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The role of exosomes in cancer development has become the focus of much research,
due to the many emerging roles possessed by exosomes. These micro-vesicles that are
ubiquitously released in to the extracellular milieu, have been found to regulate immune
system function, particularly in tumorigenesis, as well as conditioning future metastatic
sites for the attachment and growth of tumor tissue. Through an interaction with a range
of host tissue, exosomes are able to generate a pro-tumor environment that is essential
for carcinogenesis. Herein, we discuss the contents of exosomes and their contribution to
tumorigenesis, as well as their role in chemotherapeutic resistance and the development
of novel cancer treatments and the identification of cancer biomarkers.
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INTRODUCTION
There is no doubt that identifying novel methods for improving
diagnostic and prognostic monitoring of cancer patients, as well as
designing novel cancer therapies has proved more challenging than
anticipated. Despite decades of intensive investigation, treatments
resulting in a consistent and permanent reversal from an oncogenic
cell state have remained elusive, and patient outcomes have failed
to considerably improve. Although there are numerous factors
contributing to cancer patient outcomes, two ever-critical prob-
lems remain, the design of more effective treatment regimes and
the identification of biomarkers for patient diagnosis and prog-
nosis. With the increasing heterogeneity and complexity observed
in cancers, the need for specific and accurate diagnosis of dis-
ease state, as well as molecular monitoring of disease progression
have become more important than ever. Fortunately, the inten-
sive search for cancer biomarkers, and potential novel therapeutic
targets, has revealed a factor with significant potential, the exo-
some. Exosomes are nanovesicles released from many cell types,
but are secreted in substantially higher concentrations from cancer
cells (1–3). Microvesiculation, the process of exosome production,
results in the formation of small membrane-derived vesicles up
100 nm in diameter (and of a homogenous shape and density)
that are released into the cellular environment by the process of
exocytosis (4). They possess complex lipid membranes that con-
tain integral proteins, while the interior cargo is comprised of an
assortment of proteins and nucleic acid. These nanovesicles can
travel to distant tissues where they fuse with cell membrane of
target cells and induce an array of changes. In recent years, these
once-neglected particles have been analyzed to reveal roles in many
cellular functions, particularly cancer (5–8). This review serves to
discuss the recent research on the multifunctional way exosomes
affect the cellular microenvironment, and the relevance of these
processes in tumorigenesis and metastasis.

Originally designated as a mechanism for the cellular release
of waste and toxins, there is now substantial data demonstrating
exosomes as important mediators of extracellular signaling, via
the membrane-protected transfer of cellular material. Exosomes
derived from both normal and malignant cells, have now been rec-
ognized as important in tumorigenesis, apoptosis, and chemother-
apeutic resistance. At this stage, the contribution of exosomes
to tumorigenesis primarily from two complementary processes;
the modulation and restructuring of the cellular microenviron-
ment to generate the metastatic niche (9, 10), combined with the
attenuation/modulation of tumor immune responses (11, 12). In
these cases, exosomes from a range of cells, induce microenviron-
mental changes in tissue that facilitate tumor formation, while
simultaneously disarming anti-tumor immune responses, allow-
ing cancerous cells to migrate, avoid immune detection, attach to
secondary sites within the patient, and establish metastatic growth
(Figure 1). Studies have revealed the significant clinical potential
of exosomal signaling, both as a point of intervention or bio-
logical target in the treatment of carcinoma and prevention of
chemotherapeutic resistance, as well as a potential biomarker for
cancer diagnosis and prognosis. This potential has not gone unno-
ticed and has resulted in a substantial body of work investigating
tumor-derived exosome signaling; research which is paramount in
improving patient outcomes.

