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The two major forms of leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML), account for about one-third of the malignancies diagnosed in children.
Despite the marked successes in ALL and AML treatment, concerns remain regarding the
occurrence of resistant disease in subsets of patients, the residual effects of therapy that
often persist for decades beyond the cessation of treatment. Therefore, new approaches
are needed to reduce or to avoid off target toxicities, associated with chemotherapy and
their long-term residual effects. Recently, nanotechnology has been employed to enhance
cancer therapy, via improving the bioavailability and therapeutic efficacy of anti-cancer
agents. While in the last several years, numerous review articles appeared detailing the
size, composition, assembly, and performance evaluation of different types of drug carry-
ing nanoparticles, the description and evaluation of lipoprotein-based drug carriers have
been conspicuously absent from most of these major reviews.The current review focuses
on such information regarding nanoparticles with an emphasis on high density lipoprotein-
based drug delivery systems to examine their potential role(s) in the enhanced treatment
of children with leukemia.

Keywords: leukemia, nanoparticles, drug delivery systems, targeting, high density lipoprotein

MOLECULAR PATHOGENESIS OF LEUKEMIAS
Cancer is a major contributor to disease related deaths among
1–19-year old children (1, 2). The incidence of childhood cancer
has been slowly increasing during the past four decades as more
than 12,000 children are diagnosed annually with various types of
malignancies in the US (3, 4). Leukemias are classified based on
the type of white blood cell (myeloid or lymphoid) and the degree
of maturity and proliferative tendencies (acute or chronic) of the
cell populations involved. The most common leukemias in chil-
dren are Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid
Leukemia (AML); while ALL is responsible for the majority of
pediatric cancer-related deaths (5–8).

Current treatment strategies for leukemia involve chemother-
apy, bone marrow transplant, and radiation. These treatments
often induce long-term side-effects, resulting in impairment of
vital physiological functions among the survivors (9). While cur-
rent treatment approaches have greatly improved the prognosis
for survival for pediatric leukemia, some patients remain refrac-
tive to current therapeutic regimens (10, 11). Hence there is
an urgent need for novel therapeutic strategies for these diffi-
cult to treat leukemia cases, in addition to reducing the long-
term impact of therapy (residual side-effects) for all leukemia
patients.

TARGETED THERAPIES IN TREATING LEUKEMIA
Due to the cytotoxicity of drugs, currently the major challenge is
to deliver the therapeutic agent to neoplastic cells while preserving
the viability of non-malignant cells. In some cases, the efficacy of
therapeutic agents are greatly reduced due to acquired resistance by
cancer cells. Targeted therapies are currently under development to

address resistance to therapy and to reduce unwanted side-effects.
Research on the use of nanoparticles as drug carriers has advanced
to the point to focus on assessing the safety and efficacy of such
drug delivery systems (12).

NANOPARTICLES IN TARGETED THERAPY
The application of nanotechnology is rapidly advancing toward
treating several major diseases including cancer. Selective deliv-
ery of anti-cancer agents to cancer cells without harming the
healthy cells is a major goal of these current efforts. In order to
achieve these goals, small (nano) particles as drug carriers have
been employed, specifically to target (malignant) malignant cells
and tumors (13–16). The utilization of nanoparticles as drug deliv-
ery agents has several advantages, including specific targeting via
receptor mediated mechanisms and effective penetration of the
tumor microenvironment. The use of nanotechnology in can-
cer treatment has gained significant momentum since 1995 in
the US when the FDA approved the use of a nano-drug, Doxil,
a liposomal delivery formulation of a cardioprotective form of
Doxorubicin. Doxil has been developed for increasing the bioavail-
ability and extending the drug’s residence time in the circulation,
with subsequent release at the tumor site (17). Subsequently,
despite meticulous screening and extremely low approval rates
by the FDA (18), a few nanoparticles/carriers including Abraxane
and Marqibo have been approved for cancer treatment. Abraxane,
an albumin-bound paclitaxel formulation has been approved for
some metastatic and relapsed breast cancer cases in 2005. Later, this
drug was also approved for treating locally advanced or metasta-
tic non-small cell lung cancer in 2012 and for treating late-stage
pancreatic cancer in 2013. Marqibo, a liposomal formulation of
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vincristine has been granted FDA expedited approval in 2012 for
certain Philadelphia chromosome-negative (Ph)-ALL patients.

