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Graft-versus-host disease (GVHD) is still one of the major causes of morbidity and mortality
in allogeneic hematopoietic stem cell transplantation (HSCT). In the pathogenesis of acute
GVHD, it has been established that donor-derived T-cells activated in the recipient play a
major role in GVHD in initiation and maintenance within an inflammatory cascade.To reduce
the risk of GVHD, intensification of GVHD prophylaxis like T-cell depletion is effective, but
it inevitably increases the risk of infectious diseases and abrogates beneficial graft-versus-
leukemia effects. Although various cytokines are considered to play an important role in the
pathogenesis of GVHD, GVHD initiation is such a complex process that cannot be prevented
by means of single inflammatory cytokine inhibition.Thus, efficient methods to control the
whole inflammatory milieu both on cellular and humoral view are needed. In this context,
infectious diseases can theoretically contribute to an elevation of inflammatory cytokines
after allogeneic HSCT and activation of various subtypes of immune effector cells, which
might in summary lead to an aggravation of acute GVHD. The appropriate treatments or
prophylaxis of bacterial infection during the early phase after allogeneic HSCT might be
beneficial to reduce not only infectious-related but also GVHD-related mortality. Here, we
aim to review the literature addressing the interactions of bacterial infections and GVHD
after allogeneic HSCT.

Keywords: bacterial infection, GVHD, allogeneic hematopoietic stem cell transplantation, pathogen-associated
molecular patterns, LPS

INTRODUCTION
Graft-versus-host disease (GVHD) is still one of the major causes
of morbidity and mortality responsible for 10–20% of all deaths
in allogeneic hematopoietic stem cell transplantation (HSCT)
(1, 2). In the pathogenesis of acute GVHD, it has been estab-
lished that donor-derived T-cells activated in the recipient play a
major role in GVHD initiation and maintenance within a complex
inflammatory cascade (3). To reduce the risk of GVHD, intensi-
fication of GVHD prophylaxis such as profound T-cell depletion
is effective, but it inevitably increases the risk of infectious dis-
eases and abrogates beneficial graft-versus-leukemia (GVL) effects.
Another potentially beneficial intervention to reduce the risk of
GVHD could be the suppression of inflammatory cytokines, which
promotes the initiation and maintenance of GVHD-associated T-
cell activations. Even though it is well established that cytokines
play an important role in the pathogenesis of GVHD, GVHD
is a complex process that cannot be prevented with a single
inflammatory cytokine inhibition as demonstrated previously (4).
Thus, efficient methods to control the whole inflammatory milieu
are needed.

Infectious diseases can theoretically contribute to an elevation
of inflammatory cytokines after allogeneic HSCT (5–7). Possi-
ble interaction between viral infections and graft rejections of
transplanted organ or GVHD are thought to be mediated by the

alloreactivity of virus-specific T-cells (8, 9). Bacterial infection can
also induce GVHD rather non-specifically, considering the induc-
tion of systemic proinflammatory cytokines (10). The appropriate
treatment or prophylaxis of bacterial infection during the early
phase after allogeneic HSCT might be beneficial to reduce not only
infection-related but also GVHD-related mortality. In terms of
fungal infection, we could assume that the fungal infection is also
implicated in the pathogenesis of acute GHVD, and recent reports
suggested the implication of fungal infection in the pathogenesis
of acute GVHD (11).

Here, we aim to review the literature addressing the interactions
of bacterial infections and GVHD after allogeneic HSCT and dis-
cuss the potential benefits/disadvantages of published therapeutic
options.

INTERACTION BETWEEN BACTERIAL PRODUCTS AND GVHD
IN MOUSE MODELS
The fundamental work of van Bekkum and colleagues impressively
demonstrated that activations of innate immunity by the gastroin-
testinal microflora are crucial and initiating steps in the induction
of alloreactions. In animal models, mice grown under germ-free
conditions and receiving bone marrow as a source of hematopoi-
etic stem cells following total body irradiation did not develop
acute GVHD (12). However, when a high number of T-cells were
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added, germ-free condition alone did not prevent but still delayed
the onset of acute GVHD.

The role of bacterial products and the innate immune response
in the pathophysiology of acute GVHD was nicely reviewed a

Table 1 | Combination of toll-like receptor and its ligand.