THE EXOSOMAL PROTEIN CARGO
Proteins trafficked by exosomes from both patient samples
and in vitro cell lines have been studied in considerable
detail. Studies show exosomes contain a vast array of proteins
including membrane trafficking and cytoskeletal proteins, major
histocompatibility complexes, signal transducers, heat-shock
proteins, as well as many others (13). To date over 4,000 different
proteins have been identified from purified exosomes (14). Some
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FIGURE 1 | Exosomes (red dots) have multiple roles in tumorigenesis.
(A) Exosomes released from tumor cells affect the local tumor
microenvironment, remodeling extracellular matrix, and promoting
vasculogenesis and tumor cell proliferation. (B) Exosomes travel to distant
sites to promote the generation of the pre-metastatic niche. Vascularization is
augmented and endothelial and stromal cell differentiation is induced, leading

to a pro-tumor environment. (C) Immune responses become deregulated in a
manner that impedes tumor recognition and anti-tumor immune functions.
Cytotoxic T-cells are induced to apoptose, while NK cell proliferation is
impaired and T-helper cells differentiate toward a T-regulatory cell phenotype.
(D) Bone-marrow-derived cells are recruited to tumor and pre-tumor tissue
where they contribute to cancer development.

of these proteins are universal to most exosomes, including Tumor
suppressor gene 101 (Tsg101), Heat-shock protein 70 (Hsp70), and
the tetraspanins CD9, CD63, and CD81, while others seem to be
specific to cell and tissue type. Some cargos suggest a role for exo-
somes in transformation with the identification of factors involved
in cell cycle regulation, p53, epidermal growth factor (EGF), and
fibroblastic growth factor (FGF) signaling, as well as angiogenesis.

The cargo of exosomes is particularly interesting as exosomes
excreted from one cell are known to be able to fuse with surround-
ing cells, and thus have the potential to initiate signaling responses
(15). This is of particular relevance in tumorigenesis, as both sur-
rounding and distant tissues are known to adopt characteristics
of the primary tumor. Many studies have now demonstrated the
pertinence of exosomal proteins in cell function with particular
interest paid to the role of these proteins in cancer. These proteins
include the MET oncoprotein, mutant KRAS, and Tissue Fac-
tor, which are known to promote proliferation and coagulation,
important processes in tumor formation. (16–18). Interestingly,
the tumor environment itself may promote exosome up-take by
cells. The double-layer lipid membrane structure of exosomes can
change composition and rigidity in response to decreasing pH, a

characteristic common to the hypoxic tumor microenvironment
(15). This change in lipid composition was predicted to increase
the ability of exosomes to fuse with neighboring cells. These data
provide the intriguing possibility that exosomes are critical com-
ponents of our signaling networks that function in the disease state
to negatively affect the surrounding cellular environment.

NUCLEIC ACID TRAFFICKING VIA EXOSOMES
Tumor-derived exosomes have been shown to contain a wide
range of nucleic acids, with most studies investigating exosomal
microRNA or messenger RNA (mRNA). Exosomes containing
these nucleic acids have been shown to be able to transfer their
cargo to the recipient cells and to induce phenotypic changes (19–
21). Research has revealed that tumor-derived exosomes contain
distinct microRNA profiles in many cancers, including prostate
(22), lung (23), breast (24), and ovarian (1). Several studies have
also demonstrated the transfer of onco-microRNAs to target cells,
with these microRNAs capable of modulating target pathways in
host tissue (25–28). These studies have shown that oncogenic
functions of microRNA may arise from the expression of both
pro- and anti-tumor microRNAs. Combined with the plethora of
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recent work on microRNAs, it is almost certain that exosomes are
fundamentally required for microRNA transport and signaling, a
process particularly important in cancer.

The functional transfer of mRNA and DNA in nanovesicles
has also been observed experimentally. Analysis revealed exo-
somes contained mutated mRNA transcripts and DNA fragments,
which may contribute to growth and proliferation of many pri-
mary and metastatic cancers (29–32). A body of research has
now demonstrated that tumor-derived exosomes contain a range
of nucleic acids that can induce cellular responses in recipi-
ent transformed or untransformed cells. Although studies have
demonstrated that many cancers express distinct RNA profiles
within exosomes and that these profiles often reflect disease
state, the subtle and collaborative effects of microRNA signal-
ing and function become complicated when combined with
diverse signaling potential of the other factors contained within
those exosomes.