PEDIATRIC LEUKEMIAS AND NANOTHERAPEUTICS
Despite recent improvements in the prognosis for patients with
ALL and AML, serious concerns remain regarding off target toxic-
ity and residual effects of chemotherapy (19–21). Several strategies
including the use of nanoparticles have been proposed to avoid
these concerns including its long-term impairment of physiolog-
ical functions (22). A variety of nanoparticles, including den-
drimers, gold particles, liposomes, micelles, and polymers have
been described to improve the bioavailability or the therapeutic
efficacy of currently used anti-cancer agents (14, 16). These nan-
odelivery systems have yet to be evaluated in pediatric leukemia
patients.

LIPOPROTEIN-BASED DRUG CARRIERS IN CANCER THERAPY
Advances in the last 10 years have brought the outstanding features
of lipoprotein drug delivery systems to the forefront of experi-
mental therapeutics (23). Lipoproteins possess key characteristics
that allow them to perform as superior drug delivery agents.
Lipoproteins contain a sealed core compartment that protects the
encapsulated pharmaceutical agent from being rapidly taken up
by normal tissues (or to elicit an antigenic response) upon enter-
ing the blood circulation. Once entering the blood, the delivery
of the drug from the lipoprotein nanoparticle may be facilitated
by receptor/ligand interactions via the polypeptide/apolipoprotein
component of the nanocomplex (24, 25).

LEUKEMIA/LYMPHOMA THERAPEUTICS VIA
LIPOPROTEIN-BASED DRUG DELIVERY SYSTEMS
Vitols et al. found that leukemic cells with monocyte differentia-
tion expressed an elevated low density lipoprotein (LDL) receptor
(26). Subsequently, Vitols et al. established that human leukemia
cells were avidly taking up LDL and thus proposed lipoproteins
as potential drug transporting vehicles for selective leukemia ther-
apeutics (27). More recently, Masquelier et al. attempted to use
LDL (28) as a vehicle for delivering chemotherapeutic agents to
leukemia cells. While these studies have shown some promise
in improving the bioavailability of lipophilic drugs the stabil-
ity of the drug carrying LDL complexes did not meet expecta-
tions (29). While the LDL carrier has not so far shown sufficient
promise for advancement toward clinical applications, the stud-
ies of Vitols et al. have drawn attention to lipoproteins and their
receptors as components of a selective drug delivery strategy for
cancer chemotherapy (26, 27). Recently, Yang et al. showed that
human lymphoma cells overexpressed the high density lipopro-
tein (HDL)/SR-B1 receptor while normal lymphocytes had low
baseline expression (24). Our studies have shown that the great
majority of malignant cells and tumors also overexpress this recep-
tor (30) and thus validate the use of HDL type nanoparticles in
the cancer cell/tumor selective delivery of anti-cancer agents (31).

The features of rHDL nanoparticles that qualifies them
as promising drug delivery vehicles include: their small size
(Figure 1), stability, and receptor mediated cellular uptake of their
core components (23, 25, 30, 31). Additional major advantages of
rHDL as a drug delivery vector include: (1) natural components,

FIGURE 1 | Size comparison of HDL with liposomes and other
lipoprotein classes. The rHDL nanoparticles have an average diameter of
14 nm, similar to native (circulating HDL) and thus are likely to gain easier
access to cancer cells than other drug carriers, including liposomes.

providing enhanced safety and efficacy; (2) stable non-leaking
preparation; (3) biocompatibility, several formulations with the
same ingredients (as rHDL) have been safely injected into human
subjects (32–35); (4) HDL particles exhibit longer residence time
in the circulation than most drug formulations or other lipopro-
teins because of their property to escape reticulo-endothelial sys-
tem; (5) the small size of the rHDL nanoparticle (Figure 1) could
be a major advantage in leukemia therapeutics as the surface expo-
sure of the nanoparticles and their interactions with leukemia cells
would be markedly enhanced. Consequently, it is anticipated that
the delivery of anti-leukemia agents to leukemic cells would be
substantially enhanced.

