{frontiers in
ONCOLOGY

REVIEW ARTICLE
published: 13 May 2014
doi: 10.3389/fonc.2014.00104

The role of the tumor stroma in ovarian cancer

Ben Davidson'?*, Claes G. Trope%*® and Reuven Reich*

" Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway

2 University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway

3 Department of Gynecologic Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway

4 Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel

Edited by:
Nicolas Wentzensen, National Cancer
Institute, USA

The tumor microenvironment, consisting of stromal myofibroblasts, endothelial cells, and
leukocytes, is growingly perceived to be a major contributor to the pathogenesis and dis-

ease progression in practically all cancer types. Stromal myofibroblasts produce angiogenic

Reviewed by:

le-Ming Shih, Johns Hopkins Medical
Institutions, USA

Elise Kohn, National Cancer Institute,
USA

*Correspondence:

Ben Davidson, Department of
Pathology, Oslo University Hospital,
Norwegian Radium Hospital,
Montebello, Oslo N-0424, Norway
e-mail: bend@medisin.uio.no

INTRODUCTION

Cancer is characterized by uncontrolled cell growth due to the
combined effect of growth-promoting and cell death-suppressing
signaling. Tumor growth and progression in carcinomas character-
istically involves a pre-invasive phase, followed by invasion of the
surrounding stroma, entry into blood and lymphatic vessels, and
metastasis. It is growingly perceived that all these phases require
cross-talk between tumor cells and their microenvironment, which
consists of immune system effectors, endothelial cells, and stro-
mal myofibroblasts. The latter cell population, often referred to as
cancer-associated fibroblasts (CAF), has a particularly important
role in tumor biology, due to its ability to dynamically mod-
ify the composition of the extracellular matrix (ECM), thereby
facilitating invasion and subsequent metastatic colonization, and
to produce and secrete tumor-promoting factors (1-3). This has
impacted on the development of therapeutic strategies designed
at targeting stromal myofibroblasts in cancer (4).

Ovarian cancer, the most lethal gynecologic malignancy (5),
is a heterogeneous group of malignant tumors, of which ovarian
carcinoma (OC) is the most common one. The common histolog-
ical types of OC — serous, endometrioid, clear cell, and mucinous
carcinoma, are distinct morphological entities that are growingly
perceived to be of different etiology, with unique genetic and phe-
notypic characteristics and different clinical behavior, including
response to chemotherapy (6). OC patients are diagnosed with
advanced-stage disease in the majority of cases, and despite aggres-
sive surgery combined with platinum-based chemotherapy often
succumb to their disease, primarily due to chemoresistance in
recurrent tumors (7).

As in other cancers, the OC stroma produces and expresses
myriad molecules relevant for tumor biology, and the mere pres-
ence of a large stroma component in OC was reported to be
associated with poor survival in advanced-stage disease (8). This

factors, proteases, growth factors, immune response-modulating proteins, anti-apoptotic
proteins, and signaling molecules, and express surface receptors and respond to stim-
uli initiated in the tumor cells to establish a bi-directional communication network in the
microenvironment to promote tumor cell invasion and metastasis. Many of these mole-
cules are candidates for targeted therapy and the cancer stroma has been recently regarded
as target for biological intervention. This review provides an overview of the biology and
clinical role of the stroma in ovarian cancer.
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review summarizes current data regarding the expression and
clinical relevance of molecules related to the cancer microenvi-
ronment in OC stromal cells. Data related to the immune sys-
tem or to the tumor vasculature are not discussed. Studies of
areas which remain controversial, such as the role of mesenchy-
mal stem cells in OC biology, are similarly not the focus of this

paper.

PROTEASES

Proteases are critical mediators of invasion and metastasis and are
the cancer-associated molecules which have been most frequently
studied in the OC stroma. Studies have predominantly focused
on the matrix metalloproteinase (MMP) family, but a signifi-
cant number of papers have focused on urinary-type plasminogen
activator and cathepsin D.