TLR Ligands Recognized pathogens

TLR1 Triacyl lipopeptides Bacteria

TLR2 Lipoproteins, peptideglycan,

LTA, β-d-glucan, and mannan

Bacteria and fungus

TLR3 dsRNA Virus

TLR4 LPS, RSV fusion protein,

and mannans

GNR and virus

TLR5 Flagellin Bacteria

TLR6 Diacyl lipopeptides, LTA,

and β-d-glucan

Bacteria and fungus

TLR7 ssRNA Virus, fungus, and bacteria

TLR8 ssRNA Virus

TLR9 DNA and hemozoin Bacteria, fungus, virus,

and protozoan parasites

TLR10 Bacterial lipopeptide? Bacteria? Virus?

LTA, lipoteichoic acid; LPS, lipopolysaccharide; RSV, respiratory syncytial virus;

GNR, Gram-negative rod.

decade ago (13). After tissue damage induced by the conditioning
regimen, bacterial products contribute to an activation and expan-
sion of donor-derived T-cells via antigen-presenting cells (APCs)
(14). Such bacterial products are called as pathogen-associated
molecular patterns (PAMPs) including lipopolysaccharide (LPS).
In the activation of immune cells through a complex signaling
cascade, toll-like receptors (TLRs) play an important role in rec-
ognizing PAMPs including LPS (15). The combination of TLR and
their ligand is summarized in Table 1. In addition to TLRs, vari-
ous nucleotide-binding and oligomerization domain (NOD)-like
receptors (NLRs) play a vital role in innate immunity (16). Severe
injury to tissues results in increased release of endotoxin and exac-
erbation of the inflammation. Bacterial infection itself is expected
to stimulate the innate immunity similar to the tissue damage by
the conditioning regimen (Figure 1). The stimulated APCs includ-
ing dendritic cells and monocytes provoke an enhanced adaptive
immunity by stimulating T-cells via antigen-specific signaling (7,
15). Cooke and colleagues (17) reported that the sensitivity to
LPS affected the severity of GVHD and idiopathic pneumonia
syndrome in mice. They used two mouse strains which differ in
their sensitivity to LPS and found that LPS-resistant recipients
which had a genetic mutation in the TLR4 gene had significantly
less lung injury and GVHD. These effects were associated with
the reduction of TNF-α secretion (17, 18). They chose a direct
approach to inhibit acute GVHD by using a direct competitive
antagonist of endotoxin and by attenuation of the inflamma-
tory response following transplantation, which improved GVHD
score and survival (19). Mice were treated in the first 6 days after
HSCT, when the donor T-cells are considered to be maximally
stimulated by the host injury, and observed a concomitant reduc-
tion in inflammatory cytokine levels. This treatment was not

Conditioning regimen

Damage of host tissue Damage of small intestine Neutropenia

Infectious disease

Activation of Host

APC
Activation of Host

macrophage

Donor T cell activation

Target cell apoptosis

PAMPs

(LPS, lipoteichoic acid, etc)

PAMPs

LPS LPSBacterial 

invasion
Bacterial 

invasion

FIGURE 1 | Possible implication of bacterial infection in the pathogenesis
of GVHD. Progression of acute GVHD can be summarized in three steps
following the damage of host tissue by conditioning regimen: (1) activation of
APCs; (2) donor T-cell activation, proliferation, differentiation, and migration;
and (3) target tissue destruction. Injury to the gastrointestinal tract from
conditioning causes systemic translocation of additional inflammatory stimuli,

such as microbial products including LPS or other PAMPs, which further
enhance activation of host APCs. In addition, conditioning regimen causes
severe neutropenia that increased the risk of infectious disease. Infectious
diseases increase the secretion of PAMPs, which activate host APCs. LPS,
lipopolysaccharide; APC, antigen-presenting cell; PAMP, pathogen-associated
molecular patterns.
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associated with a parallel suppression of the beneficial GVL effects,
unlike non-specific immune suppression in this model. These
experimental studies demonstrated the implication of LPS/TLR4
signaling in alloreaction.

As another signaling pathway, several studies using a
mouse model demonstrated the importance of CpG-containing
DNA/TLR9 signaling. Calcaterra et al. (20) reported that survival
and clinical score of acute GVHD in TLR9 knockout recipient mice
were improved as compared with the wild-type recipient mice.
Taylor et al. (21) also reported that the administration of CpG-
oligodeoxynucleotide, which mimic viral and bacterial DNA and
are recognized by TLR9 markedly aggravated GVHD. In summary,
these mouse models demonstrated the importance of bacterial
products in the pathogenesis of acute GVHD.

