with genotoxic drugs. From the beginning, there have been a number
of chemotherapeutic compounds that have yielded successful responses in the clinic, a
number that have failed (CGK-733 and iniparib), and a number of promising targets for
future studies identified. This review looks in detail at how the cell responds to these DNA
DSBs and investigates the chemotherapeutic avenues that have been and are currently
being explored to target this repair process.
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INTRODUCTION

Genomic stability at a cellular level requires precise, tightly coor-
dinated pathways to detect DNA damage and either repair the
damage or, if the damage is too great, ensure the cell dies via apop-
tosis or enters senescence. Organisms have evolved complex DNA
damage response (DDR) pathways to respond to insults to the
DNA either from endogenous (cellular metabolic pathways, reac-
tive oxygen species, and errors in DNA replication) or exogenous
sources [environmental factors including ionizing radiation (IR)
and ultra violet radiation].

Cellular DNA damage that is not repaired correctly can
lead to genomic instability, apoptosis, or senescence, which can
greatly affect the organism’s development and aging process and
in addition can predispose the organism to immunodeficiency,
neurological disorders, and cancer.

DDR AND REPAIR PATHWAYS
Following the initial work on the DDR in yeast, investigations into
the DDR in mammals have yielded a highly conserved and elab-
orate process. This process mainly controls DNA repair (ensuring
genomic stability) and cell cycle checkpoints, however it has also
been shown to be involved in circadian rhythms (1), insulin
signaling (2), and telomere maintenance (3).

The DDR pathway encompasses a set of tightly coordinated
processes: detection of DNA damage, a protein cascade to enhance

the signal, the accumulation of repair factors at the site of damage,
and physical repair of the damage. The DDR also induces cell cycle
checkpoints to ensure the damaged cells do not continue dividing
until the DNA damage is repaired. To ensure genomic stability, the
DDR must be able to recognize all types of DNA structural alter-
ations, including nicks, gaps, stalled replication, and double-strand
breaks (DSBs).

Depending on the type of DNA lesion, there are a num-
ber of DNA repair pathways available for the cell to repair the
alteration, including homologous recombination (HR) and non-
homologous end joining (NHE]) for DNA DSBs; and mismatch
repair (MMR), nucleotide excision repair (NER), and base excision
repair (BER) for single DNA strand damage.

Highlighting the importance of the DDR, mutations in a num-
ber of repair proteins lead to human syndromes, which include
multiple cancers, immunodeficiency, and genomic instability phe-
notypes. Ataxia telangiectasia mutated (ATM), a protein involved
in the DDR is mutated in the syndrome ataxia telangiectasia (AT)
(4). AT is a cancer-prone syndrome that also includes progressive
cerebellar ataxia, telangiectasia’s of the conjunctivae, and immun-
odeficiency. Consistent with ATM’s role in the DDR, AT patients
presented a high level of sensitivity to radiation (5). Nijmegen
breakage syndrome (NBS) is another syndrome where the key
cause of the disease is a mutation in a protein involved in the
DDR, NBS1. NBS1 is involved in the detection of DSBs as part
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of a complex of proteins including Mrell and Rad50. NBS is
a cancer-prone syndrome that is also characterized by progres-
sive microcephaly, short stature, and progressive ovarian failure in
females (6).

Current chemotherapeutic compounds development is largely
focused in targeting proteins specific to pathways important to
the development, growth, and progression of cancer. DSBs are
the most deleterious lesion to cells, where unrepaired DSBs can
lead to cell death and incorrectly repaired DSBs have the potential
to produce chromosomal translocations and genomic instability,
potentially leading to cancer. Targeting the repair proteins involved
in the repair of DSBs with chemotherapeutic compounds has
the potential for cancer therapies in conjunction with radiation
therapy or as a monotherapy.

CHEMOTHERAPEUTIC COMPOUNDS

Double-strand breaks are highly cytotoxic and this fact is exploited
in conventional cancer treatment, with radiation therapy and
chemotherapeutic drugs treatments generating vast amounts of
DSBs. These include chemotherapeutic drugs that induce DNA
cross-links or function as topoisomerase inhibitors, inducing the
generation of DSB’s in all cells. However, cancer cells are much
more susceptible to these drugs, as they are rapidly dividing and
often have inactivated components of their DNA repair machinery
and deregulated cell cycle checkpoints (7).

However, these chemotherapeutic drugs will also target nor-
mal proliferating cells that are dividing as part of their nor-
mal processes. These naturally regenerating tissues include bone
marrow, gastrointestinal tract, liver, and hair follicles. The for-
mation of secondary hematologic and solid tumors after DNA-
damaging therapies is a potential issue for patients undergoing
treatment (8).

A number of chemotherapeutic compounds are used in
conjunction with radiotherapy or in combination with other
chemotherapeutic agents to produce a synergistic effect. The use of
radiosensitizing agents that increase the cytotoxic effects of radi-
ation on cancer cells and radioprotective agents that decrease the
adverse effects of radiation on normal cells (by increasing their
radioresistance) is common. The use of radiosensitizing agents
can greatly enhance the efficacy of radiotherapy and genotoxic
drugs. Recently, chemotherapeutic compounds have been studied
that may also be useful as a monotherapy, where the chemothera-
peutic compound achieves what is termed as “synthetic lethality.”
Synthetic lethality exploits the fact that many cancer cells acquire
defects in DNA repair pathways and become dependent on a com-
pensatory mechanism in order to survive (9, 10). Inhibition of the
complementary DNA repair pathway selectively kills cancer cells
that have a defect in a particular DNA repair pathway.

The safety, tolerability, pharmacokinetics, and efficacy of poten-
tial chemotherapeutic compounds have to be carefully validated
before they may enter clinical trials to determine the benefits for
cancer therapy. This means there is a significant delay between the
initial discovery of a potential chemotherapeutic compound in the
laboratory, to an actual clinical outcome for patients, however this
delay ensures patient safety.

This review will focus on the pathways responsible for the repair
of DSBs, namely HR and NHEJ, and the current chemotherapeutic

compounds that are being investigated that target these repair
pathways.

THE DDR TARGETS AND CHEMOTHERAPEUTIC COMPOUNDS
DNA DSBs are considered the most cytotoxic of DNA lesions. Cells
are estimated to accumulate around 50 endogenous DSBs per day,
mostly induced by reactive oxygen species (11). In response to
DSBs, the DDR utilizes two main pathways to repair the damage.
During late S-phase and the G2 phase, cells have a sister chro-
matid available as a template for targeted HR, which allows for
error-free repair of the DNA damage. However, DSBs that occur
when there is no sister chromatid available are repaired via NHE],
which is more error-prone than HR. NHE] is also active in S and
G2 phases of the cell cycle and remains the predominant pathway
by which cells repair DSBs. In NHE], the two ends of the break are
joined together (ligated), though this can involve resection with
the consequent loss of genetic material (12). Cancer therapy agents
induce DSBs including IR and topoisomerase II poisons, and also
indirectly via single-stranded DNA (ssDNA) lesions which induce
replication forks collapse, leading to DSB formation (13).

HOMOLOGOUS RECOMBINATION AND CHEMOTHERAPEUTIC
COMPOUNDS TARGETS

Following the induction of a DSB, the Mre11/Rad50/NBS1 (MRN)
complex is recruited to the break site by human single-stranded
binding protein 1 (hSSB1) (14-16). MRN binds to the DNA sur-
rounding the lesion and resects the DNA around the break in a
5'-3" dependent direction. This acts as a signal to recruit other
DDR proteins. This resection by the MRN complex is stimulated
in the early stages of HR by an interaction with CtIP (17, 18).
Following initiation of resection by Mrell, Exol performs more
extensive resection to expose long stretches of ssDNA (19-21).
Replication protein A (RPA), a ssDNA binding heteromeric com-
plex, binds to the exposed ssDNA and is retained at the lesion
site by BRCA1 (22). The binding of RPA to the ssDNA substrate
ensures that secondary structures are not formed in the DNA and
protects the ssDNA from nucleases. RPA is displaced from the
DNA by the recombinase Rad51, which isloaded by BRCA2. Rad51
forms a nucleoprotein filament along the ssDNA and functions to
allow strand invasion of the sister chromatid (23). Once the DSB
is resolved, the DNA is ligated together, completing the process
of HR (24). There are a number of key proteins involved in HR
that are currently therapeutic targets or have been identified as
potential targets (see Figure 1).