Matrix metalloproteinases are a family of at least 23 membrane-
bound (MT-MMP) or secreted zinc-dependent endopeptidases
involved in invasion, tumor growth, inflammation, and angio-
genesis. MMP family members share several domains, including a
signal peptide required for secretion, a propeptide which keeps the
enzyme latent, catalytic domain, and hemopexin-like domain, the
latter required for binding tissue inhibitors of metalloproteinases
(TIMP) and MMP activation. MMP-2 (Gelatinase A, 72 kDa type
IV collagenase) and MMP-9 (Gelatinase B, 92 kDa type IV collage-
nase) additionally contain a collagen-binding area adjacent to their
catalytic domain. In addition to ECM molecules, MMP substrates
include proteases (other MMPs, plasminogen), growth factors
(transforming growth factor; TGF), tyrosine kinase receptors (epi-
dermal growth factor receptor, fibroblast growth factor receptor;
EGFR, FGFR1), adhesion molecules (CD44, E-cadherin, oV inte-
grin), chemokines, and the metastasis inhibitor KISS-1. MMPs are
negatively regulated by various proteins, including TIMP-1-4, a2
macroglobulins, thrombospondins, and RECK. However, MMP-2
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activation requires the formation of a complex with TIMP-2 and
MT1-MMP (MMP-14) (9-11).

Collagen I and an anti-f1 integrin antibody induced activa-
tion of proMMP-2 in OC-derived fibroblasts in vitro (12). OC cell
lines implanted in the peritoneal cavity of mice lacking the MMP-
9 gene had fewer and smaller tumors than cells injected into mice
with wild-type MMP-9 (13). MMP-2, MMP-9, MT1-MMP, and
MT2-MMP were detected in the mouse stroma in animals inocu-
lated with OC cells, but only MMP-2 and MT1-MMP levels were
increased compared to normal mouse ovaries. Stromal expression
of these molecules was unrelated to metastasis, the latter being
rather related to tumor MT1-MMP levels (14).

The presence of stromal MMP-1, MMP-2, MMP-9, MT1-MMP,
and TIMP-2 mRNA and/or protein has been shown in multiple
studies of clinical OC specimens (15-35). However, the clinical sig-
nificance of MMP and TIMP expression in the OC stroma remains
controversial. In analysis of 90 primary OC, MMP-2, MMP-9,
and MT1-MMP protein expression in stromal cells by immuno-
histochemistry (IHC) was significantly related to advanced-stage
disease and poor disease-specific survival (DSS). Stromal MMP-9
and MT1-MMP were independent prognosticators in multivari-
ate analysis (28). Higher stromal MMP-9 protein expression was
similarly related to poor DSS in univariate, though not multi-
variate, analysis in another study (31). Stromal MMP-2 protein
expression was related to shorter overall and disease-free sur-
vival (OS, DFS) in endometrioid, but not in serous OC in a third
report (27). In contrast, in a smaller study of 33 OC, absence of
MMP-2 from the OC stroma was associated with more aggressive
disease (20). TIMP-2 mRNA expression in stromal cells of both
primary OC and OC metastases was associated with poor out-
come in univariate analysis, whereas the presence of MT1-MMP
mRNA in stromal cells in metastases correlated with significantly
longer survival. The association between stromal TIMP-2 mRNA
expression in primary carcinomas and poor survival retained
its significance in a multivariate analysis. Stromal MMP-2 and
MMP-9 mRNA expression in primary or metastatic disease was
unrelated to survival (19). In contrast, stromal TIMP-2 protein
expression was significantly related to better chemoresponse and
longer progression-free survival (PFS) and OS in analysis of 43
tumors (33).

Stromal expression of MMP-2 (30-32, 34), MMP-7 (34), MMP-
9 (34), MMP-11 (32), MT1-MMP (34), TIMP-1 (34), and TIMP-2
(34) proteins was unrelated to survival in several studies.

The glycoprotein extracellular matrix metalloproteinase
inducer (EMMPRIN; CD147) is member of the immunoglobulin
superfamily of adhesion molecules, which stimulates the synthesis
of several MMPs and binds MMP-1 and integrins on the surface
of tumor cells.

Extracellular matrix metalloproteinase inducer was detected in
tumor cells in primary OC, solid metastases, and malignant effu-
sions in OC, as well as in stromal cells and endothelial cells. In
solid lesions, EMMPRIN mRNA by in situ hybridization (ISH)
was significantly co-expressed with B1 integrin mRNA in stromal
cells. In survival analysis, EMMPRIN protein expression in stro-
mal and endothelial cells of primary carcinomas correlated with
poor survival (36).

Extracellular matrix metalloproteinase inducer protein expres-
sion by immunofluorescence was found in both tumor and
stromal cells in a study of 120 primary OC and 40 intraperitoneal
metastases. The monocarboxylate transporters MCT1 and MCT4,
reported to be associated with EMMPRIN expression and drug
resistance, were additionally detected in these specimens (37).

