
REVIEW ARTICLE
published: 23 May 2014

doi: 10.3389/fonc.2014.00099

Role of integrin alpha4 in drug resistance of leukemia
Stephanie Shishido1, Halvard Bönig2 andYong-Mi Kim1*
1 Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los

Angeles, CA, USA
2 Institute forTransfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Goethe University, Frankfurt, Germany

Edited by:
Mignon Lee-Cheun Loh, University of
California San Francisco, USA

Reviewed by:
Hema Dave, Children’s National
Medical Center, USA
Chinten James Lim, University of
British Columbia, Canada

*Correspondence:
Yong-Mi Kim, Division of Hematology
and Oncology, Department of
Pediatrics, Children’s Hospital Los
Angeles, University of Southern
California Keck School of Medicine,
4650 Sunset Boulevard, MS #57, Los
Angeles, CA 90027, USA
e-mail: ymkim@chla.usc.edu

Chemotherapeutic drug resistance in acute lymphoblastic leukemia (ALL) is a significant
problem, resulting in poor responsiveness to first-line treatment or relapse after transient
remission. Classical anti-leukemic drugs are non-specific cell cycle poisons; some more
modern drugs target oncogenic pathways in leukemia cells, although in ALL these do not
play a very significant role. By contrast, the molecular interactions between microenvi-
ronment and leukemia cells are often neglected in the design of novel therapies against
drug resistant leukemia. It was shown however, that chemotherapy resistance is promoted
in part through cell–cell contact of leukemia cells with bone marrow (BM) stromal cells,
also called cell adhesion-mediated drug resistance (CAM-DR). Incomplete response to
chemotherapy results in persistence of resistant clones with or without detectable min-
imal residual disease (MRD). Approaches for how to address CAM-DR and MRD remain
elusive. Specifically, studies using anti-functional antibodies and genetic models have iden-
tified integrin alpha4 as a critical molecule regulating BM homing and active retention of
normal and leukemic cells. Pre-clinical evidence has been provided that interference with
alpha4-mediated adhesion of ALL cells can sensitize them to chemotherapy and thus facili-
tate eradication of ALL cells in an MRD setting.To this end, Andreeff and colleagues recently
provided evidence of stroma-induced and alpha4-mediated nuclear factor-κB signaling in
leukemia cells, disruption of which depletes leukemia cells of strong survival signals. We
here review the available evidence supporting the targeting of alpha4 as a novel strategy
for treatment of drug resistant leukemia.
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INTRODUCTION
Relapse of leukemia due to incomplete eradication of leukemia
stem cells by conventional chemotherapy remains a problem
in adult and childhood leukemia patients. The elimination of
chemotherapy-refractory relapse-initiating acute lymphoblastic
leukemia (ALL) cells thus remains a significant challenge and novel
approaches for targeting residual leukemia cells are warranted.
Even though chemotherapy kills the bulk of ALL cells, some can
evade the toxicity of cytoreductive chemotherapy. Minimal resid-
ual disease (MRD) refers to the presence of these surviving cells
that can be detected by flow cytometry or by PCR for informative
genetic markers (1–3). The challenge is to eliminate the relapse-
initiating ALL cells, and novel approaches specifically targeting
residual leukemia cells are warranted (4–6).

Hematopoietic stem cells (HSCs) are located in the osteoblastic
and the perivascular niches of the bone marrow (BM) (7, 8). Adhe-
sion of leukemia cells to the BM has been found to contribute to
chemoresistance of residual leukemia cells (6, 9–11). Integrins, a
family of glycoprotein cell surface receptors composed of two sub-
units, alpha and beta (12), are responsible for cell adhesion to the
extracellular matrix (ECM). The beta1 integrins are also known as
very-late-activation antigens (VLAs). The integrin alpha4-chain
(alpha4, also known as CD49d) non-covalently associates with the
beta1 integrin chain, CD29, to form very-late-antigen-4 (VLA-
4). VLA-4 is also referred as alpha4/beta1 or CD49d/CD29 and