THE MRN COMPLEX

Human single-stranded binding protein 1 serves as the primary
sensor of DSBs and is also involved in the early steps of HR through
the recruitment of the MRN complex (14-16). Once recruited,
the MRN complex specifically functions in the resection of DNA
ends, activates the ATM kinase, and subsequently activates the cell
cycle checkpoints (25). The human syndromes that result from
mutations in each component in the MRN complex highlight
the requirement of the MRN complex for the maintenance of
genomic stability: NBS (26), AT-like disorder (AT-LD) (27), and
NBS-like NBS disorder (28) result from NBS1, Mrel1, and Rad50
mutations, respectively. The MRN complex is also indispensible in
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FIGURE 1 | DNA double-strand break repair via homologous
recombination. During S and G2 phases of the cell cycle, DSBs can be
repaired via HR using a sister chromatid. Targeting of these proteins
involved in HR with chemotherapeutic compounds shows promise in the
clinical setting. See text for details.

development, as null-mutations of these genes cause embryonic
lethality in mice (29-31).

A study using a forward genetic screen identified a specific
small molecule inhibitor of the MRN complex, dubbed Mirin.
Mirin inhibits MRN-dependent ATM activation and disrupts the
endonuclease activity of Mrell, which leads to the failure of the
G2/M checkpoint and HR repair (32). More recently, Mirin was
also shown to effect DSB repair via NHE] (33). Despite the promise

shown in early studies, at the time of writing this review, Mirin has
not progressed to assessment in the clinic.

The use of retroviral gene therapy using recombinant ade-
novirus with mutant forms of the individual proteins in the
MRN complex has shown promising results in vitro and in vivo.
In human head and neck squamous cell carcinoma cell lines,
expression of adenoviral mutant NBS1 significantly increases
cisplatin-induced DSBs and cytotoxicity. This suggests that tumor
chemosensitization occurred through the increase of DSBs, as
the MRN complex was not able to detect the breaks (34). A
novel dominant-negative adenoviral vector containing a mutant
Rad50 gene significantly down regulated MRN expression and
markedly disrupted MRN function in human squamous cell car-
cinoma cells. A combination of cisplatin and mutant Rad50 gene
therapy produced significant tumor cytotoxicity in vitro, with a
corresponding increase in DNA damage and telomere shorten-
ing. In cisplatin-resistant human squamous cell cancer xenografts,
this combination therapy caused dramatic tumor regression with
increased apoptosis (35). Further studies have shown this method
is effective in vivo, however clinical trials using this method of
radiosensitizing have not progressed at present.

Telomelysin is a type 5-adenovirus in which the genes have
been modified to be able to selectively replicate in cancer cells. The
replication of telomelysin is controlled by the human telomerase
reverse transcriptase promoter and has been shown to be effec-
tive in sensitizing cells to IR (36). The radiosensitivity was due to
inhibition of the MRN complex in vivo (37). It was found that the
expression of the adenoviral E1B55 kDa protein lead to the degra-
dation of the MRN complex (38). A Phase I clinical trial studying
telomelysin demonstrated it was effective in various solid tumors
and was well tolerated without any adverse effects to patients (39).
A Phase I/1I trial for the effects of telomelysin on esophageal can-
cer has commenced in Japan and a Phase I/II clinical trial on liver
cancer is planned in the near future.

Resveratrol is a naturally occurring polyphenol that is present
in more than 72 plant species. Resveratrol has been shown to arrest
the cell cycle (40), promote cellular differentiation (41),and induce
apoptosis (42). However, the precise mechanism for these effects
remains to be elucidated. A recent gene expression analysis of
breast cancer cells treated with resveratrol identified decreased
expression of Mrell and NBSI, key components of the MRN
complex. A number of other proteins involved in HR were also
down regulated, including BRCA2 and Rad51, whereas Rad52 was
up-regulated (43). This suggests resveratrol may function through
a number of mechanisms including the MRN complex. In vivo
studies showing positive, neutral, as well as negative outcomes
depending on dose, administration method, and cancer type (44).
There have been 76 clinical trials using resveratrol listed at clini-
caltrials.gov. Further studies need to be performed to determine
if resveratrol can be used for human cancer prevention or therapy
and also determine the exact mechanism of the radiosensitizing
properties of resveratrol.

ATAXIA TELANGIECTASIA MUTATED

As discussed above, the MRN complex is responsible for the activa-
tion of ATM, a major kinase in the DDR. ATM is a member of the
phosphoinositide 3-kinase-related kinase (PIKK) family, which
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also includes ataxia telangiectasia and Rad3-related (ATR) and
DNA-dependent protein kinase catalytic subunit (DNA-PKcs).
The MRN complex activates ATM in response to DSBs by recruit-
ing it to the sites of damage (45). Activated ATM is responsible
for the induction of the G1/S, intra-S, and G2/M checkpoints, via
the phosphorylation of a number of down-stream effector kinases
and transcription factors, including p53 and p21 (46). The acti-
vation of the cell cycle checkpoints is critical in the DDR to allow
for DNA repair to occur before the cell divides ensuring genomic
stability.

A study showed that ATM is responsible for hundreds of phos-
phorylation events in the cell in response to DNA damage, high-
lighting the key role this kinase plays in the DDR (47). ATM is
also required for the full activation of Akt (also known as protein
kinase B) in response to insulin in the cytoplasm (48). ATM has
also shown to be involved in the regulation of the expression and
stability of ribonucleotide reductase and the mitochondrial home-
ostasis through the control of mitochondrial DNA (mtDNA) copy
number dynamics and expression (49). This link with ATM and
the regulation of mtDNA may be involved in the resistance of
genotoxic stress, highlighted by the potential role of the nuclear
co-activators peroxisome proliferator-activated receptor gamma
co-activator-1p in DNA damage repair (50). These key roles in the
DDR have ensured that ATM has been a prime candidate for inhi-
bition in cancer treatment and further investigations into synthetic
lethality for AT patients may show promise.

Caffeine and wortmannin were the first ATM inhibitors identi-
fied in the lab and were shown to increase sensitivity to radiation
and chemotherapeutic compounds (51, 52). Both caffeine and
wortmannin were later shown to be non-specific inhibitors of
ATM and also inhibited the other PIKK, ATR, and DNA-PKcs
and the potency of these drugs rendered them unsuitable for use
in a clinical setting.

The flavonoid quercetin was identified as an inhibitor of phos-
phoinositide 3-kinase (PI3K) with an ICsp of 3.8 WM (53). Analogs
of quercetin were synthesized and investigated for their inhibi-
tion of PI3K, which led to the discovery of LY294002, an ATP-
competitive inhibitor (54). LY294002 was later found to also
inhibit ATM (55) and DNA-PKcs (56). However, in the high doses
required to inhibit these proteins (>10 wM), LY294002 targeted
several unrelated proteins including calcium channels and the
estrogen receptor (57, 58).

Despite its lack of specificity, LY294002 was used as a research
tool to identify more specific PIKK inhibitors. A study screen-
ing a drug-library based on LY294002 identified KU-55933, a
small molecule ATP-competitive inhibitor, which was specific to
ATM (55). KU-55933 is a potent inhibitor of ATM with an ICsg
of 0.013uM and is highly specific to ATM compared to other
PI3K and PIKK’s. This compound effectively sensitized tumor
cells to radiation and DSBs inducing chemotherapeutic com-
pounds, such as camptothecin and etoposide, and initial work
has shown this compound may be used as a potential clinical
treatment (55).

KU-60019, an improved analog of KU-55933 has been shown to
inhibit ATM with an ICs 0f 0.0063 LM and also inhibits migration
and effectively radiosensitizes human glioma cells (59). Further
studies on KU-60019 are currently being performed, specifically

as a radiosensitizer with standard chemotherapy regimes on
glioblastoma in preparation for clinical trials (60).

Another ATM specific inhibitor, CP466722, was identified in a
targeted compound library screen, looking for inhibitors of ATM-
dependent phosphorylation events in vitro. In vivo treatment with
CP466722 resulted in transient inhibition of ATM and sensitized
cells to IR however, upon removal, ATM kinase activity and the
subsequent phosphorylation of down-stream targets was com-
pletely restored (61). The clinical implications of this transient
inhibition of ATM, requires further study.

KU59403 is the latest of the ATM inhibitors that have been
studied and one that shows the most promise for clinical trials
in patients. KU59403 increased the cytotoxicity of the topoiso-
merase [ and II poisons camptothecin, etoposide, and doxorubicin,
in vitro,in a non-p53-dependent manner. Importantly, upon injec-
tion, KU59403 was seen to be distributed to tissues in mice at
concentrations required to inhibit ATM activity, these were shown
to be maintained for at least 4 h in colon cancer tumor xenografts
and enhanced the anti-tumor activity of topoisomerase poisons.
This chemosensitization was both dose and schedule-dependent
and provided the first proof-of-principle pre-clinical data to sup-
port future clinical development of ATM inhibitors (62). However,
at present, there are no reports of ATM inhibitors in use in clinical
trials.