Urokinase-type plasminogen activator (uPA) is a serine pro-
tease that is synthesized as a latent pro-enzyme and activated
by several proteases, including plasmin, cathepsins B and L, and
kallikreins (KLKs). uPA and its homolog tissue-type PA (tPA)
cleave plasminogen to plasmin, thereby mediating degradation
of fibrin and other ECM proteins and the activation of sev-
eral MMPs, as well as growth factors such as basic fibroblast
growth factor (bFGF), insulin-like growth factor (IGF), and TGF-
B. The uPA receptor uPAR additionally binds ECM proteins and
integrins. The plasminogen activator inhibitors PAI1 and PAI2
and the plasmin inhibitor a2 antiplasmin negatively regulate this
system (38, 39).

Analysis of uPA mRNA and protein expression in 57 ovarian
tumors and 8 abdominal metastases showed expression of uPA
mRNA in epithelial cells in benign and borderline tumors, whereas
poorly differentiated primary OC and metastases of different his-
tological grade had predominantly stromal expression. In contrast,
uPA protein expression was seen in both compartments (40). In
another paper by this group, increased expression of uPA, uPAR,
and PAI1 mRNA was found in poorly differentiated primary OC
with solid growth pattern and in metastases compared to cystic,
better differentiated tumors (41). Protein expression of uPA and
uPAR, as well as several MMP members, was frequently seen in the
OC stroma in both primary carcinomas and metastases, though
uPA and uPAR were absent in the stroma of well-differentiated
tumors (42). In a murine OC model, uPAR ™/~ mice lacking uPAR
in host mesothelial cells had reduced tumor and ability to form
peritoneal metastases, as well as reduced ascites formation and
longer survival compared to uPAR™/* mice. In clinical specimens,
higher stromal uPAR protein expression was seen in OC compared
to normal ovaries, with higher expression associated with higher
histological grade (43).

The ETS family of transcription factors regulates the transcrip-
tion of a large number of cancer-associated molecules, includ-
ing uPA, uPAR, MMP-7, and MMP-9, as well as the apopto-
sis inhibitor Survivin, the tumor suppressor Maspin, the cell
cycle protein p21/CIP1, and Slug, mediator of epithelial-to-
mesenchymal transition (EMT), thereby affecting many cellular
processes, including angiogenesis, invasion and metastasis, and
cell survival (44).

Ets-1 mRNA is co-expressed with MMP-1 and MMP-9 mRNA
in the OC stroma (22). In analysis of 66 primary and metastatic
OC from long-term and short-term survivors, Ets-1 mRNA was
detected in stromal cells in 33% of cases using ISH (Figure 1), more
often in tumors of short-term survivors, and was co-expressed
with vascular endothelial growth factor (VEGF) mRNA. Ets-1
mRNA expression in both tumor and stromal cells was associated
with poor survival in univariate analysis, and expression in stro-
mal cells was an independent prognostic factor in a multivariate
analysis (45).
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FIGURE 1 | Localization of mRNA of cancer-associated molecules to
the ovarian carcinoma stroma. OC stromal cells express mRNA of the
Ets-1 transcription factor (A), laminin receptors (B,C), and the angiogenic
factors I-:8 and bFGF (D,E); (F) negative control. Tumor cells express Ets-1,
I8, and bFGF (NBT-BCIP as chromogen, nuclear fast red as counterstain).

In another study of the same cohort, the expression of PEA3,
another Ets family member, was assessed using ISH. PEA3 mRNA
was detected in stromal cells in 89% of tumors, but strong expres-
sion was limited to the stroma of grade 2—-3 tumors. PEA3 mRNA
expression in stromal cells was significantly related to MMP-2
mRNA expression in carcinoma cells, whereas PEA3 expression
in carcinoma cells was significantly related to mRNA expression
of the 1 integrin subunit, bFGE, and EMMPRIN in stromal cells.
PEA3 mRNA was detected significantly more often in both car-
cinoma and stromal cells in tumors of short-term survivors and
PEA3 expression in stromal cells correlated with shorter DFS and
OS in univariate and multivariate survival analysis (46).

The clinical role of cathepsins, another family of proteases, was
investigated in several studies. The level of cathepsin D, a lyso-
somal aspartyl protease, measured by immunoradiometric assay

in OC tissue homogenates, was unrelated to clinical parameters
or survival, with similar results for protein expression in tumor
and stromal cells by THC (47). In a study limited to stage III
tumors (n = 185), tumor cell cathepsin D expression was related
to longer OS in univariate analysis, with no such role for stromal
expression. However, combined epithelial and stromal expression
was an independent prognostic factor in multivariate analysis (48).
No association was found with PFS. In contrast, cathepsin D
expression in stromal cells was an independent prognostic fac-
tor of longer DFS, but not OS, in IHC analysis of 80 OC, with no
prognostic role observed for tumor cell expression (49).