METASTATIC NICHE FORMATION REQUIRES EXOSOMES
The metastatic spread of tumor cells from the primary site, to other
tissues within the body, is the primary cause of cancer mortality,
but remains the most poorly understood aspect of carcinogenesis.
Continuing to build on Paget’s (33) “seed and soil hypothesis,” the
concept of metastatic niche formation at secondary sites is well
established, thanks to an important body of work demonstrating
distinct oncogenic changes including extracellular matrix restruc-
turing and the recruitment of pro-tumorigenic factors at future
metastatic sites (33). Normal cells within the microenvironment
of the tumor are known to influence metastatic behavior, and
there is evidence demonstrating that the successful formation of
a metastatic deposit depends on the prior priming of the site for
future metastatic growth (34).

It is now well accepted that primary tumor cells release a variety
of cytokines and growth factors that firstly mobilize bone-marrow-
derived cells and then recruit them to the site of future metastasis,
creating the permissive environment for incoming tumor cells,
that is called the pre-metastatic niche (10, 34). In addition to the
release of soluble mediators as individual molecules, tumor cells
release exosomes containing complex mixtures of these molecules,
including many known effectors of tumorigenesis (13). Several
studies suggest that exosomes educate bone-marrow-derived cells
recruited to the pre-metastatic niche, to induce a phenotype that
supports tumor cell metastasis. It was recently reported that MET
receptor positive exosomes from highly metastatic melanomas
could reprogram BMDCs in lung to a pro-vasculogenic pheno-
type (35). Early events in pre-metastatic niche formation have also
been associated with exosomes, including enhanced lung endothe-
lial permeability, proliferation, and angiogenesis, which are known
contributors to tumor formation (36–38).

In vivo tracking of labeled melanoma exosomes injected intra-
venously into mice has shown that circulating exosomes are rapidly
taken up from the systemic circulation into tissues, including the
liver, lung, kidney, and spleen (39). Exosomes derived from renal
cancer stem cells were found to contain a range of pro-tumor
factors, and mice injected with these exosomes had significantly
increase levels of lung cancer metastases (40). These studies there-
fore support a hypothesis that in addition to the influence of

exosomes and their cargoes on endothelial cells within the pre-
metastatic niche, other resident cells including fibroblasts and
immune cells may also be stimulated to create the environment
required for successful tumor cell metastasis.

Fibroblasts are a cell-type involved in the host-tumor cell
interaction and more recently the activation of fibroblasts to a
myofibroblastic phenotype has been associated with exosomes and
has been described as a key event in the formation of the pre-
metastatic niche (41–43). Myofibroblasts are often enriched in the
altered stromal environment of many solid cancers, where they are
known to support tumor growth, vascularization and metastasis.
Modulation of the extracellular matrix has also been attributed
directly to the cargo of exosomes and this may augment tumor
cell invasion within the stroma of the pre-metastatic niche. Several
studies have reported the deregulation of the extracellular matrix
by cancer exosomes carrying factors such as glycoproteins and
metalloproteinases (44–48). Exosomes that contribute to develop-
ment of the pre-metastatic niche may also originate from healthy
cells within the niche itself, prior to arrival of tumor cells and/or
tumor-derived exosomes (49). Although the complex interplay
that dictates the generation of the in vivo metastatic niche is yet to
be fully elucidated, there is no doubt that exosomes, secreted from
both healthy and cancerous cells, are necessary mediators of niche
formation. Much data now suggests that exosomes contribute to
niche formation through deregulation of host immune responses
targeted toward the tumors.

EXOSOMES REGULATE TUMOR IMMUNE RESPONSES
As well as conditioning the metastatic niche through interaction
with the stromal and matrix microenvironment, exosomes dis-
play the ability to regulate immune responses targeted toward
tumor cells. A significant collection of studies has explored exo-
some interactions with, and production by, immune cells (50,
51). Exosomes possess the ability to disable the cytotoxic arm of
immune response by inducing apoptosis in cytotoxic T-cells and
reducing proliferation of Natural Killer (NK) cells (12, 52). Data
also indicated that tumor-derived exosome-induced differentia-
tion of T-helper cells to regulatory T-cells, indicating a possible
mechanism of evading immune surveillance, as regulatory T-cells
mediate immune tolerance to tumors, by regulating tolerance of
self-antigens. It has also been demonstrated that NK cells were
unable to be activated, in response to Interleukin 2-mediated
blocking by tumor-derived exosomes, and that tumor-derived
exosomes suppress T-cells via induction of adenosine (53, 54).
Apoptosis of T-cells was also found to be inducible with exosomes
from melanosomes containing Fas ligand and tumor necrosis
factor-related apoptosis-inducing ligand (55, 56). Additionally,
tumor-derived exosomes prepared from the ascites of ovarian ade-
nocarcinoma were found to have immunosuppressive properties,
through the down-regulation of the expression of T-cell activation
signaling components (57).