It should be noted that CGK-733, a small molecule that was ini-
tially reported to inhibit both ATM and ATR kinase activities and
block checkpoint signaling with great selectivity, was later retracted
(63). Further studies were completed showing that CGK-733 has
no specific inhibitory effect on ATM or ATR (64). Unfortunately,
the compound is still being marketed as an ATM/ATR inhibitor.

hSSB1/2

Human single-stranded binding protein 1 is required for the acti-
vation of ATM through the recruitment of the MRN complex
to the break site (14—16). Until the identification of hSSB1 and
hSSB2, as a DNA single strand-binding proteins, RPA was the only
known eukaryote member of the single strand-binding protein
family (SSB) to be involved in DNA repair (14). As mentioned
above, hSSB1 is required for the efficient recruitment of the MRN
complex to sites of DSBs and for the efficient initiation of ATM-
dependent signaling (15, 16). hSSB1 binds directly to the MRN
complex through NBS1 and functions to also stimulate its nuclease
activity. Identification of specific chemotherapeutic compounds
to target hSSB1 and hSSB2 will enable the sensitization of cancer
cells to radiotherapy and these are currently being explored by our
laboratory and by industry.

Chk1/2

The checkpoint kinases, Chk1 and Chk2, are critical for cell cycle
activation following the induction of DSBs and serve to main-
tain the genomic integrity of cells (65). This cell cycle check-
point activation is achieved through maintaining or augmenting
the inhibitory phosphorylation of the cyclin-dependent kinases
(CDKs) by inhibiting the CDC25 phosphatases. Specifically, phos-
phorylation of CDC25A is required for the initiation of the S-phase
checkpoint and phosphorylation of CDC25C for the G2/M check-
point (66). Both Chk1 and Chk2 are also required for the activation
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or inhibition of a number of other cell cycle checkpoint proteins
and tumor suppressor proteins, including p53 (67).

Of these checkpoint kinases, Chk1 is critical for the induction
of HR, as inhibition of Chkl in vitro lead to persistent unrepaired
DSBs and cell death (68). Rad51 was also shown to be recruited to
DSBs at replication forks in a Chkl-dependent manner, therefore
Chk1 is essential for HR at stalled replication forks. Highlighting
this critical role, Chkl null mice were found to be embryonically
lethal (69). Due to its critical role in HR, this review will focus on
Chkl inhibitors only, however a number of these Chkl inhibitors
are also known to target Chk2.

UCN-01, a staurosporine inhibitor was the first inhibitor iden-
tified for both Chk1 and Chk2 and treatment with this compound
lead to G2/M checkpoint deficiencies in IR-treated p53-deficient
tumor cells (70). However, due to the broad spectrum of targets
for UCN-01, including protein kinase C, CDK, and CDK2, the use
of UCN-01 presented challenges in the clinical setting (71). Since
the discovery of UCN-01, increasingly specific inhibitors for Chk1
have been identified.

XL-844, also known as EXEL-9844, is a potent, ATP-competitive
inhibitor of Chkl and Chk2. In vitro, XL-844 showed limited
ability as a monotherapy but substantially enhanced gemcitabine-
induced cell killing. XL-844 increased the gemcitabine-induced
DNA damage, blocked CDC25A phosphorylation, abrogated the
gemcitabine-induced S-phase checkpoint, and induced premature
mitotic entry. Interestingly, XL-844 also induced phosphoryla-
tion of Chkl (72). However, a further in vitro study showed that,
in response to IR, Chk2, rather than Chkl appeared to be acti-
vated by irradiation and this activation was suppressed by XL-844
(73). A Phase I clinical trial of XL-844 as a monotherapy or in
conjunction with gemcitabine in patients with advanced malig-
nancies was discontinued before completion (clinicaltrials.gov —
NCT00475917).

AZD7762 is a potent ATP-competitive checkpoint kinase
inhibitor that was identified via a compound library screen using
Chkl. AZD7762 was found to inhibit both Chk1 and Chk2 with
in vitro and in vivo studies confirming the abrogation of the
checkpoint response to gemcitabine (74). In vivo studies involv-
ing human breast cancer xenografts in mice demonstrated that
AZD7762, in combination with irinotecan, improved host sur-
vival and reduced tumor growth selectively in p53 mutant tumors
(75). A Phase I clinical trial to evaluate the safety, tolerability, and
pharmacokinetics of AZD7762, as a monotherapy or in conjunc-
tion with gemcitabine, in patients with advanced solid malignan-
cies has just been completed, however no published data have
been released as yet (clinicaltrials.gov — NCT00413686). However,
interestingly two Phase I trial of AZD7762 in conjunction with
irinotecan (clinicaltrials.gov — NCT00473616) and gemcitabine
(clinicaltrials.gov — NCT00937664) were terminated early. Trial
NCT00937664 was terminated due to incidence of cardiac toxic-
ities reported in the overall Phase I development program (76).
This result may affect further clinical development of AZD7762.

PF-00477736 is a potent, selective ATP-competitive small mol-
ecule inhibitor of Chk1 and was shown to abrogate cell cycle arrest
induced by DNA damage and enhanced the cytotoxicity of clini-
cally important chemotherapeutic agents, including gemcitabine
and carboplatin both in vitro and in vivo in mouse xenografts (77).

In combination with docetaxel, PF-00477736 was found to abro-
gate the DNA damage checkpoints and resulted in sensitization
to docetaxel (78). The only clinical trial to date with PF-00477736
looked at the effects in combination with gemcitabine in advanced
solid tumors, however this study was prematurely terminated
(clinicaltrials.gov — NCT00437203).

SCH900776, also known as MK-8776, was identified as a highly
potent Chk1 inhibitor using a high-content, cell-based screen for
y-H2AX induction (y-H2AX is a surrogate marker for double-
strand DNA breaks). SCH900776 also enhanced the anti-tumor
effects of gemcitabine in vivo (79). SCH900776 was also shown
to inhibit CDC25C degradation, abrogates S-phase arrest, and
induces DNA damage (80). When SCH900776 was combined
with low concentrations of hydroxyurea, both p53-deficient and
p53-proficient cell lines were sensitive to the combination (81). It
was also demonstrated, in vitro, that some cell lines were highly
sensitive to SCH900776 alone. In vivo models with a human pan-
creas tumor xenografts mouse model combined SCH900776 with
gemcitabine, this showed a significantly delayed tumor growth
compared to either drug alone (82). A Phase I clinical trial was
undertaken using SCH900776 in combination with cytarabine in
patients with acute leukemia. This trial indicated that SCH900776
was tolerated by patients and progressed to a Phase II clinical trial
(83). A randomized Phase II clinical trial is currently recruiting
to study how well cytarabine, with or without SCH900776, works
in treating adult patients with relapsed acute myeloid leukemia
(clinicaltrials.gov — NCT01870596).

LY2603618, a pyrazinyl-urea compound, was identified as a
Chk1 inhibitor via in vitro kinase assays. LY2603618 is currently
being investigated in a number of Phase I and II clinical tri-
als and pre-clinical data on their effects in vitro and in vivo
have been recently released. LY2603618 was shown in vitro to
produce a cellular phenotype similar to that reported for deple-
tion of Chkl by siRNA and impaired DNA synthesis, elevated
H2AX phosphorylation, which is indicative of DNA damage,
and caused premature entry into mitosis. In vivo treatment of
human mutant p53 lung cancer cell xenografts in mice, with
gemcitabine, resulted in a stimulation of Chkl kinase activity
that was inhibited by co-administration of LY2603618 (84). In
a Phase 1 dose escalation clinical trial of LY2603618 combined
with pemetrexed, 9 out of 31 patients achieved stable disease
and 1 pancreatic cancer patient had a partial response (85). Two
other clinical trials have been completed using LY2603618, in
conjunction with gemcitabine, in patients with pancreatic can-
cer (clinicaltrials.gov — NCT00839332); and an open-label study
in patients with advanced and/or metastatic solid tumors (clin-
icaltrials.gov — NCT01296568), however no results have been
published on these clinical trials. There are currently two active
clinical trials currently underway studying LY2603618: the first is
studying the safety and tolerability of LY2603618 in combination
with gemcitabine in patients with solid advanced or metasta-
tic tumors (clinicaltrials.gov — NCT01341457) and the second is
investigating the safe dose of LY2603618 that can be combined
with pemetrexed and cisplatin and to test if this triplet offers a
significant improvement in progression-free survival in partici-
pants with Stage IV non-squamous non-small cell lung cancer
(clinicaltrials.gov — NCT01139775).
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LY2606368 has been identified as a Chkl inhibitor by Eli Lilly
and a Phase I clinical trial is currently recruiting to investigate the
effects of LY2606368 in patients with advanced solid tumors (clin-
icaltrials.gov — NCT01115790), however no pre-clinical data are
available for this inhibitor.