Cathepsin B, a cysteine protease, and the cysteine protease
inhibitor cystatin C were detected in OC cells and their stroma,
and were absent in cystadenomas (50).

Tissue KLKs are a family of 15 serine proteases encoded by a
single gene cluster located at chromosome 19q13.4. Analysis of
KLK4 expression in 43 primary and 63 metastatic OC showed
stromal KLK4 expression in 48/103 specimens, which was signifi-
cantly higher in primary tumors compared to metastases, with no
prognostic role for this protein (51).

ECM PROTEINS AND THEIR RECEPTORS
The ECM composition in OC and its clinical relevance has been
the subject of several studies.

Analysis of mRNA expression of the proal(I) and proa2(I)
chains of type I procollagen and of the proal(III) chain of type
I procollagen by ISH demonstrated their localization to the OC
stroma, whereas expression was weaker or absent in the stroma of
benign cysts. In poorly differentiated carcinomas (n = 2), signals
were additionally detected in tumor cells (52). Differences in the
density of collagen type I fibers were observed between cystadeno-
mas, borderline tumors, and OC of different histological grade in
another study (53). Oncofetal fibronectin was detected in the OC
stroma, but not in endometriosis, suggesting this protein was selec-
tively expressed by the tumor microenvironment (54). Fibulin-1,
an estrogen-regulated calcium-binding and acidic ECM glycopro-
tein, was localized to the OC stroma, with strongest expression in
proximity to tumor cells, and its mRNA was localized to the latter
compartment. Staining increased from normal ovaries through
benign and borderline tumors to OC, and was associated with
progesterone receptor, but not estrogen receptor expression (55).

Analysis of the expression pattern of laminin y2 chain in muci-
nous ovarian tumors with gastrointestinal differentiation by IHC
showed basement membrane localization in adenomas, borderline
tumors, intraepithelial carcinomas, and adenocarcinomas with
expansile growth pattern, whereas expression was cytoplasmic or
stromal in carcinomas growing with infiltrative pattern (56). Stro-
mal expression of laminin-5 y2 chain with concomitant presence
of MT1-MMP on the tumor cell surface was reported in clear cell
OC (57). Galectin-1, a laminin-binding protein regulating tumor
cell proliferation and adhesion to matrix, was overexpressed in OC
compared to normal ovaries and co-localized with laminin-1 and
fibronectin. Its levels were increased in fibroblasts cultured with
OC cells in vitro with effect on tumor cell proliferation and adhe-
sion (58). Analysis of the expression of two laminin receptors,
the 67-kDa laminin receptor precursor (LBP) and the a6 inte-
grin subunit, in 41 primary OC and 75 solid metastases showed
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mRNA expression by ISH in stromal cells in 68 and 20% of cases
(Figure 1), respectively. No association with clinicopathologic
parameters or outcome was found (59).

Analysis of additional integrin subunits in primary OC and
solid metastases showed stromal expression of the 1 integrin
subunit mRNA by ISH in 2 independent tumor series, whereas
the aV subunit mRNA was found in the stroma in only one of the
series. While tumor oV subunit mRNA expression was associated
with poor survival in one of these studies, the presence of these
subunits in stromal cells had no prognostic value (60, 61).

The mRNA expression of angiogenic cytokines and growth
factors was analyzed in two studies. bFGEF, interleukin-8 (IL-8),
and VEGF mRNA was expressed in both tumor and stromal cells
with no significant difference between primary carcinomas and
metastases. bFGF was the most strongly and frequently expressed
transcript in primary OC and in solid metastases in both series,
with intermediate expression of IL-8 and low expression of VEGF
(Figure 1). None of these factors was related to clinicopathologic
parameters or disease outcome (62, 63). In another series, IL-8
mRNA expression was higher in tumor compared to stromal cells
in OC specimens, whereas the protein was expressed in both com-
partments. IL-8 receptor B, but not A, was expressed in stromal
cells (64). In a study of FGF-8 expression in OC, this cytokine
was localized to tumor cells, whereas its receptors FGFR1, FGFR2,
and FGFR4 were expressed by tumor cells, and to lesser extent, in
stromal cells (65).