Exosomes have also been shown to generate anti-tumor
immune responses. NK cells release exosomes containing per-
forin and CD56, as well as granzyme B that have been shown
to inhibit tumor growth (58, 59). Due to the contradictory tumor-
promoting and anti-tumor responses more research is required
to determine if exosome stimulation skews the balance toward a
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tumor immune escape mechanism. The most probable cause for
discrepancies in studies of exosomes and immune responses is due
to the inherent differences between in vitro and in vivo analyses, as
accounting for the complex interplay between tumor and immune
responses over the course of disease has always proved prob-
lematic. It is likely that disease progression encompasses stages
where exosomes induce either/both immunostimulatory and –
inhibitory functions toward tumor cells. The balance between
these two responses is one of the most important factors dictating
disease progression, and may also provide a mechanism by which
exosomal function could be regulated for the generation of novel
therapies.

EXOSOMES IN CANCER THERAPY
The use of exosomes as a vehicle for the administration of anti-
tumor compounds, either as cell-derived material or therapeu-
tic drug, has garnered considerable attention of late. Exosomes
represent bioavailable vehicles that are well tolerated, bioavail-
able, targetable to specific tissues, resistant to metabolic processes,
and membrane-permeable. This makes exosomes ideal candidates
for delivery of drugs, proteins, microRNA/silent interfering RNA
(siRNA), and other molecules, that would otherwise be rapidly
degraded. The potential therapeutic targeting of exosomes could
take a number forms, some targeting, or modulating the intrinsic
effect of exosomes in the prevention of tumorigenesis or metasta-
sis, via interactions with tumor cells, stromal tissue, and immune
cells. Other strategies aim to use exosomes to generate therapeutic
effects, through their use as a vehicle for the delivery of anti-tumor
agents, or priming of immune responses.

The removal of exosomes from the circulatory system is an
attractive therapeutic option in mitigating the metastatic effect of
exosomes. Data has shown that prevention of exosome produc-
tion can inhibit tumorigenesis and a range of methods have been
suggested for the inhibition of exosome production, including the
targeting of microtubule assembly and stability, endosomal sorting
pathways, and the use of proton pump inhibitors (6, 15, 60–62).
It has also been suggested that the use of extracorporeal purifica-
tion already utilized to reduce viral titers in patients may be useful
as a mechanism for removal of exosomes from circulation (61).
Although these processes have been shown to be effective, thera-
pies based on modulating levels or the removal of exosomes face
technical and financial challenges and are yet to be implemented
clinically.

Another therapeutic avenue involves the use of exosomes to effi-
ciently deliver cargo such as drugs, microRNA’s, and antigens to
target recipient cells in order to treat tumorigenesis or metastasis.
The potential use of exosomes to deliver targeted chemotherapeu-
tics has been investigated in a number of studies (63,64). Exosomes
may also provide an opportunity to deliver tissue-targeted siRNA
and microRNA’s to regulate gene expression within target cells (65,
66). siRNA containing exosomes have also been shown to cross the
blood brain barrier, targeting neuronal cells and knocking down
their target protein by more than 60% with little toxicity (67).