Two recently identified Chk1 inhibitors, GDC-0425 and GDC-
0575, are currently undergoing clinical trials, however again no
pre-clinical data are available. Both compounds are currently
being evaluated for the safety, tolerability, and pharmacokinetics
administered as a monotherapy or in combination with gemc-
itabine in patients with refractory solid tumors or lymphoma:
GDC-0425 (clinicaltrials.gov — NCT01359696); and GDC-0575
(clinicaltrials.gov — NCT01564251).

SAR-020106 is a novel, selective, and potent ATP-competitive
inhibitor of Chkl. SAR-020106 has been shown to abrogate the
etoposide-induced G2 arrest and significantly enhances the cell
killing of gemcitabine in vitro and in a p53-dependent fashion.
In vivo, it was found that irinotecan, gemcitabine, and radiation
activity was enhanced by SAR-020106 with minimal toxicity (86,
87). Whilst SAR-020106 has not undergone any clinical trials at
present, this pre-clinical data suggest it is a prime candidate for
investigation in p53-defective tumors.

p53

The tumor suppressor protein p53 is a transcriptional regulator of
a number of genes involved in DNA repair, cell cycle progression,
and apoptosis. Highlighting this function, p53 was found to be
mutated in approximately 50% of cancers (88). p53 is activated in
response to DNA damage by phosphorylation by the ATM, ATR,
Chk2, and Chk1 kinases and these phosphorylation events allow
for the stabilization of p53 and activate its transcriptional func-
tions allowing the regulation of a number of genes responsible for
cell cycle progression and apoptosis (89).

Initial work on p53-mutated cancers has investigated restor-
ing the function of p53, thus leading to effective apoptosis in
response to the chemotherapy. Two main mechanisms have been
investigated — restoring p53 to cancer cells using a recombinant
adenovirus encoding p53 or using small compounds or short
peptides to restore the activity of p53.

Pre-clinical in vitro and in vivo studies of adenovirus-mediated
P53 (Ad-p53) cancer gene therapy showed promising results with
advexin (90), gendicine (91), and SCH-58500 (92). Initial clinical
trials with these Ad-p53 vectors showed that administration was a
safe, feasible, and effective strategy against many types of cancers,
however, the anti-tumor efficacy has been limited in some cancer
patients. These Ad-p53 vectors have also been used in combi-
nation with conventional DNA-damaging treatments, indicating
the induction of the apoptotic pathway via Ad-p53 can restore
the sensitivity to radiation and chemotherapy in some resistant
tumors.

However, issues exist with the low transduction of p53 into
cancer cells via these Ad-p53 vectors, to overcome this replica-
tion, competent oncolytic adenoviruses have been developed. The
CRAd-p53 vector has been used where the promoters of cancer-
related genes are used to regulate virus expression in a tumor-
dependent manner. Recent work has focused on AdDelta24-p53
(93),5G600-p53 (94),and OBP-700 (95). Initial in vitro and in vivo

studies have shown these CRAd-p53 vectors are a safe and effective
therapy for inducing anti-tumor effects and have been shown to
induce higher p53 expression and stronger anti-tumor effects than
the Ad-53 vectors, highlighting their potential in future clinical
trials.

A number of small compounds and peptides have been shown
to be effective in restoring the function of p53 in tumor cells,
including CP-31398 (96), PRIMA-1 (97), CDB3 (98), peptide 46
(99), and SCH529074 (100). These small compounds and pep-
tides act to stabilize p53 in its active biological conformation, thus
restoring its transcriptional activity. Initial in vitro work on these
small compounds and peptides have shown promising results and
further in vivo studies are required to determine their efficacy
before clinical trials can commence.

REPLICATION PROTEIN A

Due to its key role in DNA replication and repair, via HR and
NER, RPA has been the subject of a number of studies to identify
potential inhibitors. RPA is over-expressed in a number of cancers,
including colon (101), esophageal (102), and breast (103). RPA is
a heterotrimeric protein, consisting of RPA1 (p70), RPA2 (p32),
and RPA3 (p14) subunits. RPA protects ssDNA from nucleolytic
attack, prevents DNA hairpin formation, and blocks DNA rean-
nealing by binding directly to the ssDNA through four OB-folds.
After DNA damage, RPA coats ssDNA and enhances the capacity
of Rad51 oligomer formation at sites of damage (104).

Initial work has investigated the disruption of the DNA binding
capacity of RPA and also inhibition of its protein partner inter-
actions using small molecule inhibitors. Selective inhibition of
both the protein binding and DNA binding capacity of RPA has
the potential to inhibit the DDR and to sensitize cancer cells to
DNA-damaging agents.

TDRL-505, a novel small molecule inhibitor, has recently been
shown to inhibit the RPA-DNA interaction, thereby preventing
cell cycle progression, induces cytotoxicity, and increases the effi-
cacy of the chemotherapeutic DNA-damaging agent, cisplatin,
in vitro (105). TDRL-505 inhibits the DNA binding capacity of
RPA by blocking the OB-folds of RPA1. Further studies need to
be completed in mouse models to determine the efficacy of this
compound.

Isobornyl derivatives have also been shown to be RPA inhibitors
in a screen of the National Cancer Institute library, with CheSS19
shown to interact irreversibly with the OB-folds of RPA1 (106).
MCI13E, a haloester modified form of CheSS19, decreased cell
viability and induced apoptosis, showing synergistic effects with
cisplatin in lung cancer cells (107). However, this compound did
not affect the DNA binding capacity of RPA, but instead may act
through the alkylation of cysteine residues of RPA. Further stud-
ies, both in vitro and in vivo are required to fully understand the
mechanisms of RPA inhibition by MCI13E prior to clinical studies
being undertaken.

The initiation of the DDR by RPA is also mediated by protein—
protein interactions involving the N-terminal domain of the p70
subunit with partner proteins, including the MRN complex (108),
Rad51 (109), and BRCA2 (110). Inhibition of these interactions
increases sensitivity toward DNA damage and replication stress
and may therefore be a potential strategy for cancer drug discovery.
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Combining RPA inhibition with radiation therapy could lead
to increased cytotoxicity in tumor cells via inhibition of DNA
DSB repair via NHE] or HR, both of which have been shown to
require RPA.

Rad51

Rad51 plays an important role in maintaining genome stability
through the HR pathway in response to DNA damage. This is high-
lighted by the fact that Rad51 knockout mice show early embryonic
lethality (111). Rad51 isa DNA recombinase and polymerizes onto
resected DNA ends to form a nucleoprotein filament that promote
strand invasion and exchange between homologous DNA duplexes
(112). Tt is suggested the improper regulation of Rad51 may affect
tumorigenesis, as Rad51 has been shown to be over-expressed
in a number of cancer phenotypes, including esophageal, pan-
creatic, lung, leukemia, and head and neck cancers. Conversely,
Rad51 is also under-expressed in a number of cancer cells. This
variable expression of Rad51 has been shown to promote the resis-
tance of tumors to chemotherapy (113). Using antisense RNA or
RNAI to deplete the levels of Rad51 in vitro has been shown to
sensitize tumor cells to chemotherapy agents, including cisplatin
(114). These effects of Rad51 depletion demonstrate the potential
of Rad51 inhibitors in cancer therapy.

The first identification of a Rad51 inhibitor was a small peptide,
homologous to the BRC-motif of the BRCA2 protein, which was
found to bind Rad51, thereby preventing its DNA binding capacity
(115). This peptide inhibited the formation of Rad51 nuclear foci
and disrupted HR in vitro. Using an in silico approach on the BRC
domains of BRCA2, a chimeric peptide with an efficiency 10 times
higher than the original peptide was identified (116). This new
peptide inhibited Rad51 DNA binding and DNA strand exchange
activity however, although these peptides are currently being used
as a research tool they have not yet found clinical applicability.
Further investigation of peptides and peptidomimics inhibiting
Rad51 function may elucidate novel inhibitors targeting the HR
pathway in tumors. However, this approach still holds drawbacks
mainly due to the pharmacokinetics of peptide-based inhibitors
and administration of these agents may not be optimal in a clinical
setting.