GUT BACTERIA AND GVHD
It was reported that low bacterial environments strikingly limit
the risk of GVHD in patients undergoing allogeneic HSCT
(22). Beelen et al. assessed the influence of intestinal bacter-
ial decontamination on the occurrence of grades II–IV acute
GVHD retrospectively in 194 patients following HLA identi-
cal sibling marrow transplantation under conditions of strict
protective isolation and intestinal antimicrobial decontamina-
tion (23). Using the duration of anaerobic growth suppression
as a time-dependent explanatory variable, anaerobic decontam-
ination was a significant independent predictor for grade II–
IV acute GVHD (HR 1.7, 95%CI 1.2–2.5, P < 0.05). Follow-
ing the promising finding, which suggested a beneficial effect
of gut decontamination, a single-center open-label prospective
study was conducted. A total of 134 marrow transplant recipi-
ents with hematologic malignancies were randomly assigned to a
bacterial decontamination using metronidazole and ciprofloxacin
(n= 68) or ciprofloxacin alone (n= 66) (24). Treatment was
initiated on day 14 and was maintained until day 35 posttrans-
plant. According to an intention-to-treat principle, 17 patients
(25%) randomized to the combined decontamination medication
and 33 patients (50%) randomized to ciprofloxacin alone devel-
oped grades II–IV GVHD (P < 0.05). The higher frequency of
grades II–IV acute GVHD in patients randomized to ciprofloxacin
alone resulted from a more than twofold increased number of
patients developing liver or intestinal involvement with acute
GVHD compared with patients randomized to the combined
decontamination medication (P < 0.05). Regarding the addition
of metronidazole, it might reduce the risk of Clostridium diffi-
cile infection (CDI), which has been reported to be associated
with subsequent GVHD onset (25, 26). Alonso and colleagues
reported that patients who developed CDI were more likely to
develop GI GVHD compared with those who never developed
CDI (P < 0.001). In this study, the diagnosis of CDI preceded
the diagnosis of GI GVHD in the majority of patients (12 of
14 patients, 85.7%). Among the 12 patients who developed GI
GVHD following CDI, GI GVHD diagnosis occurred at a median
of 21.5 days after CDI. Thus, gut decontamination might reduce
the risk of acute GVHD. However, due to concerns about resistance
or disturbance of the microbiota by prophylactic antibiotics, the
type of antibiotics and the duration of prophylaxis have to be
carefully discussed (27).

Correlation between the intestinal microbiome and autoim-
mune diseases has been demonstrated recently (28, 29). Even
though there is not much data about the correlation between the
intestinal microbiome and GVHD, it has been established that the
microbiome has an influence on the status of immune cells (30).
A recent report showed that the abundance of bacteria belonging
to the genus Blautia, a commensal commonly found in the intesti-
nal tract of humans, predicted for protection from severe GVHD
in recipients of allogeneic HSCT (31). Furthermore, in murine
models, introducing a species of Blautia of murine origin reduced
GVHD severity. Intriguingly, loss of Blautia correlates strongly
with reductions in oral nutritional intake in both humans and
mice. Another group reported that loss of bacterial diversity was
associated with use of systemic antibiotics and it was pronounced
in patients with gastrointestinal GVHD (32). In addition, Can-
dida colonization might be also important in the pathogenesis
of GVHD (11). As a possible intervention to reduce the risk of
GVHD,gut flora manipulation and nutritional intervention strate-
gies might be promising. Previous reports showed that gut flora
manipulation by Lactobacillales may reduce intestinal inflamma-
tion and improve outcomes for allogeneic HSCT recipients in a
murine model (33, 34). It is worthy to test whether the manipu-
lation of intestinal microbiome is able to reduce the risk of acute
GVHD. Considering the considerable difference of conditioning
regimen or GVHD prophylaxis in the regimen-related toxicity of
oral mucosa and gastrointestinal tract, importance of gut bacte-
rial manipulation might be more important in patients with a
myeloablative conditioning regimen than those with a reduced-
intensity conditioning regimen, or in patients with short-term
methotrexate than those with mycophenolate mofetil (35–40).