Investigation has also revealed that exosomes may be an effec-
tive option for the delivery of tumor-derived antigens, to elicit an
immune response (65–67). The immunostimulatory potential of
exosomes was first revealed 15 years ago, when exosomes secreted

from dendritic cells were found to contain functional major his-
tocompatibility complexes that could present tumor antigen to T-
cells and induce anti-tumor immune responses in mice (68). These
promising results, led to Phase I clinical trials that have demon-
strated that anti-tumor immune responses can be induced using
dendritic-cell-derived exosomes (69–71). This has been further
extended using peptide-loaded dexosomes (dendritic-cell-derived
exosomes) as a cancer vaccine and is now in Phase II clinical trials.

EXOSOMES AS CANCER BIOMARKERS
The need for accurate novel biomarkers is of primary importance
in the detection, diagnosis, and prognosis of patients, and the
burgeoning area of exosomal biomarkers shows significant poten-
tial, particularly in cancer. Exosomes may provide an excellent
biomarker to monitor the emergence, progression, and prognosis
of cancer, as well as the efficacy of treatment regimes. Although
few, studies have revealed exosomes can be readily detected in
tumor tissue and many bodily fluids, and can be found in higher
concentrations, both in tumor tissue, and the serum and plasma
of cancer patients (1, 72, 73). The fact that exosomes display indi-
vidualized expression, that are often reflective of disease state, and
can be easily detected in bodily fluids, even after extended cryo-
storage, make these small nanovesicles an ideal candidate for a
non-invasive biomarker of tumor progression. Along with many
studies characterizing possible exosome biomarkers in cell lines,
there are several reports that have identified potential exosomal
biomarkers in patient samples.

The presence of nucleic acid in exosomes has been described
as a biomarker in glioblastoma patients via the identification of
the disease-specific EGF receptor transcript (29). In an analysis
of ovarian cancer patients, eight microRNAs have been identified
that can be used to distinguish between benign and malignant
disease, while in melanoma patients exosomes contain high lev-
els of the proteins Caveolin-1 and CD63 (1, 74). Other stud-
ies have described markers in exosomes from prostate can-
cer patients (75) and non-small cell lung cancer patients (76).
Interestingly, analysis of the lipids composition of prostate can-
cer exosomes revealed certain lipid signatures that may also
serve as candidate biomarkers (77). Though the analysis of
exosomes for cancer biomarkers has revealed many possible
candidates (particularly microRNA), none have demonstrated
enough promise to be implemented clinically. Further investi-
gation of the dynamic expressional profile of exosomal contents
throughout tumor development and treatment, combined with
improved collection methods, is needed before the clinical imple-
mentation of exosomes as a biomarker for either diagnosis or
prognosis.

EXOSOMES AND CHEMOTHERAPEUTIC RESISTANCE
The acquisition of chemotherapeutic resistance is the major con-
tributing factor to cancer mortality. While treatment regimes can
be effective in the short term, the development of metastases
that are refractory to radio- and chemotherapeutic treatments
are common. Although this is characteristic of a wide range of
cancers, the exact mechanisms by which the tumor can evade
the therapeutic induction of apoptosis and develop resistance
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to anticancer drugs and therapies remain unclear. Data indi-
cates that chemoresistance is likely due to a combination of
processes, including increased detoxification of the drugs within
the cellular environment, an increased efflux and a reduced
accumulation of chemotherapeutic drugs within the cell and
an increased tolerance to or repair of DNA lesions and resis-
tance to pro-apoptotic signals (78, 79). However, the role of
exosomes and nanovesicles in chemoresistance revolves around
the sequestration, transport and expulsion of chemotherapeutic
drugs within/from tumor cells (80, 81). Additionally, exosomes
have been shown to deliver hepatic enzymes throughout the body,
and given the ability of endothelial cells to up-take circulating
exosomes, this may aid in the extra-hepatic detoxification of
xenobiotic drugs (82).

Drug expulsion is a likely contributor to exosomal chemother-
apeutic resistance. Analyses of vesicle shedding in response to
drug treatment in numerous cancer cell lines revealed a consis-
tent correlation between vesicle shedding-related gene expression,
vesicle shedding rates, and drug sensitivity (83). Furthermore,
vesicles isolated from these cell lines were shown to contain
doxorubicin, a clinical chemotherapeutic to which tumors often
develop resistance. Exosomes released from tumor cells have also
been shown to contain the platinum-based chemotherapeutic Cis-
platin, potentially redirecting the drug away from the nucleus
where it would normally cause DNA damage, cell cycle arrest,
and apoptosis (80, 81, 84).