More recently, a DNA strand exchange assay was performed
and used to identify Rad51 inhibitors by high-throughput screen-
ing of the NIH small molecule repository. This study identified 17
potential inhibitors, of which 3 were studied further. Compound
B02 was identified that specifically inhibited human Rad51 with
two other compounds, A03 and A10, which inhibited both Rad51
and RecA, but not the structurally unrelated Rad54 protein. B02
directly interacts with Rad51 and disrupts its binding to DNA and
nucleoprotein filament formation. The interaction of B02 with
Rad51 disrupted DSB-induced HR and enhanced the sensitivity
of cells to cisplatin (117). Further work on these compounds, both
in vitro and in vivo, are required before they can be introduced
into clinical trials.

A small molecule inhibitor to Rad51 was recently identified
through a high-throughput screen of a library of 10,000 small
molecules (118). The molecule RI-1 covalently binds to Rad51,
thereby inhibiting its ability to form filaments on ssDNA. RI-1
inhibits the nuclear foci of Rad51 at sites of DNA damage and

sensitizes various cancer cell types to cross-linking chemother-
apy, but did not affect Rad51 protein levels. There are limits to
the development of RI-1 in pre-clinical in vivo models due to its
short half-life in tissue culture media and aqueous buffers. RI-2,
a homolog of RI-1, was created that mitigated these effects (119).
RI-2 was shown to bind Rad51 and inhibit the nuclear foci of
Rad51 at sites of DNA damage. RI-2 is currently the subject of
further in vitro and in vivo studies and is being used to identify
third generation analogs that inhibit the function of Rad51.

A further screen using a yeast-2 hybrid system identified a
phenylsulfonyl indolyl isoquinoline compound, IBR2, as a Rad51
inhibitor. IBR2 functions to block Rad51 multimerization, acceler-
ating proteasome-mediated Rad51 protein degradation, and thus
impairing IR-induced Rad51 foci formation in the nucleus and
HR activity. IBR2 inhibited cancer cell growth and induced apop-
tosis (120). A synergistic cell-killing effect was produced with a
combination of IBR2 and imatinib in vitro. In vivo studies involv-
ing breast cancer xenografts in nude mice showed significantly
inhibited tumor growth with no apparent secondary physiological
abnormalities. Further studies on the effects of IBR2 are required
before moving into a clinical trial.

BRCA1/2
The breast cancer susceptibility proteins, BRCA1 and BRCA2, have
a key role in efficient HR response to DSBs. Mutations in these
genes greatly increase the susceptibility to cancer, especially breast,
ovarian, and prostate. Mutations in the BRCA genes are responsi-
ble for the increased risk of breast cancer, specifically 59-87 and
38-80% for BRCA1 and BRCA2 mutations respectively. BRCA1
functions in both checkpoint activation and also in the early steps
of HR, by controlling DNA resection (121). BRCA2 functions in
Rad51 transport and loading (122). Both BRCA1 and BRCA2 are
required for normal embryonic development in mice (123, 124).
Direct inhibition of BRCAI and BRCA?2 in tumors is generally
problematic due to the wide expression of these proteins in most
tissues and inhibition may lead to other issues, including cancer
development in healthy tissue. One approach is the possible up
regulation of the BRCA1 and BRCA2 proteins, however there is
no data to suggest that up regulation blocks tumorigenesis.

POLY ADP-RIBOSE POLYMERASE 1
Most of the work in the BRCA therapeutic research area has
focused on tumors that are known to have mutations in BRCA1
or BRCA2. Using synthetic lethality, these studies have focused
on disrupting complimentary pathways to repair DNA damage,
with the most interesting results coming from poly ADP-ribose
polymerase 1 (PARP1) inhibitors. PARP1 is involved in DNA
repair, replication, transcriptional regulation, chromatin modifi-
cation, and apoptosis (125, 126). In regards to DNA repair, PARP1
is involved in BER which repairs DNA damage due to reactive
oxygen species and alkylation (127). Inhibition of this pathway,
taken together with a loss of HR due to BRCA mutations, cre-
ates a synthetic lethality, which can be exacerbated when used in
conjunction with chemotherapy agents.

However, PARP1 inhibition and the subsequent synthetic
lethality can be used on other cancers that do not have muta-
tions in BRCA1 or BRCA2 but that have a defect in the HR
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pathway, including mutations in ATM, Chk2, Rad51, and NBSI.
However, NHE] could compensate for the loss of HR in these
cells. Further studies have identified that PARP1 normally func-
tions to promote HR by suppressing various components of the
NHE]J pathway (128). Inhibition of PARP1 would therefore lead
to increased NHEJ, a more error-prone repair mechanism than
HR, this would increase chromosome instability in response to
chemotherapy and during S-phase of the cell cycle at stalled DNA
replication forks.

Poly ADP-ribose polymerase catalyzes the cleavage of NAD+- to
nuclear acceptor proteins, leading to the formation of ADP-ribose
polymers, realizing nicotinamide in the process. Nicotinamide was
the first PARP inhibitor identified, although it was not potent
(129). Analogs of nicotinamide, including 3-aminobenzamide,
were the first generation of PARP inhibitors (130).

The first clinical trial targeting PARP1 in BRCA populations
was with the oral drug olaparib, also known as AZD2281, as
a monotherapy (131). Olaparib achieved encouraging response
rates of 41 and 33% in patients with BRCA1 or BRCA2 muta-
tions, respectively. Olaparib was also used in a combined therapy
with carboplatin in vivo and showed a profound decrease in
tumor growth and increase in patient survival (132). A Phase
IT trial with olaparib was conducted on patients with advanced
BRCA1/2 mutant breast cancers (133) and ovarian cancers (134).
Both of these studies showed a dose-dependent effect of ola-
parib. Currently, there is a Phase III olaparib trial being under-
taken by AstraZeneca. This trial aims to determine the benefit, by
progression-free survival, of olaparib as a maintenance monother-
apy,in BRCA mutated ovarian cancer patients, who are in complete
or partial response following platinum-based chemotherapy.

Another PARP inhibitor is veliparib. An in vivo study of veli-
parib, also known as ABT-888, confirmed the PARP inhibitory
effects in paired tumor biopsies and peripheral mononuclear cells
(135). A number of Phase I trials have been conducted with veli-
parib in combination, including topotecan (136) amongst others.
Many of these trials have shown promising results, however myelo-
suppression, where bone marrow activity is decreased, has been
shown as the most common adverse event observed.

Iniparib, also known as BSI-201, was the first PARP inhibitor to
undergo Phase III clinical trials after showing promising results
in randomized Phase II trials in patients with triple-negative
breast cancer (137). The results of the subsequent Phase III clin-
ical trial were not as expected, missing the co-primary endpoints
of overall survival and progression-free survival. However, very
little pre-clinical data on the effects of iniparib were published
before clinical trials began and iniparib was shown not be related
to other PARP inhibition and showed very low PARP inhibition
in vitro (138, 139).

Rucaparib, also known as AG014699, was used in a Phase
I clinical trial in combination with temozolomide (140). Ruca-
parib was well tolerated in patients and showed promising results
for assumed HR-deficient tumors (based on tumor type). Ruca-
parib was also used as a monotherapy in a Phase I/II clinical
trial with patients with solid tumors. Rucaparib was well tol-
erated in this trial and showed promising results (clinicaltri-
als.gov — NCT01482715). A subsequent Phase II clinical trial,
with patients with melanoma, was conducted in combination

with temozolomide, and showed an objective response rate
with 17.4 and 36% of patients remaining progression-free after
6 months (141).

A therapeutic index-based strategy was used to identify CEP-
8983, a novel 4-methoxy-carbazole inhibitor of PARP1 and PARP2
(enzyme ICsq values of 20 and 6 nmol/L, respectively). CEP-8983
was found to cause significant sensitization of chemotherapy-
resistant tumor cell lines to the effects of temozolomide and
camptothecin in vitro. Administration of CEP-8983, delivered
orally in the form of CEP-9722, attenuated in vivo PARP activ-
ity and resulted in significant chemosensitization of temozolomide
and irinotecan in chemotherapy-resistant tumor xenografts (142).
A Phase I clinical trial with CEP-9722, used as a monotherapy
or in conjunction with temozolomide, was recently completed
with patients with advanced solid tumors (clinicaltrials.gov —
NCT00920595). A Phase I/1I clinical trial using CEP-9722 on solid
tumors is currently underway (clinicaltrials.gov— NCT01311713).