Hyaluronan (also termed hyaluronic acid or hyaluronate; HA),
a large, linear, negatively charged polysaccharide with strong
capacity to attract water, maintains tissue hydration and osmotic
balance under normal condition. It additionally regulates cell
adhesion, migration, apoptosis, and proliferation via interaction
with specific cell surface receptors, which include the adhesion
molecule CD44. HA has been shown to be involved in tumor
progression of multiple cancers, through its effect on the above
processes, as well as angiogenesis, invasion, and EMT (66).

HA is expressed in the stroma of both stage I and stage III
OC, and its expression is increased in peritoneal metastases from
patients with stage III disease compared to primary carcinomas
(67). Analysis of 309 primary OC showed significant associa-
tion between stromal HA expression and high histological grade,
serous histology, advanced-stage and large residual disease vol-
ume, with no relationship to tumor cell CD44 expression. High
stromal HA expression was further significantly related to poor
relapse-free survival (RFS) and OS, and HA was more highly
expressed in 45 patient-matched metastases additionally studied
(68). Allelic imbalance at chromosome 3p21.3, a region harboring
the hyaluronidase genes HYALI-3, was found in microdissected
tumor and stromal cells of borderline tumors and OC (69).

The unique stroma of clear cell OC was reported to contain both
HA and collagen type IV, and these components were involved in
its formation or modification (70, 71).

Proteoglycans, composed of a core protein to which gly-
cosaminoglycan chains are attached, are a family of highly con-
served macromolecules localized to the cellular membrane or the
ECM. Proteoglycans are expressed by multiple cancers and medi-
ate angiogenesis, tumor growth, invasion, and metastasis (72, 73).

Davies et al. analyzed the expression of syndecan-1-4, glypican-
1, and perlecan in 147 ovarian specimens, including 115 OC, using
IHC. Syndecan-1 was expressed in tumor and stromal cells of
benign ovarian tumors, borderline tumors, and OC, with most
intense staining in areas of invasion in OC, and was absent in nor-
mal ovaries. Syndecan-2 and -3 and glypican-1 were expressed in
the stroma of all types of specimens, as was true for syndecan-
4 in epithelial cells. Stromal perlecan expression was frequently
seen in benign tissue and borderline tumors, but was lost in 67%
of carcinomas. Stromal syndecan-1 expression was significantly
associated with poor PFS and OS, though not independently (74).

In another study, stromal syndecan-1 and versican expression
were associated with advanced-stage, serous histology, massive
ascites, positive peritoneal cytology, and sub-optimal cytoreduc-
tion, as well as poor PFS and OS, though not independently (75).
Ghosh et al. reported on overexpression of versican in OC com-
pared to normal ovaries, as well as in advanced-stage compared
to early-stage disease. Stromal versican expression was associated
with higher microvessel counts, platinum resistance, and poor
PES and OS in univariate analysis (76). In another study, stro-
mal versican expression was related to non-mucinous histology,
advanced-stage, and reduced 5-year survival rate (77).

Decorin protein was reported to be expressed by the OC stroma,
whereas tumor cells were negative, despite the presence of its
mRNA in both cellular compartments (78). Periostin was over-
expressed in the OC stroma compared to borderline and benign
tumors and its presence in OC was associated with advanced-stage,
disease recurrence, and poor OS, the latter also in multivariate
analysis (79).

TGF-B is a ubiquitous cytokine with a dual role as both
growth suppressor and promoter, effects which are largely medi-
ated by the stroma and immune system. TGF-f acts predominantly
as tumor promoter in several cancer types, including OC, and
is consequently under consideration as a potential therapeutic
target (80).

Comparative analysis of TGF-f1 and latent TGF-B1 bind-
ing protein 1 (LTBP-1) expression in serous and mucinous OC
and adenomas showed strong stromal expression of these pro-
teins limited to the former group (81). Transcriptome analysis
of microdissected tumor and stromal cells from OC specimens
and TGF-f-treated normal ovarian fibroblasts recently identified
versican as an upregulated gene in CAF, and versican expression
was upregulated by TGF-f, with resulting activation of the NF-
kB signaling pathway and increased levels of CD44, MMP-9, and
the hyaluronan-mediated motility receptor (82). Chloride intra-
cellular channel 4 (CLIC4) was shown to mediate conversion of
fibroblasts to myofibroblasts following stimulation with TGF-p1
in vitro and was frequently expressed in the OC stroma (83).
Expression of TGF- in the stroma of primary and recurrent OC
was reported in another study (84).