although there is an alternative beta-partner for alpha4, beta7,
to form MadCAM, CD49d/CD29 is referred to throughout this
manuscript as “the alpha4 integrin.” The alpha4 integrin binds to
its counter receptors, including vascular cell adhesion molecule-1
(VCAM-1), fibronectin, or osteopontin (OPN) (13), and regu-
lates retention and mobilization as well as to some degree cell
cycle activity of immature progenitors in the BM (14). Alpha4 is
expressed, among many other blood cells, on pre-B ALL cells (15,
16) and was recently quantified by real-time polymerase chain
reaction in leukemia cells from 56 patients with relapsed ALL
enrolled in the ALL-REZ BFM 2002 trial of the Berlin–Frankfurt–
Münster study group (17). High alpha4 integrin mRNA expression
was identified as an adverse risk factor in childhood ALL at first
relapse. Therefore, we review here integrin alpha4 as a therapeutic
target in drug resistance of leukemia.

INTEGRIN STRUCTURE
Integrins are a family of 24 heterodimeric cell surface proteins
sharing significant structural and functional commonalities (13,
18, 19). They consist of an alpha- and a beta-chain, which are non-
covalently bound. The alpha-chain predominantly defines the
ligand specificity of the integrin. Conformational changes induced
by approximation of the transmembrane regions of the integrin
heterodimer open the ligand binding pocket. Ligand binding fur-
ther affects integrin conformation, stretching the heterodimer
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from a bent to an extended conformation, shown in Figure 1
(20). The high-affinity form of integrins is stabilized by inser-
tion of certain proteins from a multi-protein complex associated
with the intracellular domain of integrins, e.g., talin (21). In the
active conformation, integrins elicit intracellular (outside-in) sig-
nals through a variety of cell-type-dependent pathways, which
include survival/apoptosis, cell cycle, metabolism, among others
(12, 22–29). Integrins thus mediate physical adhesion to suit-
able matrices/ligands while at the same time providing outside-in
signals regulating cell fate.

INTEGRIN LIGANDS
Integrin alpha4 binds to VCAM-1, a cell surface protein expressed
on activated vascular endothelium and a host of other cells, as well
as several ECM proteins, including OPN and the highly abun-
dant fibronectin. VCAM-1 is a type I membrane protein expressed
mainly on the surface of vascular endothelial cells throughout the
vascular tree, but also on hematopoietic cells, although its function
on these cells remains elusive. VCAM-1 expression on blood ves-
sels is induced after cytokine stimulation, which is regulated either
by increasing VCAM1 mRNA expression or mRNA stabilization
(30). An alternative receptor for VCAM-1 to alpha4 is MadCAM,
the alpha4/beta7 integrin heterodimer (31).

Fibronectin, a large glycoprotein dimer, binds primarily other
matrix proteins, such as collagens and heparan sulfates, but
contains moieties for integrin alpha4/beta1 binding (within
the V-domain) as well as for alpha5 and the platelet integrin
alphaV/beta3 (the RGD domain) (32). Experiments with mole-
cules antagonizing fibronectin versus VCAM-1 binding, however,
did not detect apparent effects of fibronectin-blockade on the
trafficking of immature hematopoietic cells, whereas VCAM-1

inhibition interfered quantitatively with the interaction between
hematopoietic stem/progenitor cells and BM (33). Matsunaga
et al. have reported a fibronectin peptide based blockade of acute
myeloid leukemia (AML) (34). As to the relevant ligand for alpha4
integrin in the stroma niche, contradictory data have been pub-
lished. Specifically, Cradock and colleagues identified VCAM1 as
the relevant ligand for normal hematopoietic cells, while the CS1
motif was apparently redundant (33). By contrast, Matsunaga et al.
proposed adhesion to fibronectin as the molecular mechanism dri-
ving alpha4 integrin-mediated chemoresistance (35). If this was a
general rule, then targeting the VLA-4-fibronectin interface would
represent an even more leukemia cell specific target than VLA-4
proper. However, our own data show contributory roles of both
ligands for chemoresistance of leukemia cells (and most strongly
for VCAM1) at least in vitro (36), so that the situation currently
remains unresolved.