MK-4827, also known as niraparib, is a novel 2-phenyl-
2H-indazole-7-carboxamide PARP inhibitor that displayed anti-
proliferation activities against BRCA1- and BRCA2-deficient can-
cer cells in vitro. MK-4827 was found to be well tolerated in vivo
and demonstrated efficacy as a single agent in a xenograft model of
BRCAI1-deficient cancer (143). A Phase I clinical trial of patients
with solid tumors using MK-4827 was shown to have favorable
pharmacokinetics, inhibited PARP activity effectively, is well toler-
ated and has anti-tumor activity in carriers of BRCA1 and BRCA2
mutations and patients with sporadic cancers (144).

BMN 673, an inhibitor of PARP catalytic activity, has exhib-
ited selective anti-tumor activity at much lower concentrations
(IC50 =0.57 nM) than the earlier generation of PARP inhibitors,
including olaparib, rucaparib, and veliparib. BMN 673 is read-
ily orally bioavailable and in vivo studies with xenograft tumors
carry defects in BRCA1/2 or PTEN were sensitive to BMN 673.
Synergistic effects were observed when BMN 673 was combined
with temozolomide, SN38, or platinum drugs (145). A number of
pre-clinical studies and Phase 1, Phase II, and Phase III clinical
trials utilizing BMN 673 as a monotherapy or in conjunction with
various drugs, are currently underway.

It is important to note that not all breast cancer patients with
BRCA mutations responded to PARP inhibition (131) and a sub-
stantial number of patients with advanced BRCA1-mutant cancers
are resistant to these agents. Further studies on PARP inhibitors,
along with the current clinical trials, are needed to assess the effi-
cacy of PARP inhibition in BRCA mutant and other HR-defective
cancers in conjunction with chemotherapy or as a monotherapy.

A list of all chemotherapeutic compounds targeting the HR
pathway is provided in Table 1.

NON-HOMOLOGOUS END JOINING AND
CHEMOTHERAPEUTIC COMPOUNDS TARGETS
CLASSICAL-NHEJ

The classical-NHE] (C-NHE]) pathway is the major pathway of
DSB repair [reviewed in Ref. (146)], estimated to rapidly repair up
to 85% of IR-induced DSBs (147). In straightforward terms, this
pathway involves simply ligating the two DNA ends back together.
Due to the resection of DNA overhangs surrounding the DSB,
NHE] is sometimes considered the error-prone pathway of DNA
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Table 1 | Chemotherapeutic compounds targeting the homologous

recombination DNA repair pathway.

Compound Class Clinical Combination Compound Class Clinical Combination
phase phase
Mirin MRN complex - - OBP-700 p53 - -
Adenoviral mutant NBS1 - Cisplatin CP-31398 Stabilizes p53 - -
NBS1 PRIMA-1 Stabilizes p53 - -
Adenoviral mutant Rad50 - Cisplatin CDB3 Stabilizes p53 - -
Rad50 Peptide 46 Stabilizes p53 - -
Telomelysin MRN complex I/ Monotherapy SCH529074 Stabilizes p53 _ _
Resveratrol MRN complex - - TDRL505 RPA _ _
Caffeine PIKK - - CheSS19 RPA _ _
Wortmannin PIKK - - MCI13E RPA _ _
Quercetin PI3K - - B02 Rad51 _ B
LY294002 ATMand DNA-PKes - - 203 Rad1 and RechA  — B
KU-568933 ATM N B Al-10 Rad51and RecA - -
KU-60019 ATM - - AL Rads ~ B
CP466722 ATM - - RI2 Rad51 _ _
KU59403 ATM - - IBR2 Rad51 _ _
UCN-01 Chk1 and Chk2 | Monotherapy or 3-Aminobenzamide PARP] _ _
topotecan or )
cisplatin Olaparib PARP1 I/mmi Monotherapy
X-844 Chk1 and Chk2 | Monotherapy or Veliparib PARP1 | Topotecar? or
gemcitabine carboplatin or
doxorubicin or
AZD7762 Chk1 and Chk2 | Monotherapy or .
. . Irinotecan
gemcitabine or )
ifinotecan Rucaparib PARP1 il Monotherapy or
o temozolomide
PF00477736 Chk1 | Gemcitabine
CEP-9722 PARP1 and PARP2 /Il Monotherapy or
SCH900776 Chk1 /11 Monotherapy or .
. temozolomide
cytarabine or
gemcitabine MK-4827 PARP1 Monotherapy or
o temozolomide
LY2603618 Chk1 I/ Gemcitabine or
pemetrexed and BMN 673 PARP1 and PARP2  I/II/III I\/Ionotherapy or
cisplatin temozolomide or
irinotecan
LY2606368 Chk1 | Monotherapy
GDC-0425 Chk1 | Monotherapy or
gemcitabine DSB repair. NHE] is active in all stages of the cell cycle, with activity
GDC-0575 Chk1 | Monotherapy or peaking in GO and G1 (12). The major proteins involved in NHE]
gemcitabine include the DNA-PKcs and the Ku70/80 heterodimer. Other core
NHE] proteins include artemis, XRCC4-XLF, and ligase IV. DNA-
SAR-020106 Chk1 - - C e .
_ PKcs and Ku70/80 initially bind to the two ends of the DSB. The
Advexin P53 i Monotherapy and  yNIA ends are then processed by artemis, ligated by ligase IV and
chemotherapy stabilized by XRCC4 and XLF.
drugs There are a number of key proteins involved in NHE] that are
SCH-58500 p53 I/l Monotherapy and  targets of chemotherapeutic compounds (see Figure 2).
chemotherapy
drugs DNA-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT
AdDelta24-p53 p53 - - The DNA-PK holoenzyme plays a major role in NHEJ and is
SG600-p53 053 _ _ involved in tethering the DNA ends at DSBs, allowing recruit-
ment of other repair proteins. It also has serine/threonine kinase
(Continued)  activity and can phosphorylate down-stream DNA repair proteins,
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Non-Homologous End Joining

FIGURE 2 | DNA double-strand break repair via non-homologous end
joining. DSBs can be repaired via NHEJ throughout the cell cycle. Targeting
of these proteins involved in NHEJ with chemotherapeutic compounds
shows promise in the clinical setting. See text for details.

leading to their activation. DNA-PKcs has been reported to be
up-regulated in tumors or radiation-resistant cell lines, indicat-
ing that it is likely to have a role in tumor growth and survival
(148, 149). In addition, B-cell chronic lymphocytic leukemia cells
have been shown to escape apoptosis via the NHE] pathway (150).
Moreover, DNA-PKcs mutations have been detected in colorectal
cancer cells (151). In light of the above and due to its pivotal role in
NHE]J, DNA-PKcs is a protein of interest in developing new cancer
treatments [reviewed in Ref. (152)].

Several inhibitors of DNA-PKcs have been identified, the most
efficient of which target the ATP-binding pocket of the DNA-PKcs
kinase domain (153). Compound library studies have identified
several specific inhibitors of DNA-PKcs, but their development as
cancer therapies has been restricted by weak pharmacokinetics.

Wortmannin, a metabolite of the fungus Penicillium funiculo-
sum was one of the first DNA-PKcs inhibitors and has been widely
used to study DNA-PKcs experimentally. This drug was used in
the first studies that showed that inhibition of DNA-PKcs inhib-
ited DNA DSB repair and enhanced the tumor-killing properties
of agents that induce DNA damage, such as etoposide and IR.
Although it can efficiently inhibit DNA-PKcs at an IC5p of 5nM,
its poor solubility, lack of specificity, and in vivo toxicity, have
ensured that wortmannin has little clinical application (154).

As discussed earlier, another non-specific DNA-PKcs inhibitor
utilized in several studies is LY294002, the morpholine deriva-
tive of the plant flavonoid quercetin. This inhibitor binds the
kinase domain of DNA-PKcs with an ICs¢ of 1.4 uM (154). Like
wortmannin, the clinical use of this inhibitor is limited by its
lack of specificity and in vivo toxicity. In addition, LY294002
also displays rapid metabolic clearance in 1h. Despite its limita-
tions, LY294002 has proved useful as a foundation for biochemical
modification, leading to several, more specific, clinically viable
compounds (155).

An example of a compound developed from LY294002 is
NU7026, which possesses 50-fold more selective inhibition of
DNA-PKcs than other PI3Ks, with an ICsp of 0.23 wM against
DNA-PKcs (156). This compound was found to enhance the
tumor growth inhibition of several chemotherapy drugs, includ-
ing daunorubicin, idarubicin, doxorubicin, and etoposide (157).
However, due to metabolic instability, it is unlikely that high
enough concentrations of NU7026 could be achieved in tumors to
allow treatment in conjunction with chemotherapy or radiation
treatment. Like other DNA-PK inhibitors, NU7026 also displays
poor solubility in saline solutions (158).