Protein expression of the BA-subunit of activin A, member of
the TGF-p superfamily, which regulates migration and invasion
during EMT, metastasis, and MMP expression, was increased in
stromal cells from OC specimens compared to adenomas (85).

Stromal protein and mRNA expression of secreted pro-
tein, acidic and rich in cysteine (SPARC; a.k.a osteonectin), a
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matricellular protein involved in angiogenesis and tumor inva-
sion, was higher in OC compared to normal ovaries and bor-
derline tumors. Tumor cells expressed SPARC protein, but not
mRNA (86, 87).

Endothelins, mitogenic peptides with autocrine and paracrine
effect, stimulated the growth of fibroblast cell lines isolated from
ascites specimens of OC patients, and were found in both the
tumor cell and stromal compartments in clinical specimens (88).

The platelet-derived growth factor receptors PDGFRa and
PDGFRP were expressed in stromal cells in 32 and 44% of OC
in analysis of 170 tumors, but their expression was unrelated to
clinical parameters or survival (89).

The granulin—epithelin precursor (GEP/progranulin/PC-cell-
derived growth factor) is a 68-kDa secreted protein with several
higher molecular weight forms due to glycosylation, most com-
monly of 88kDa. GEP was shown to be a growth factor in OC
(90). Analysis of 189 solid OC specimens (64 primary OC, 125
metastases) showed GEP expression in stromal and endothelial
cells 52 and 67% specimens, respectively. Stromal GEP expression
was significantly lower in metastases sampled during or following
chemotherapy compared to chemo-naive tumors, and the pres-
ence of GEP-positive stromal cells in untreated primary tumors
correlated with worse OS (91).

Insulin-like growth factor-1 was detected in the OC stroma,
with strongest expression around vessels, with less frequent and
weaker expression in tumor cells (92).

TRANSCRIPTIONAL REGULATORS

HOX transcription factors constitute a large family of proteins that
regulate embryogenesis and organogenesis via spatial cues, as well
as by regulating apoptosis, proliferation, differentiation, motility,
and angiogenesis. HOX members are differentially expressed in
adult tissues and regulate the expression of cadherins, integrins,
NCAM (CD56),and p53. Deregulation of HOX members has been
shown in different cancers (93, 94).

HOXA?7 was overexpressed in the tumor cell nuclei and in the
stroma of clear cell OC compared to other OC histotypes, and
expression was lowest in serous OC (95). HOXA9 expression in
OC cells induced normal peritoneal fibroblasts and adipose tissue-
and bone marrow-derived mesenchymal cells to develop CAF fea-
tures, a process shown to be mediated by TGF-B2 upregulation
of CXCL12, IL-6, and VEGF-A (96). HOXA10 expression in OSE
cells stimulated interaction with the ECM proteins fibronectin and
vitronectin, with omental mesothelial cells and fibroblasts (97).

DNA topoisomerase Il (TOP2a), an enzyme involved in DNA
replication, RNA transcription, chromosomal condensation, and
mitotic chromatid separation, is the target of chemotherapeutic
drugs such as etoposide and doxorubicin. Comparative analysis
of primary and recurrent OC specimens showed reduced TOP2a
expression in tumor cells in the latter group, whereas stromal
expression was increased (98).

Vestigial like 3, a putative tumor suppressor, was expressed
in high-grade serous OC cells, and to a lesser extent in stromal
cells, in a series of 182 tumors, and higher stromal expression was
associated with a trend for longer survival (99).

Nuclear expression of Snaill, one of the key regulators of EMT,
was observed in tumor and stromal cells in 23 and 24% specimens,

respectively, in a series of 74 OC. Snaill expression was mini-
mal in borderline tumors and absent in adenomas and normal
ovaries. Snaill tumor cell and stromal expression was unrelated to
clinicopathologic parameters or survival (100).

Expression of two of four studied members of the
CCAAT/enhancer binding protein (C/EBP) family of transcrip-
tion factors, reported initially to regulate adipocyte proliferation
and differentiation, was observed in the OC stroma, whereas all
four proteins (C/EBP-a, -8, -8, and -g) were expressed in tumor
cells (101).