Osteopontin is a negatively charged ECM glycoprotein, and
has been described as a ligand for alpha4 integrin (37, 38), but
alternative receptors include the alpha9 integrins (39). A role for
OPN as a negative regulator of HSC proliferation and a media-
tor of HSC localization within BM has been proposed (40, 41).
Which one of these alpha4 ligands is most critical for leukemia cell
attachment-mediated drug resistance remains elusive.

INTEGRIN INTRACELLULAR SIGNALING
Integrins can elicit intracellular signaling both directly and indi-
rectly through other receptors (42). These are complex signaling
mechanisms, which are briefly summarized here: Indirect intracel-
lular signaling involves integrins forming complexes with receptor
tyrosine kinase (RTK), which then interferes with activation of
RTK by its normal ligand (43). A main structural and signaling

FIGURE 1 | Activation of the integrin heterodimer induces a
conformational change. The conformational states of the integrin
heterodimer determine whether it functions for cellular adhesion or migration.

The bent, inactive form of the integrin heterodimer prevents binding of ligands
to the recognition region (left). Activation induced conformational change
results in availability of the ligand binding region (right).
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protein involved in direct integrin signaling is integrin-linked
kinase (ILK), which binds integrins (Figure 2). ILK forms multi-
protein complexes with several key components involved with
the cytoskeletal dynamics and intracellular signaling cascades.
ILK kinase activity is dependent on PI3K and requires binding
of PtdIns(3,4,5)P3 (PIP3) (44–46). Key players in cellular sig-
naling that bind ILK specifically at the kinase domain include:
PDK1, Akt, Rictor, Src. Rictor directly interacts with ILK, leading
to the phosphorylation of Akt at serine 473 (26). This regulates
cellular survival via caspase activation and nuclear factor-κB (NF-
κB) stimulation (44, 47). ILK phosphorylates glycogen synthase
kinase-3β (GSK3β) through phosphorylation on serine 9, result-
ing in the activation of activator protein 1 (AP-1), which then
stimulates cyclin D1 and matrix metalloprotease 9 (MMP9) (44,
45, 48). Tabe et al. showed that ILK/Akt is a signaling path-
way critical for survival of leukemic cells (49). Specifically, they
demonstrated in a co-culture system of leukemic NB4 cells with

BM-derived stromal mesenchymal stem cells (MSC), activation of
ILK/Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), signal
transducers and activators of transcription 3 (STAT3), as well as
Notch1/Hes. Blockade of PI3K or ILK signaling with pharmaco-
logic inhibitors, LY294002 or QLT0267, resulted in induction of
apoptosis in both leukemic cell lines and in primary AML samples.
Muranyi et al. showed that targeting ILK and FMS-like tyrosine
kinase-3 (FLT3) with an inhibitor of ILK and FLT3, OLT0267, is
cytotoxic to AML stem cells using a long-term suspension culture
system and a NOD/SCID mouse leukemia-initiating assay (50).

Direct intracellular signaling involves direct activation of tyro-
sine kinases by integrins. It has been described that integrin clus-
tering activates tyrosine phosphorylation via focal adhesion kinase
(FAK) (51). Integrin intracellular signaling involved the recruit-
ment and activation of Src-family kinases (SFKs), which recruit
FAK through the beta subunit (Figure 3). FAK can activate sig-
naling from phosphatidylinositol 3-kinase (PI3K) to AKT/protein

FIGURE 2 | Integrin intracellular signaling pathways regulated by
ILK. A variety of biological processes are regulated by ILK, which is a
central player in multiple signaling cascades crucial for tissue
homeostasis. ILK activation results in downstream effects responsible
for survival, invasion, and proliferation. AP-1, activator protein 1; casp,

caspase; GSK β, glycogen synthase kinase-3β; MMP9, matrix
metalloprotease 9; NF-κB, nuclear factor-κB; P, phosphate; PI3K,
phosphatidylinositol 3-kinase; PIP3, PtdIns(3,4,5)P3. Solid black arrows
indicate activation, dashed black arrows indicate downstream effects,
and the red lines indicate inhibitory effects.
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FIGURE 3 | Overview of integrin intracellular signaling cascades
from both the alpha and beta subunits, leading to the activation
of various cellular functions. Binding of an alpha/beta integrin to the
extracellular matrix ligands leads to activation of FAK. Note that other
signaling pathways are stimulated by integrin heterodimers, but are
not included for clarity and conciseness. FAK: focal adhesion kinase;