Another DNA-PKcs inhibitor that resulted from the modifica-
tion of LY294002 is NU7441, which strongly inhibits DNA-PKcs
and has an ICsg of 0.3 WM. Treatment of cells with this drug led
to an increase in HR and the persistence of IR- and doxorubicin-
induced DSBs (159). Cellular treatment with NU7441 was also
shown to delay the repair of IR- and etoposide-induced DSBs, in
turn enhancing the tumor cell-killing properties of these treat-
ments (160). In animal models, xenograft studies showed that
NU7441 could increase the tumor growth inhibition of etopo-
side twofold with no increased toxicity. NU7441 has recently been
shown to inhibit the multidrug-resistance 1 (MDRI) protein, in
addition to DNA-PK, which may increase its therapeutic potential
when combined with MDR substrates (161).

Two other inhibitors of DNA-PK have also been shown to sen-
sitize cells to DNA-damaging agents, SU11752 and OK-1035 (162,
163). Unfortunately, both compounds displayed weak pharma-
cokinetic properties making them unsuitable for further clinical
development.

Another agent, NK314 was already used in the clinic as a topoi-
somerase Il alpha (TIIa) inhibitor and was also found to promote
the degradation of DNA-PKcs, leading to defective DNA DSB
repair. DNA-PKcs is highly expressed in adult T-cell leukemia—
lymphoma (ATL), so NK314 may potentially be used as a dual
targeting anticancer agent for treatment of ATL (164). A clinical
trial for the use of NK314 in ATL patients is currently underway.

CC-115 is a DNA-PKcs inhibitor that is also undergoing early
clinical evaluation. CC-115 is a dual inhibitor for DNA-PKcs and
mTOR and the first clinical trial aims to assess its safety and
action in patients with advanced solid tumors and hematologic
malignancies that are unresponsive to standard therapies.

In summary, due to the role DNA-PKcs plays in DNA DSB
repair via C-NHE] and its overexpression in many cancers it
was implicated as a suitable target for inhibition. Although sev-
eral DNA-PKcs inhibitors have reached the pre-clinical evaluation
stage, their use in patients have been limited by inadequate phar-
macokinetics; as they are generally metabolically unstable, a high
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cellular concentration is unable to be achieved and therefore
they are not clinically viable to potentiate other forms of can-
cer therapy. The use of antibody and oligonucleotide approaches
to target DNA-PKcs may overcome the pharmacokinetic restric-
tions of small molecule inhibitors. However, there is still hope for
this area of treatment as the crystallographic structure of DNA-
PKcs was recently reported, allowing more efficient small molecule
inhibitors of DNA-PKcs to be developed (165, 166). Computer-
modeled compound design will allow targeting of the DNA-
PK auto-phosphorylation sites or the DNA-PK/Ku80 interface,
which are predicted to be more efficient than current DNA-PKcs
inhibitors.

Ku70/Ku80

The levels of the regulatory subunit of the DNA-PKcs holoen-
zyme, Ku70/80, like DNA-PKcs, are also increased in many tumors,
which suggests that tumors may rely on Ku70/80 for survival (149).
Indeed, it was shown that depletion of Ku70 or Ku80 using shRNA
inhibited the growth of pancreatic tumor cells (167). Ku70- or
80-depletion also sensitized pancreatic cells to IR, suggesting that
it may be a potential target for inhibition in cancer therapy in

the future, although to date specific inhibitors have not been
identified.

DNA LIGASE IV

DNA ligase IV is an ATP-dependent DNA ligase that catalyzes the
ligation step in NHE]. Together with XRCC4 and XLF, DNA ligase
IV forms a functional complex that is central to NHE]J (168—171).
All DNA ligases catalyze the formation of the DNA phosphodi-
ester bond in a three-step process. The initial hydrolysis of ATP
leads to the covalent linkage of an AMP moiety to a specific lysine
residue within the active site of DNA ligase and the subsequent
release of pyrophosphate. A DNA adenylate intermediate is formed
through the transfer of the AMP moiety from the adenylated lig-
ase to the 5’ terminus of a DNA nick with a 5" phosphate and 3’
hydroxyl terminus. Finally, the non-adenylated DNA ligase inter-
acts with the DNA adenylate and the termini are linked together
via a phosphodiester bond, with the final release of AMP (172).

Inhibiting the activity of DNA ligase IV has become an attrac-
tive approach to increase the sensitization of cancer cells to DNA
damage. As DNA ligation is required during DNA repair and
replication, cells deficient in DNA ligases have been shown to be
sensitive to a variety of DNA-damaging agents (173). To date, there
are two described DNA ligase IV inhibitors, L189 and SCR7.

A computer-aided drug design approach, based on the struc-
ture of human DNA ligase I complexed with nicked DNA, was
performed to identify low molecular weight inhibitors of DNA
ligases that specifically abrogate functional interactions between
the ligase and nicked DNA (174). L189 was 1 of a 192 potential
candidate inhibitors chosen from this rational approach. L189 was
further characterized in vitro, and shown to inhibit DNA ligase I,
1IL, and IV in DNA joining assays using purified protein and in
DNA replication, BER, and NHE] in cell extract assays. Specifi-
cally, L189 inhibited the ligase reaction by >90%, however, only
had a minimal effect on T4 DNA ligase. In cell culture, L189 was
found to be cytotoxic, using colony-forming assays. Furthermore,
L189 significantly increased the cytotoxicity of the DNA-damaging

agents MMS and IR in three cancer cell lines (breast, cervical, and
colon) but not in a normal breast epithelial cell line. Hence, in vitro
data suggest that L189 is a potential lead compound for the devel-
opment of chemotherapeutics (174). However, in vivo data and
subsequent clinical trials are required to further substantiate these
results.

SCR7 is a L189 derivative that was identified by an in silico
docking approach, as a specific inhibitor of DNA ligase IV. SCR7
disrupts the sealing of DSBs by ligase IV by interfering with its
binding to DNA. In vitro, SCR7 inhibits NHE]J in a ligase IV-
dependent manner, leading to the accumulation of DSBs and
subsequent cytotoxicity. SCR7 was used on four different mouse
models to determine tumor progression. Three of the four mouse
models were responsive and SCR7 was found to significantly
reduce tumor progression and increase lifespan, relative to the
control. SCR7 slowed the progression of the tumor by activating
the p53-mediated apoptotic pathway and hence increasing lifes-
pan. Additionally, when SCR7 was co-administered with IR and
etoposide in mouse models, it significantly increased the sensitivity
of tumors (175). This study demonstrates that inhibitors of DNA
repair, in combination with existing chemo and radiotherapy, may
lead to a better efficacy of treatment.

XRCC4

The initial step in NHE] is the recognition and binding of the
Ku70/80 heterodimer to the DSB (176). After Ku70/80 is bound
to DSB ends, it recruits other NHE] factors such as XRCC4 to the
site of damage (177). Ku70 and XRCC4 directly interact with each
other and XRCC4 may act as a flexible tether between Ku70/80
and DNA ligase IV (176). XRCC4 has no known enzymatic activ-
ity, but may function as an additional NHE] scaffolding protein,
responsible for the recruitment of other NHE] factors to the site
of the damage (177).

In mice, XRCC4 deficiency has been shown to cause late embry-
onic lethality (178) and mouse Xrcc4 was found to stimulate
adenylation of DNA ligase IV in vitro, the first chemical step in
DNA ligation (179).

Since XRCC4 plays a central role in the repair of DSB by NHE]
(177), the presence of active XRCC4 in cells may decrease DSB-
mediated apoptosis in cancer cells during radiotherapy. Therefore,
the use of potent XRCC4 inhibitors has the potential to enhance
radiotherapy outcomes in patients.

Salvianolic acid B, lithospermic acid, and 2- O-feruloyl tartaric
acid were identified as potent agents for interrupting XRCC4-
mediated DNA repair, from a screen involving 20,000 compounds
from the traditional Chinese medicine (TCM) database (180). The
compounds were modeled for their binding affinities to the DNA
ligase IV binding region on XRCC4 and for all three inhibitors,
the protein-ligand interactions were focused at Lys188 on chain A
and Lys187 on chain B of XRCC4. From this study, salvianolic acid
B, lithospermic acid, and 2-O-feruloyl tartaric acid are potential
enhancers of radiotherapy and furthermore, may have character-
ized the key binding elements for inhibiting XRCC4 activity (180).
While this study is promising, the efficacy of these inhibitors has
yet to be tested using in vitro and in vivo models.