Exosomes have also been shown to confer chemotherapeu-
tic resistance to non-resistant cells. P-glycoprotein is an ATP-
binding cassette transporter involved in multi-drug resistance
in cancer (85), and has been observed transferring from drug-
resistant cancer cells to recipient cells was via microparticles
(86). Interestingly, Docetaxel resistance in hormone refractory
prostate cancer cells can be acquired by non-invasive cell lines
via exosomes. Cells then become prone to mobilization, invasion,
proliferation, and anchorage dependent growth (87). Interest-
ingly, analysis of exosomes from patient serum before and after
undergoing treatment with Docetaxel showed correlation between
cellular response to Docetaxel and patient response to treatment.
A recent study identified another method by which exosomes
may contribute to chemotherapeutic resistance. It was observed
that exosomes released from cancer cells might impede antibody
and drug therapies by expressing cancer derived cell surface pro-
teins that sequester the compound away from the target cell (88,
89). Furthermore, exosomes have been shown to reduce anti-
body dependent cell cytotoxicity by binding to tumor reactive
antibodies (90).

CONCLUDING REMARKS
The vast repertoire of proteins and nucleic acid that can be pack-
aged within exosomes appears to reflect the extensive, diverse, and
complex signaling potential of these nanovesicles. Only now are
scientists beginning to unravel the complex roles of exosomes,
and although both in vitro and in vivo data clearly demonstrate
the tumor-modulating potential of exosomes, the extent to which
these signaling pathways dictate tumorigenesis in patients is far
from being fully understood. Regardless of the contribution, the

driving force behind exosome research (the significant potential
of exosomes as a non-invasive biomarker, as well as a method
of drug delivery and chemotherapeutic sensitization) has lead
to a substantial body of work investigating these messengers. In
spite of this, there are still many technical challenges that need
to be overcome before the provision of exosomes as a biomarker,
biological target, or drug delivery vehicle. Exosome concentra-
tions, though increased in cancer, are relatively tiny, and meth-
ods of exosome isolation tend to be time-consuming and can
be expensive while yielding samples that require further down-
stream purification (though these tendencies will wane with the
improving technologies that yield enriched samples via affin-
ity capture methods). Furthermore, purification techniques may
serve to enrich exosomes subpopulations, often by their surface-
expressed antigens or by density, which will significantly affect
results. This problem may be confounded by discrepancies com-
monly observed in “exosome” studies, as isolation methods and
terminology can differ considerably. Perhaps the greatest chal-
lenge in the investigation of exosome function is understand-
ing the balance between healthy and oncogenic exosomal sig-
naling, the degree to which cancer exosomes corrupt or ablate
healthy exosome signaling, and the extent to which these inter-
actions dictate metastasis over the course of disease. What makes
this particularly challenging is the complex and multifunctional
nature of exosomal signaling. The ability of exosomes to concur-
rently/concomitantly and simultaneously signal via many forms
of cellular material (proteins, RNA, and lipids) makes functional
analysis difficult, and this signaling method is the primary dif-
ference between exosomal signaling and other pathways (via the
secretion or regulated transport individual moieties). Again, this
is complicated by the fact that exosomes have been shown to
possess both anti- and pro-tumor effects. To fully appreciate the
signaling potential of exosomes, studies will need to investigate
the co-contribution of proteins, nucleic acids, and lipids to the
observed phenotype. Dissecting and revealing the contributions
of each exosomal component, and modifying this intricate sig-
naling pathway to elicit the required therapeutic response, will
undoubtedly prove the most significant challenge in the utiliza-
tion of exosomes as biomarkers and drug targets. Nonetheless,
these significant challenges are being undertaken by many groups
showing keen scientific interest in these tumor-derived exosomes
and their multiple roles and functions. It is for these reasons, and
the many diverse reasons discussed in this article, that exosomes
may prove to be the most useful biological effector so far identi-
fied in cancer, and may finally provide viable treatment options
and biomarkers.
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