GRB2, growth-factor-receptor-bound-2; P, phosphate group; PAK,
p21-activated kinase; PI3K, phosphatidylinositol 3-kinase; PIP3,
PtdIns(3,4,5)P3; PKB, protein kinase B; SFKs, Src-family kinases;
SOS, son-of-sevenless. Solid black arrows indicate activation, dashed
black arrows indicate downstream effects, and the red lines indicate
inhibitory effects.

kinase B (PKB) through phosphatidylinositol-3,4,5-trisphosphate
[PtdIns(3,4,5)P3], as well as recruiting Src to focal adhesions. Src
can then phosphorylate CAS and paxillin, which further recruits
the Crk–DOCK180 complex that results in the activation of Rac
(52). The activation of Rac further activates p21-activated kinase
(PAK), Jun amino-terminal kinase (JNK), and NF-κB (52–54).

Focal adhesion kinase can activate extracellular signal-
regulated kinase (ERK)/mitogen-activated protein kinase (MAPK)
via two pathways. First FAK can recruit C3G and RAP1 via Crk
(55), which induces B-Raf activity and ERK/MAPK activation
(12). The second pathway involves the growth-factor-receptor-
bound-2 (GRB2) and son-of-sevenless (SOS) complex, which acti-
vates Ras–ERK/MAPK. The alpha subunit is also able to activate

ERK/MAPK via SFK coupling, which phosphorylates the SHC,
activating the GRB2–SOS complex and ERK/MAPK signaling
downstream of Ras (56, 57).

The extracellular domain of alpha4 integrins mediates cell
adhesion, while the cytoplasmic domain couples signaling and
linkage with the cytoskeleton (13). The cytoplasmic tail of alpha4
integrin has been reported to bind to the signaling adaptor
paxillin (58). The tight association of paxillin with the alpha4
tail leads to distinct biochemical and biological responses to
integrin-mediated cell adhesion (58).

Lim et al. have reported that localized cAMP-dependent protein
kinase (PKA) activation in pseudopodia of migrating cells phos-
phorylates alpha4 integrins to provide spatial cues governing cell
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motility. Specifically, they have shown that the alpha4 cytoplas-
mic domain is a Type I PKA-specific a-kinase anchoring proteins
(AKAP) (59).

Rivera Rosado et al. have shown that cytoplasmic alpha4 tail
associates with non-muscle myosin IIA (MIIA) independent of
paxillin binding indicating a new mechanism for linking integrins
to the actomyosin cytoskeleton and for regulating cell migration
by integrins (60).

The interactions outlined above may regulate alpha4-specific
adhesion in leukocytes, and it is conceivable, although it remains
to be seen, that they may impact MRD.

In addition, Liu et al. have shown that chemoprotection of
Jurkat T-ALL cells is integrin alpha4- or alpha5-mediated (61).
The cytoplasmic domains of alpha-integrins have few sequences
in common with the exception of the highly conserved membrane-
proximal KXGFFKR motif (62). Interesting, Liu et al. have shown
that reconstituted expression of alpha4δ, a truncated alpha4 inte-
grin with KxGFFKR as cytoplasmic motif, in alpha4-deficient
cells promoted chemoresistance to doxorubicin independent of
alpha4-mediated adhesion of T-ALL cells (61).

Taken together, these observations indicate that the chemopro-
tective effects of leukemia cells associated with alpha4 integrin
are at least in part mediated through integrin signaling and not
through alpha4-mediated adhesion alone, although contributory
roles of adhesion cannot be ruled out.