Inhibiting the XRCC4/DNA ligase IV complex formation could
also provide a novel strategy for inhibiting NHE]. The minimal
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inhibitory fragment of the XRCC4-interacting region (XIR) capa-
ble of abolishing XRCC4/XIR complex was recently identified
(181). The key interfaces of ligase IV necessary for interaction
with XRCC4 were identified by the development a competitive
displacement assay using ESI-MS/MS. The results suggest that by
targeting the interface of helix 2 of DNA ligase IV, modulators that
inhibit the XRCC4/DNA ligase IV complex may be identified. In
addition, adjuvant compounds to further block the XRCC4/DNA
ligase IV complex may be discovered by further targeting helix 1
and the loop regions of the helix-loop—helix clamp, which offer a
secondary target surface (181). While this study has the potential
to identify inhibitors of XRCC4, to date, inhibitors that have been
tested in vivo and in clinical trials have not been described.

XCRCC4-LIKE FACTOR

XCRCC4-like factor/cernunnos (XLF/cer) is a recently discov-
ered XRCC4 interaction partner. XLF directly interacts with the
XRCC4-ligase IV complex both in vitro and in vivo. Further-
more, siRNA knockdown of XLF in mammalian cells gives rise
to radiosensitivity and impaired NHE] and the re-introduction of
wild-type XLF into defective cells corrects the observed defects
(171). Data suggest that following DSBs, XLF accumulates at
DNA damage sites via constitutive interaction of the XRCC4 head
domains and XLF globular head domains in the XRCC4-DNA
ligase IV complex and dependent components of the DNA-PK
complex. Following this, XLF stimulates the ligation of comple-
mentary and non-complementary DNA ends via XRCC4 and DNA
ligase IV. XLF in summary ensures the accuracy of the joining of
DSBs during NHE] and V(D)] recombination (182).

While there are no inhibitors of XLF in current use, inhibitors
that abrogate the formation of the XRCC4/XLF/DNA ligase IV
functional complex that is central to NHE] may provide a novel
strategy to improve radiotherapy outcomes in patients.

p53-BINDING PROTEIN 1
p53-binding protein 1 (53BP1) is a human BRCT protein that was
initially identified by a yeast 2-hybrid screen as a p53-interacting
protein (183). 53BP1 binds to p53 and enhances p53-mediated
transcriptional activation. 53BP1 is a central regulator of DNA
DSB repair and functions to promote the end joining of distal
DNA ends induced during V(D)]J and class switch recombination.
Additionally, 53BP1 is involved in the fusion of unprotected telom-
eres (184, 185). 53BP1 is an ATM substrate that forms nuclear
foci in response to DNA damage (186) and promotes NHE] while
preventing HR. Recent evidence suggests that 53BP1 recruitment
requires the direct recognition of a DSB-specific histone code and
the choice of NHE] vs. HR is dependent on BRCAL1 (185).

The identification of specific chemotherapeutic compounds
targeting 53BP1 and thereby sensitizing cancer cells to radiother-
apy is an approach that requires further investigation.

ALTERNATIVE NHEJ

Recent studies have identified another DSB repair pathway, termed
alternative NHEJ (A-NHE]). This pathway comprises another
simple end joining process that is normally suppressed by the
C-NHE] pathway and only operates when C-NHE] and HR path-
ways are compromised. Therefore, A-NHE] is generally considered

a backup repair pathway and is implicated to be highly error-
prone (187). It has been suggested that A-NHE] may actually
be comprised of several pathways due to the functional diver-
sity of the A-NHE] proteins identified so far. However, it has also
been suggested that A-NHE] results from the initiation and failure
of C-NHE]J or HR, resulting in C-NHE] or HR proteins already
being present at the DSB. When the initiation of A-NHE] follows
unsuccessful C-NHE], C-NHE] factors are already at the DSB, but
instead of DNA ligase IV performing the ligation step, this is per-
formed by DNA ligase 3 or 1 (188-190). It has also been suggested
that A-NHE] may also function to join DNA ends that have been
processed by HR factors such as the MRN complex, CTIP, and
BRCALI (190-192). The A-NHE] pathway has been implicated as
enabling tumor cells that have disrupted HR or C-NHE] pathways
to survive, making it an attractive target for inhibition.

DNA LIGASE 3«
A recent study demonstrated that KRAS mutated leukemic cells
have increased levels of components of the A-NHE] pathway,
including DNA ligase 3o, PARP1, and XRCC1 and that these
cells rely on the A-NHE] for survival (193). In addition, it was
also shown that depletion of DNA ligase 3o using RNAi sen-
sitized the KRAS-mutant leukemic cells to chemotherapy. This
suggests that targeting the A-NHE] pathway may be a promising
avenue for inducing synthetic lethality in combination with DNA-
damaging agents in cells bearing KRAS mutations, for which there
is currently no reliable treatment.

A list of all chemotherapeutic compounds targeting the NHE]
pathway is provided at Table 2.

CONCLUSION

Human solid tumors have frequently been found to have pro-
nounced genetic and gene expression heterogeneity, of both can-
cerous and the normal cells within the tumor. This diversity of cell
populations within the tumor may explain why cancer is so resis-
tant to therapy, including more targeted therapeutic approaches.
The increased proliferation of cancer cells also places stress on
the genome, with the fastest growing cell populations having
an advantage in the environment. To increase growth rates and

Table 2 | Chemotherapeutic compounds targeting the
non-homologous end joining DNA repair pathway.

Compound Class Clinical Combination
phase
Wortmannin DNA-PKcs and other PIKKs - -
LY294002 DNA-PKcs - -
NU7026 DNA-PKcs - -
NU7441 DNA-PKcs - -
SU11752 DNA-PKcs - -
OK-1035 DNA-PKcs - -
NK314 DNA-PKcs and | Monotherapy
topoisomerase Il alpha
CC-115 DNA-PKcs and mTOR | Monotherapy
L189 DNA ligase IV - -
SCR7 DNA ligase IV - -
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remove normal restrictions on growth, cancer cells evolve to have
defects in the DNA repair pathways and in checkpoint signaling
and apoptosis. As a result of these defects and increased metabolic
activity, cancer cells are genomically unstable with the most aggres-
sive cancers showing the most genetic instability. However, this
instability differentiates the cancer cells from normal cells, poten-
tially opening up therapeutic windows. The DSB repair pathway
is the most promising of these therapeutic windows, as defects
in this pathway are commonly associated with diseases such as
cancer.

The disruption of the DSB repair mechanisms HR and NHE],
via chemotherapeutic compounds used as either a monotherapy
or in conjunction with radiotherapy, has shown promise in the
clinical setting for the treatment of various cancers. The targeting
of these processes can be further exploited as further investigations
into the HR and NHE] pathway lead to the identification of new
potential targets. However, complete inhibition of HR and NHE]
for any extended time period is likely to be lethal to all divid-
ing cells, therefore targeted or temporary inhibition is likely to be
useful in conjunction with radiotherapy. Also, complete inhibi-
tion of NHE] may lead to further genomic instability in normal
cells, as it is the only pathway for repairing DSBs in non-dividing
cells.

Further investigation into synthetic lethality, beyond the identi-
fied PARP/BRCA lethality, may lead to additional avenues to be tar-
geted and exploited by the use of chemotherapeutic compounds.
Promising targets to expand on PARP inhibition using synthetic
lethality are other proteins involved in the HR pathway, includ-
ing cancers with mutations in ATM, p53, Chk2, Rad51, and NBS1.
Inhibition of other proteins involved in the DDR response has also
shown promise when combined with BRCA mutations. In vitro
depletion of Rad52 in BRCA2-deficient cells showed synthetic
lethality when compared with BRCA2-competent cells (194).
Recently, synthetic-lethal relationships in chromatin-regulating
genes have been identified, including chromatin remodeling fac-
tors (195) and methyltransferases (196). The concept of synthetic
lethality could allow the exploitation of differences between tumor
cells and normal cells that have previously been considered to be
intractable and it has been shown to be a promising means of
selectively killing tumor cells.

Whilst there have been a number of good and promising results
using chemotherapeutic compounds, there have been a number
of failed studies. Ensuring that there are sufficient investigations
completed both in vitro and in vivo confirming the specificity and
pharmacokinetics of these chemotherapeutic compounds before
introduction in the clinical setting is critical. As the response
to chemotherapeutic compounds becomes more predictable and
with the identification of specific tumor biomarkers, this will allow
for targeted, more efficient cancer treatments. Inhibition of these
DSB repair proteins holds great promise for the future of cancer
therapy in the future.
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