BACTERIAL INFECTION AND GVHD
Intensive chemotherapy and irradiation result in damage to the
gastrointestinal tract, allowing bacteria to enter the systemic circu-
lation. This results in stimulation of the host immune response by
the production of inflammatory cytokines. Blood stream infection
(BSI) is expected to promote the inflammatory conditions, which
leads to an aggravation of acute GVHD. Statistically, it is difficult
to assess the association between BSI and acute GVHD because
acute GVHD itself is a risk factor of subsequent BSI. Poutsiaka
and colleagues (41) found that early BSI was associated with an
increased risk of grade II–IV acute GVHD.

As a marker of infectious disease, C-reactive protein (CRP)
is routinely used in Europe and Japan (42–44). CRP is an acute
phase reactant that is elevated in patients with infectious dis-
ease along with IL-6, the main cytokine that induces CRP release
(45, 46). Even though CRP has a limited value for the differ-
ential diagnosis of bacterial infections due to the non-specific
elevation in patients with inflammation from other causes, pro-
found elevation of CRP early after HSCT was in general caused by
infectious diseases (47–52). Considering the role of inflammation
in the pathogenesis of GVHD, it is intriguing whether systemic
inflammation caused by infection also exaggerates acute GVHD.
Several retrospective studies assessed the association between the
elevation of CRP and transplant complications including acute
GVHD (50, 53–57). Our group reported that a significant eleva-
tion of CRP during the neutropenic period was associated with a
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Table 2 | Bacteria commonly found on the surfaces of the human

body (64).

Oral cavity Gut Skin

Streptococcus Bacteroides Propionibacterineae

Veillonella Lachnospiraceae Staphylococcus

Prevotella Prevotella Corynebacterineae

Pasteurellaceae Faecalibacterium Streptophyta

Neisseria Lachnospiraceae Micrococcineae

Fusobacterium Ruminococcaceae Streptococcus

Micrococcineae Clostridiales Finegoldia

Pasteurellaceae Parabacteroides Lactobacillus

Actinomycineae Alistipes Anaerococcus

Porphyromonas Proteobacteria Enhydrobacter

subsequent incidence of acute GVHD (50). Min et al. also reported
that patients with GVHD had a significantly higher CRP level
early after allogeneic HSCT compared to those without GVHD
(56). Furthermore, Michigan group assessed plenty of biomarkers
to establish a biomarker panel for the prediction of acute GVHD
(58). Eight proteins (IL-2Rα, CRP, IL-8, ICAM-1, TIMP-1, TNFR1,
HGF, and CA19.9) resulted in highly significant results (P-value
<0.01 for two-sample t tests comparing patients with and without
GVHD). Among these eight biomarkers, CRP had the highest fold
difference (×5.44) and the second lowest P-value (5.9× 10−6)
comparing patients with acute GVHD to those without acute
GVHD, even though they excluded CRP probably considering
that CRP is elevated in patients with infectious diseases. However,
these results also indicate that the elevation of CRP preceded the
incidence of acute GVHD. Taking the results into account that ele-
vated CRP caused by infectious diseases precedes the occurrence of
acute GVHD, strategies to improve prevention of infectious dis-
eases early after allogeneic HSCT should be explored to reduce
the risk of subsequent acute GVHD and subsequently neces-
sary immunosuppressive therapy. Studies examining an intensified
prophylaxis for bacterial infection early after allogeneic HSCT
using intravenous antibiotics such as tazobactam/piperacillin (59),
meropenem (60), vancomycin (61, 62), or teicoplanin (63) unfor-
tunately did not report the incidence of acute GVHD, which would
be important to evaluate different antibacterial strategies and their
impact in GVHD incidence and severity. Although the informa-
tion of bacteria commonly found on the surfaces of the human
body might help us to choose the antibiotics (64) (Table 2), we
need more information about bacteria commonly found after
allogeneic HSCT (27, 32). Another possible intervention could
be intensive glucose control and glutamine, which were reported
to ameliorate the elevation of CRP level (65–67).

GENETIC POLYMORPHISM IN GENES RELATING TO
HOST–MICROBE RECOGNITION AND GVHD
Recent genome-wide association studies (GWAS) have identi-
fied a large number of major loci, which are associated with
various autoimmune diseases including Crohn’s disease (CD),
systemic lupus erythematosis (SLE), and others (16, 68, 69). In
terms of CD, polymorphisms in NOD2 were reported to be
associated with an increased risk of CD (70–72). In terms of

SLE, Graham and colleagues (73) reported that interferon reg-
ulatory factor 5 (IRF5) has been associated with SLE. IRF5 is
downstream of pattern-recognition receptor (PRR) signaling and
induces numerous cytokines.