INTEGRIN-BONE MARROW STROMAL INTERACTIONS
MEDIATE SURVIVAL AND RESISTANCE OF LEUKEMIA CELLS
TO CHEMOTHERAPY
As the BM is the most frequent relapse site for ALL (63), the BM
has been considered a protective niche for leukemia cells (64). Pre-
vious studies have shown that ALL cell adhesion is mediated by
alpha4 (65) and also that AML cell adhesion is specifically medi-
ated by beta1 integrin, which leads to cell adhesion-mediated drug
resistance (CAM-DR) (66). Mudry et al. conducted an in vitro
investigation of one T-ALL and three pre-B ALL cell lines either
in co-culture with stroma cells or on proteins isolated from the
stromal matrix (11). When ALL cells were able to make direct
contact with the stromal cells, the co-culture system maintained
leukemia cell proliferation despite the presence of the chemother-
apeutic agents, cytarabine or etoposide. This pro-survival effect
was mediated through VCAM-1. Chemotherapeutic protection
was not observed when leukemia cells were cultured in suspension
above the stroma or on fibronectin alone. An interesting function
of integrins beyond simple physical adherence is the activation
of “outside-in” signals upon binding to their extracellular ligands,
which apparently contribute to the integrin-mediated chemopro-
tective effects. Some of these chemoprotective signaling changes
have been described below, as well as in Figures 2 and 3.

Astier and colleagues observed the inhibition of capase-3 and -
7 activation by stimulation of β1 integrin in pre-B ALL cells. In the
co-culture of BM stroma with pre-B ALL cells during chemothera-
peutic treatment, the expression of the pro-apoptotic 23 kDa Bcl-2
protein was reduced (67). Wang et al. reported reduced levels of
both PARP and cleaved Bcl-2 in ALL cells post-chemotherapy
treatment, which was shown to be Akt-mediated (68). Previous
studies by Fortney et al. showed that caspase 3 activity can be

induced in ALL cells after treatment with the chemotherapeutic
compounds, cytarabine or etoposide (69). Interestingly, this apop-
totic effect is prevented in ALL cells co-cultured with human BM
stroma cells.

The PI3K/Akt pathway (Figure 3) has been implicated in
stroma cell-mediated chemoprotection and survival of leukemia
cells (68). Additionally, gene expression analysis of leukemia cells
with high versus low alpha4 expression identified 27 differentially
expressed genes involved in ephrin, Rho GTPase, and PI3K/Akt
pathways (17). More recently, it has been implicated that B-ALL
cells interact with the BM-derived mesenchymal stromal cells
through Notch-3 and -4 signaling (70). In a study by Bertrand
et al., the inhibition of MEK with either mTOR or PI3K in the
B-ALL cell line BLIN-2 resulted in rapid apoptosis of the leukemic
cells (71).

Pillozzi et al. reported similar data in a co-culture system of ALL
cells and BM mesenchymal stroma cells where hERG1 (human
ether-à-go-go-related gene 1) channels have a role in the survival
of leukemia cells via a signaling complex also containing beta1
integrin and CXCR4 (72). In addition, the PI3K/Akt pathway has
been linked to regulation of drug transporting pumps, which may
contribute to drug resistance (73): Ma showed high expression
level of ST6GAL (β-galactoside α2, 6-sialyltransferase)-1 gene in
leukemia cells. ST6GAL1 modulated the activity of (PI3K)/Akt sig-
naling and regulated the expression of P-glycoprotein (P-gp) and
multidrug resistance related protein 1 (MRP1) in leukemia cell
lines. These data indicate that changes in P-gp based drug efflux
mechanisms downstream of integrin signaling may contribute to
chemoresistance. However, others have reported that MRP1, but
not P-gp expression is under the control of the PI3K/Akt axis in
AML blasts (74), so that definitive conclusions cannot be drawn at
this point.

Recently,Andreeff and colleagues provided evidence of stroma-
induced and alpha4-mediated NF-κB signaling in leukemia cells
(75): Jacamo et al. have shown that VCAM1/VLA-4 activates NF-
κB activation in leukemia and BM stromal cells and this crosstalk
contributes to chemoresistance of leukemia cells (75).

Taken together, these studies demonstrate that integrin-BM
stromal interactions trigger intracellular signaling changes, which
then mediate chemoprotection. Interruption of this chemopro-
tective interaction-induced signaling would potentially overcome
drug resistance. These findings indicate also that the effect of
targeting integrin alpha4 goes beyond physical dislodgement of
leukemia cells from the BM niche.