SELECTIVE DELIVERY FEATURE OF rHDL NANOPARTICLES TO
MALIGNANT CELLS
Because of the substantial overexpression of the HDL/SR-B1
receptor by most cancer cells (23–25, 30, 31) and tumors (30), the
rHDL nanoparticles are capable of selectively delivering their ther-
apeutic payloads to malignant cells and tumors without impact-
ing most normal tissues (23, 30, 31). This feature of the rHDL
nanoparticles is a major advantage over non-targeted delivery sys-
tems as it is anticipated to substantially reduce off target toxicity to
normal tissues, a major concern during the treatment of pediatric
cancer patients.

RATIONALE FOR THE USE OF rHDL NANOPARTICLES IN
LEUKEMIA THERAPEUTICS
In addition to the above description of the rHDL nanoparticles,
there are more compelling reasons for their utility as drug carriers
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during leukemia chemotherapy. Clinical studies have supported
the concept of targeting cancer cells and tumors via lipoprotein
carriers. A case–control study of 519 patients with various types
of solid tumors and 928 controls reported that the serum lipid total
cholesterol values of patients were significantly lower, due primar-
ily to low levels of HDL-C (36). The findings of these and other
studies are consistent with the concept that lipoprotein receptors
(especially the HDL receptor) are highly active on the surface of
malignant cells (25) and thus may be used as conduits for the deliv-
ery of anti-cancer agents, including those for leukemia therapy.
Clinical studies have consistently shown a reduction of HDL-C
levels in ALL patients (37). The HDL-C values returned to nor-
mal levels once the patients were in remission (38). The rHDL
nanoparticles deliver anti-cancer agents to cancer cells and tumors
via a receptor mediated mechanism that provides a robust selec-
tive targeting vehicle during chemotherapy. The receptor mediated
uptake of anti-cancer agents is an important part of the concept
for efficient drug delivery because leukemia cells are likely to have
a high expression of the SR-B1 receptor compared to normal cells,
due to the excessive need for cholesterol to support their high rate
of proliferation. This may be particularly potent in cells that have
a very high mitotic rate.

CONCLUSION
Nanotechnology is providing tools for effective use of materials
at a very small scale. This emerging technology utilizes multi-
disciplinary approaches suitable for biomedical applications in
health care including diagnosis and therapy. We anticipate that
receptor mediated uptake of anti-cancer agents (25, 31) can func-
tion as an efficient drug delivery system for leukemia therapy.
Leukemia cells are likely to exhibit high expression of the SR-
B1 receptor. Hence we postulate that our model could be very
effective and even serve as a personalized treatment strategy. By
determining the pre-treatment expression level of these receptors
in individual patients, the chemotherapeutic regimen could be
personalized for maximum benefit specifically to the high SR-B1
expressing leukemia cells and tumors. Alternatively for leukemia
cells and tumors exhibiting low SR-B1 expression, functionalized
rHDL nanoparticles could be developed to target a wide range of
other surface tumor antigens. There are a multitude of membrane
components available as possible targets for functionalized rHDL,
which can be easily modified to feature the desired vector for tar-
geting (39). This strategy would reroute the lipoproteins from their
natural receptors and navigate them to malignant cells and tumors
via other receptors.

The targeted therapy via the rHDL nanoparticles is anticipated
to limit the toxicity of drugs during therapy, via a novel drug
delivery model with desirable physical characteristics and out-
standing selective targeting potential toward malignant cells and
tissues (20–22, 25, 28). Additionally, the rHDL delivery system has
a potential to reposition a variety of approved drugs that proved
to have limited applicability due to poor solubility and excessive
peripheral toxicity. This approach could be most economical and
profitable, in contrast with conventional and very costly drug and
target-screening strategies.
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