Similar to the findings in the field of autoimmunity, several
polymorphisms in PRRs were associated with posttransplant com-
plications in HSCT (74). The incidence of severe GVHD in pairs
with either donor or recipient NOD2 mutations was significantly
higher compared to that in donor/recipient pairs without any
NOD2 variant (75, 76).

Hildebrandt and colleagues (77) reported the association
between polymorphisms in NOD2 and the risk of bronchiolitis
obliterans, a severe form of chronic GVHD.

In addition, several papers reported the association between the
polymorphisms in PRRs and other infections such as fungal and
viral infection (78). Polymorphism in dectin-1, a C-type lectin
receptor recognizing the β-1,3-glucan motif of Candida was asso-
ciated with increased Candida colonization of HSCT recipients,
rendering them at high risk for candidemia (11, 79). Polymor-
phism in dectin-1 was also reported to be associated with an
increased risk of Aspergillus infection (80). In addition, Candida
colonization was reported to be associated with an increased inci-
dence of acute GVHD (11). In terms of viral infection, the report
is limited up to now, but Jaskula and colleagues (78) reported that
polymorphism of NOD2 was associated with an increased risk of
herpes virus reactivation. Considering the implication of PRRs in
the interplay of host cells with invading viruses (81, 82), more
studies which assess the association between polymorphisms of
PRRs and the incidence of viral infection and subsequent GVHD
are warranted.

POTENTIAL INTERVENTION TO REDUCE THE RISK OF GVHD
There are several possible interventions to reduce the risk of
GVHD, focusing on the control of pathways activated by bacterial
infections. Several strategies such as manipulation of gut bacteria
and nutritional support have been already discussed above.

One strategy is to target the pathway of TLRs and other
molecules in innate immunity. There are several drugs tar-
geting TLRs under development, for example TLR4 antago-
nists (Eritoran-E5564, TAK-242) and TLR2 antagonistic anti-
body (83). Although studies conducted in patients with sep-
sis using TLR4 antagonists did not demonstrate the efficacy
of these drugs, they might be useful in the amelioration of
GVHD. Intervention to reduce the level of damage-associated
molecular patterns (DAMPs), known as alarmins might be also
effective considering the common downstream pathway between
PAMPs and DAMPs. DAMPs are endogenous components com-
monly released by injured or stressed cells, such as nucleic acids,
uric acid (UA), HMGB-1, heparan sulfate (HS), etc. (84–86).
Regarding UA, one study showed that urate oxidase can be
safely administered during myeloablative conditioning and may
reduce the incidence of acute GVHD (87). Regarding HS, treat-
ment with the serine protease inhibitor a1-antitrypsin decreased
serum levels of HS, leading to a reduction in GVHD severity in
mice (88).

Another strategy might be preemptive therapy using ATG,
intra-arterial corticosteroids, and others. ATG has been tested in
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a prospective randomized study of preemptive GVHD treatment
with ATG in 170 patients at high risk of GVHD (89–91). This study
showed that a preemptive ATG significantly reduced the incidence
of GVHD after an alternative donor HSCT. In terms of intra-
arterial corticosteroids, small studies demonstrated the promising
effectiveness in patients with severe gut GVHD (92, 93). Such pre-
emptive strategy can be applied if we develop a scoring system
incorporating the status of immunity activated by PAMPs.

DISCUSSION
As described above, various experimental and clinical data strongly
suggest the implications of bacterial, fungal, and viral infection
and acute GVHD. One possible intervention might be the manip-
ulation of intestinal microbiota. Various strategies can be used
for this purpose, such as intensification of gut bacterial decon-
tamination or administration of Lactobacillales. Gut bacterial
decontamination is practically simple but the duration of decon-
tamination should be as short as possible, considering the risk
of emergence of resistant bacteria and the cost factors. Admin-
istration of Lactobacillales has not yet been proved to be safe in
immunocompromised recipients after allogeneic HSCT.

In conclusion, various evidences from experimental models
and clinical studies suggest the implication of bacterial infection
in the pathogenesis of acute GVHD. To ameliorate the inflamma-
tion caused by bacterial infection, specific antibacterial strategies,
treatment targeting the pathway of innate immunity, or nutritional
interventions might help to reduce the risk of acute GVHD, which
should be prospectively assessed in clinical trials.
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