TARGETING OF ALPHA4 INTEGRIN
Pre-clinical and clinical testing of new therapies against vari-
ous integrins involved in different diseases is a rapidly emerging
field (76–81). Over 260 anti-integrin drugs are currently in clin-
ical evaluation, but only a few have been approved for clinical
use. One of these is the anti-functional antibody, natalizumab
(82), which targets both alpha4/beta1 and alpha4/beta7 (Table 1).
Natalizumab, which is almost fully humanized, has been avail-
able in the clinic for treatment of relapsing–remitting multiple
sclerosis as well as of complicated refractory inflammatory bowel
disease with very high efficaciousness and for the most part good
safety and tolerability. Long-term treatment has been associated
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Table 1 | Summary of integrin alpha4 targeting drugs.

Drug Target Disease Reference Drug class Mechanism/ligand

Natalizumab Alpha4beta1 and 7 MS; leukemia (71) Human monoclonal antibody Non-competitive

antagonism, VCAM

AJM300/

HCA2969

Alpha4beta1 and 7 IBD, UC, Crohn’s (81) Orally available small molecule

N -acetyl phenylalanine

Selective antagonist,

VCAM

SB683699/

firategrast

Alpha4beta1 and 7 IBD, MS, RA,

asthma, Crohn’s

(82) Orally available small molecule

N -acetyl phenylalanine

Selective antagonist,

VCAM

R-411/

valategrast

Alpha4beta1 and 7 Asthma, arthritis (83, 84) Small molecule N -acetyl

phenylalanine

Inhibit binding of alpha4

with receptors

IVL745 Alpha4beta1 and 7 Asthma (90) Small molecule inhalant LDV, VCAM, and

fibronectin

CDP323 Alpha4beta1 and 7 MS (85, 86) Orally available small molecule

N -acetyl phenylalanine

Antagonist

THI0019 Alpha4beta1 and 7;

alpha5beta1, alphaLbeta2

N/A (91) Small molecule Agonist, binding at subunit

interface

TBC3486 Alpha4beta1 N/A (92) Urea-based small molecule Ligand mimetic Selective

antagonist, VCAM-1

Bio-1211 Alpha4beta1 and 7 Asthma (88) Urea-based small molecule Selective inhibitor LDV,

fibronectin

Bio5192 Alpha4beta1 EAE, HSC

mobilization

(78, 89) Urea-based small molecule High-affinity due to slow

dissociation rate LDV

LLP2A Alpha4beta1 Airway inflammation (97, 98) Peptidomimetic compound Binds Trp188 and Gly190,

close to binding sites for

VCAM-1 and fibronectin

HMR-1031 Alpha4beta1 Asthma (99, 100) Small molecule inhalant Selective antagonist

VCAM-1 and fibronectin

Compound 7n Alpha4 Asthma (101) Orally available small molecule

MLN-02 Alpha4beta7 IBD (74–77) Humanized antibody Selective antagonist,

fibronectin

MS, multiple sclerosis; IBD, inflammatory bowel disease; UC, ulcerative colitis; RA, rheumatoid arthritis; EAE, experimental autoimmune encephalomyelitis; LDV,

leucine–aspartic acid–valine.

in some patients with induction of neutralizing antibodies against
the few remaining murine amino acid residues of the antibody,
a scenario presenting as mild infusion-associated serum sickness
and loss of efficacy (83). Infrequently, JC-virus-associated progres-
sive multifocal leukoencephalopathy (PML) has been described
after prolonged use, a complication, which is associated with a
poor prognosis despite aggressive plasmapheresis (84). Long-term
effects on hematopoiesis have been studied and did not pro-
vide any evidence for hematopoietic exhaustion in agreement
with specific evidence in mice deficient for alpha4 integrin on
hematopoietic cells (85, 86). We have evaluated the use of natal-
izumab in a xenograft model of primary leukemia and observed
prolonged survival of mice treated with the combination of vin-
cristine, dexamethasone, and l-asparaginase plus natalizumab
(36). These data indicate the promise of this clinically approved

antibody for ALL treatment. Another humanized antibody which
is shown to inhibit alpha4beta7-mediated cellular adhesion is
MLN-02 (87), which is a selective antagonist of alpha4/beta7 cur-
rently in clinical evaluation against Crohn’s disease and Ulcerative
Colitis (88–90).