Nuclear expression of adrenal 4-binding protein/steroidogenic
factor-1 (Ad4BP/SF-1) and dosage-sensitive sex reversal adrenal
hypoplasia congenita critical region on the X chromosome gene 1
(DAX-1), nuclear receptor superfamily members involved in the
regulation of steroidogenesis, was shown in stromal cells in OC.
Enzymes involved in ovarian steroidogenesis, including steroido-
genic acute regulatory protein (StAR), P450 side chain cleavage
enzyme (P450scc), and 3-beta-hydroxysteroid dehydrogenase (3b-
HSD) were detected in the stromal cell cytoplasm (102). Stromal
protein expression of PPAR-f, another nuclear receptor superfam-
ily member, was reduced in OC compared to borderline tumors,
benign tumors, and normal ovaries, whereas expression of its
target protein 3-phosphoinositide-dependent protein kinase 1
(PDK1) was limited to epithelial cells and increased in OC (103).

OTHER MOLECULES
Various molecules related to other biological pathways have been
localized to the OC stroma and are discussed in this section.

IMMUNE RESPONSE EFFECTORS

Several studies have investigated the expression of molecules
related to the immune response in OC stromal cells. Proteins
reported to be expressed by stromal cells include IL-11 recep-
tor (104), the pro-inflammatory peptide LL-37 and its precur-
sor human cationic antimicrobial protein-18 [hCAP-18; (105)],
lymphotoxin-f receptor and the chemokine CXCL11 (106), and
CD277 (107), as well as IL-6, COX-2, and CXCL1 (108). The clin-
ical role of these biomarkers in this cellular compartment remains
to be established.

IL-1p was recently reported to suppress nuclear p53 expression
in CAF. High IL-1p and its receptor IL-1R1 and low p53 expression
in CAF were associated with poor OS. p53 knockdown in ovarian
fibroblasts resulted in increased expression and secretion of IL-18,
IL-6, IL-8, VEGF, and growth-regulated oncogene-o (GRO-a) and
increased tumor growth in vivo in a NF-kB-dependent manner
(109). Induction of senescence in fibroblasts by GRO-a was pre-
viously reported to mediate tumor promotion in a previous study
by the same group (110).

Ribonuclease-2 (RNASET?2), an extracellular RNase expressed
in the OC stroma, was shown to mediate recruitment of
macrophages to the tumor microenvironment and its silencing
enhanced tumor growth of OVCAR-3 cells in vivo. Genes altered
following RNASET? silencing were involved in pathways related
to the immune response and cell adhesion (111).

CELL CYCLE AND APOPTOSIS-RELATED PROTEINS
Protein expression of the cell cycle inhibitor p16 in stromal cells
was reported to be associated with improved prognosis, whereas
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the presence of this protein in tumor cells was a poor prognostic
marker (112). Stromal expression of another cell cycle inhibitor,
p27, was significantly reduced in OC compared to normal ovaries,
as was the expression of lung resistance protein (LRP), a protein
associated with multidrug resistance (MDR), whereas multidrug
resistance protein (MRP) expression was not significantly differ-
ent (113). Expression of tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) and the death receptors DR4, DR5, and
DcR1 was found in OC stromal cells (114). TRAIL was detected in
the OC stroma in an additional study (115).

VARIOUS MOLECULES

The RNA-binding protein HuR and COX-2 were expressed in
the OC stroma in 24 and 7% of specimens in a study of muci-
nous OC, with no clinical role observed for expression in this
cellular compartment (116). Analysis of proteins related to the
prostaglandin synthesis pathway using IHC showed expression of
COX-2, microsomal prostaglandin E synthase-I (mPGES-I), and
the prostaglandin E;, receptors EP; and EP; to the OC stroma,
particularly in tumors of higher histological grade (117).

Expression of the a, , and m sub-types of the detoxification
enzyme glutathione S-transferase was observed in the stroma of
OC specimens and different benign tumors (118).

Somatostatin and its receptors sst;, sstz, sst3, and ssts were
expressed with variable frequency in OC tumor cells and in their
surrounding stroma, as well as in the stroma of different benign
conditions. Somatostatin was significantly co-expressed with sst;,
sst, and sst5 in the stromal compartment in analysis of the entire
cohort (119).

The serotonin receptors 5-HT1A, 5-HTA2,5-HT2B,and 5-HT4
were expressed, to variable extent, in the stroma of normal ovaries,
benign ovarian tumors, borderline tumors, and OC specimens,
with 5-HT2B being the most expressed receptor (120).

Retinoic acid receptor-a was found in stromal fibroblasts,
tumor-infiltrating lymphocytes, and OC cells in analysis of 16
tumors of serous or mixed histology (121).

Neural endopeptidase (CD10) was expressed in the stroma
of serous borderline tumors and in OC of different histotype,
whereas no staining was observed in mucinous borderline tumors,
in benign tumors, and in normal ovaries (122).