Alternative molecules targeting alpha4 are under evaluation
for a variety of diseases and have been summarized in more detail
(78, 79, 91–93) (Table 1), although none are approved so far for
clinical use in leukemia. There are two main classes of alpha4 inte-
grin antagonists: urea-based and phenylalanine-based antagonists.
The N -acetyl phenylalanine group consists of the small molecules
AJM300 (94), SB683699 (Firategrast) (95), R-411 (Valategrast)
(96, 97), and CDP323 (98, 99). These phenylalanine derivatives are
novel compounds with improved potency against alpha4 integrins,
through the formation of a cyclic peptide (100).
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The urea-based antagonists are Bio-1211 (101), Bio5192 (92,
102), IVL745 (103), and TBC3486 (104), which is the parent
molecule to THI0019 (105). These small molecule antagonists
can further be categorized by the presence of a leucine–aspartic
acid–valine (LDV) motif. The LDV motif contains a crucial aspar-
tate recognized by integrin alpha4 (106–108). Alpha4 integrin has
three LDV motifs in the extracellular sequence. The active-site
motifs of integrin ligands can be reproduced synthetically as small
molecules to provide both information regarding receptor–ligand
binding and the development of therapeutic agents. For example,
R-411 (valategrast), is metabolized to its active form RO0270608,
which immediately reversed the binding of leukocytes to VCAM-1
(96). In early clinical trials, this molecule has shown encouraging
results regarding pharmacokinetics and toxicity in patients with
asthma (96, 97, 109). Of the LDV antagonists, Bio5192 is the only
selective antagonists specifically for alpha4/beta1, while the others
are dual antagonists. Another antagonist discussed here is a novel
peptidomimetic compound that is specific for the biding site on
alpha4/beta1 integrin heterodimer called LLP2A (110). LLP2A is a
high-affinity ligand due to the replacement of the LDV motif with
unnatural, modified amino acids (111). HMR 1031 is a selective
VLA-4 receptor antagonist that blocks the binding of VCAM1 and
fibronectin (112), but has shown poor efficacy in subjects with
clinically persistent asthma (113). Compound 7n is a zwitterionic
compound specifically modified from the VLA-4 antagonist com-
pound 3, which is a 2-(phenylamino)benzoxazole derivative to
improve oral bioavailability, which showed favorable efficacy in a
mouse model of asthma (114). It remains to be seen if these novel
alpha4 integrin inhibitors will be approved for clinical use.

CONCLUSION
Integrins have been implicated in adhesion-mediated drug resis-
tance of leukemic cells. As integrin alpha4 has been described
in particular to be highly expressed in ALL (58, 102), this
review focused on summarizing recent studies of integrin alpha4-
associated cell survival and how to interrupt this chemoprotective
binding. We have shown that integrin alpha4 is a promising tar-
get in the therapy against ALL (102). Interference with alpha4 not
only deadheres leukemia cells physically from the chemoprotective
BM niche, but may interrupt intracellular signaling changes crit-
ical for survival and resistance of leukemia cells. Several ways to
target integrin alpha4 are under pre-clinical evaluation. Whether
targeting of alpha4 integrin should be a strategy to prevent relapse,
or whether it should be a treatment of relapsed ALL remains to be
determined. Currently, the only clinically available anti-integrin
alpha4 antagonist is natalizumab. Pre-clinical evidence has been
provided that interference with alpha4-mediated adhesion of ALL
cells can sensitize them to chemotherapy and thus facilitate erad-
ication of ALL cells in an MRD setting (36). Finally, it remains to
be determined whether toxicity of standard-risk ALL treatment
can be decreased by combining administration of anti-alpha4
inhibitions with a reduced-dose chemotherapy.
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