Luteinizing hormone receptor mRNA expression analysis by
RT-PCR and ISH was reduced in both tumor cells and the OC
stroma compared to benign tumors, with intermediate levels for
borderline tumors. Expression in grade 2-3 tumors was less fre-
quent then in their grade 1 counterparts, and the receptor was
absent in five analyzed metastases (123).

The expression of six different isozymes of aldehyde dehy-
drogenase, an enzyme implicated in stem cell biology in OC,
was investigated in normal ovaries, adenomas, borderline tumors,
and OC specimens. Stromal and tumor cell expression of several
isozymes was found to differ between normal tissue and ovarian
tumors, as well as between OC of different histotype (124).

Expression of class III B-tubulin was reduced, though not sig-
nificantly, in the OC stroma following neoadjuvant chemother-
apy in analysis of 22 paired tumors obtained pre- and post-
chemotherapy. Tumor and stromal class III B-tubulin expression
was associated with poor OS (125).

Graphical illustration linking molecules known to have biolog-
ical association, including HA, bFGE, MMP members, uPA, ETS
transcription factors, HuR, and HOXA is shown in Figure 2.

CONCLUDING COMMENTS

Ovarian carcinoma is a highly lethal cancer characterized by
considerable heterogeneity across different histological sub-types,
as well as within the same morphological entity. In order to
achieve noticeable improvement in the outcome of this disease,
better understanding of the microenvironment of this tumor
at both the primary site and metastatic locations is critically
in need.

The above-discussed papers provide compelling evidence
regarding the synthetic capacity of CAF in OC and emphasize
the cross-talk between tumor cells and the stromal compartment;
the latter interaction recently demonstrated in vitro (126). They
additionally highlight the fact that the clinical relevance of a given
molecule may be different or even opposite when expressed in car-
cinoma cells or in stromal cells. Nevertheless, many of these studies
constitute single reports of the expression and clinical role of a
given molecule, which need to be confirmed in series from other
institutions, preferably studies in which each of the histological
types of OC is studied separately.

Recent studies have applied high-throughput technology to the
identification of central regulatory pathways in OC fibroblasts,
often following microdissection, which allows for analyses focused
on the target cell population. Qiu et al. studied genome-wide
copy number and loss of heterozygosity (LOH) in CAF isolated
from 25 OC and 10 breast carcinoma samples using SNP arrays.
LOH and copy number alterations were rarely observed (127).
Microarray analysis of microdissected stroma from 24 OC iden-
tified 52 candidate genes related to PFS, of which early growth
response 1 (EGRI) and FB] murine osteosarcoma viral oncogene
homolog B (FOSB) were validated in an independent series of 50
tumors and found to be independent prognostic markers of poor
PFS (128).

The role of miRNAs in reprograming of normal fibroblasts into
CAF through downregulation of miR-31 and miR-214 and upreg-
ulation of miR-155 was recently shown, and the chemokine CCL5
was identified as target of miR-214, suggesting a role in modulation
of the tumor microenvironment (129).

Exosomes are 30—-100 nm lipoprotein vesicles containing pro-
teins, mRNAs, and miRNAs that are secreted from cells and present
in most circulating body fluids (130). Exosomes from SKOV-3
and OVCAR-3 cells induced adipose tissue-derived stem cells to
acquire characteristics of myofibroblasts, with activation of the
TGF-p pathway (131).

Lili et al. studied the stroma of 45 OC by microarray analy-
sis and found two distinct signatures for the stromal com-
partment, characterized by different pairs of receptors and lig-
ands (132).

Many of the molecules discussed in this review are expressed
by both tumor and stromal cells and thereby present the possibil-
ity to target both cellular components in order to maximize the
tumor-suppressive effect. While clinical studies aimed at inhibit-
ing some of these cellular targets, e.g., proteases and COX-2, have
been largely disappointing, other pathways, particularly receptor
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hyaluronic acid (HA), basic fibroblast growth factor (bFGF), matrix
metalloproteinases (MMP), urinary-type plasminogen activator, ETS
transcription factors, HuR, and HOXA.

tyrosine kinase-driven pathways mediating angiogenesis and other
tumor-related processes, are highly relevant (133, 134).
Therapeutic approaches are likely to focus to a larger extent on
the tumor stroma in the future, as in the recent study by McCann
and co-workers, in which inhibition of Glil, part of the Hedgehog
pathway, using the cyclopamine derivative IPI-926 in combination

with chemotherapy was assessed (135). Whether such approaches
could change the clinical course of OC is yet to be determined.
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