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The final stage of cell division (mitosis), involves the compaction of the duplicated genome
into chromatid pairs. Each pair is captured by microtubules emanating from opposite spindle
poles, aligned at the metaphase plate, and then faithfully segregated to form two identical
daughter cells. Chromatids that are not correctly attached to the spindle are detected by the
constitutively active spindle assembly checkpoint (SAC). Any stress that prevents correct
bipolar spindle attachment, blocks the satisfaction of the SAC, and induces a prolonged
mitotic arrest, providing the cell time to obtain attachment and complete segregation cor-
rectly. Unfortunately, during mitosis repairing damage is not generally possible due to the
compaction of DNA into chromosomes, and subsequent suppression of gene transcription
and translation. Therefore, in the presence of significant damage cell death is instigated
to ensure that genomic stability is maintained. While most stresses lead to an arrest in
mitosis, some promote premature mitotic exit, allowing cells to bypass mitotic cell death.
This mini-review will focus on the effects and outcomes that common stresses have on
mitosis, and how this impacts on the efficacy of mitotic chemotherapies.
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INTRODUCTION
The cell cycle is driven by the activity of the cyclin dependent
kinases (Cdk), and their associated regulatory cyclin subunits.
Each cell cycle phase is dependent on the sequential activation
and deactivation of unique cyclin and Cdk complexes, with mito-
sis dependent on cyclin B bound with Cdk1 (1). To ensure the
cell division process occurs with absolute fidelity, cells have devel-
oped numerous cell cycle checkpoints that delay progression in the
presence of a wide variety of cellular and environmental stresses.
During interphase (G1, S, and G2) stress activates checkpoints,
which block cell cycle progression by increasing the translation
of Cdk inhibitory proteins and activation of checkpoint kinases
(Chk) that phosphorylate and inhibit Cdk (2). However, in mito-
sis the situation is reversed, the spindle assembly checkpoint (SAC)
is on by default, which maintains high Cdk activity, thereby pre-
venting cells from exiting mitosis. The primary role of the SAC is
to block the activity of the anaphase promoting complex (APC),
an E3 ubiquitin ligase responsible for targeting cyclin B1 (and
many other key mitotic proteins) for degradation by the protea-
some (3). This inhibition is achieved by the recruitment of several
SAC proteins to the kinetochores, a protein structure located on
the centromere of each chromosome (Figure 1). This localization
allows the formation of the mitotic checkpoint complex (MCC)
consisting of Cdc20, Mad2, Bub3, and BubR1, which then binds
to and potently inhibits the APC, blocking degradation and pre-
venting cells from entering anaphase (4). Once each kinetochore is
attached to the mitotic spindle, the SAC proteins are displaced, and
Cdc20 is released, allowing the APC to target proteins for degra-
dation. However, the SAC arrest can be overcome by premature
degradation of cyclin B1 (5), or direct inhibition of Cdk1 activity
(6, 7) (Figure 1). This process is referred to as mitotic slippage
and results in aberrant segregation of chromosomes and failure of

abscission during cytokinesis, which can drive polyploidy, chro-
mosome instability, and cancer formation (8). Therefore, dur-
ing mitosis it is critical that interphase checkpoint pathways are
turned off to prevent the deleterious effects of premature Cdk1
inactivation.

INHIBITION OF INTERPHASE CHECKPOINTS
The inhibition of interphase checkpoints is achieved primarily by
inhibition of transcription (9) and down regulation of the major-
ity (60–80%) of protein translation (10). In addition, Cdk1 and
other mitotic kinases phosphorylate and disable key effectors of
interphase checkpoint pathways, providing a feedback loop that
restricts this inhibition to mitosis (11).

Transcription
The inhibition of transcription is a critical mechanism for pre-
venting the upregulation of Cdk inhibitor proteins, such as p21.
The expression of p21 is strongly upregulated during interphase
in response to a variety of cellular stresses. For example, dur-
ing interphase, DNA single and double strand breaks induced
by exposure to ultraviolet light (UV) or ionizing radiation (IR)
respectively, results in the recruitment and activation of ataxia-
telangiectasia mutated and related (ATM and ATR) kinases to the
sites of damage. ATM/ATR then activate p53, which in concert
with the transcription factor Sp1, increases p21 expression (12,
13). However, during mitosis the majority of proteins involved
in transcription are removed from the DNA, inhibiting the pro-
duction of new mRNA (14, 15). Surprisingly, transcription fac-
tors and other structural proteins can still gain access to the
highly compacted chromosome structure (16), and are actively
removed by mitotic kinases (17). For example, Cdk1 phosphory-
lates Sp1 and CUX1 resulting in their dissociation from chromatin
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FIGURE 1 |The spindle assembly checkpoint and cell fate. During
mitosis, the constitutively active spindle assembly checkpoint (SAC) delays
anaphase until all chromosomes are attached to the mitotic spindle. Any
stress that prevents satisfaction of the SAC results in a prolonged mitotic
arrest, which often leads to cell death. However, the SAC can be over-come
by the release of Cdc20 from the mitotic checkpoint complex (MCC) or by
direct inhibition of Cdk1. This mitotic slippage can result in polyploidy,
increased cell survival, and provides a potential mechanism for escaping
mitotic cell death.

during mitosis (18, 19), thereby preventing upregulation of
p21 (20).

Phosphorylation
During interphase, stress often triggers a kinase phosphorylation
cascade,which culminates in the inhibitory phosphorylation of the
interphase Cdk. To ensure that Cdk1 is not inhibited during mito-
sis, these checkpoint kinases (Chk) must be inhibited. Surprisingly,
Cdk1 itself disables many of these, for example, it phosphorylates
Chk1/2 preventing activation by ATM/ATR (21). Furthermore,
Cdk1 phosphorylation of the DNA damage signaling and repair
proteins 53BP1 and BRCA1, blocks their recruitment to sites of
DNA damage (22). In addition, many of these interphase Chks
are repurposed and required for normal progression through
mitosis. For example, Chk2 localizes to kinetochores during mito-
sis, stabilizing MPS1 and phosphorylating Aurora B (23). Active
Aurora B then phosphorylates ATM (24), which then phospho-
rylates γ-H2AX and Bub1 at kinetochores (24), promoting the
accumulation of Mad2 and Cdc20 (25). Consequently, ATM activ-
ity is required to ensure correct centrosome and mitotic spindle
formation (26, 27).

Translation
The translation of mRNA into proteins is actively inhibited during
mitosis (10). During interphase, the majority of mRNA is guided
to ribosomes by cap-dependent translation, however as cells enter
mitosis this process is repressed (9) by phosphorylation of cap-
binding proteins (28). As a result, translation switches from the
cap-dependent system to mRNA that contains an internal riboso-
mal entry site (IRES) (29). The mRNA of several important mitotic
proteins contain IRES sites (30, 31), which ensures their contin-
ued translation during mitosis. In addition, the mRNA of critical
mitotic factors such as cyclin B, are restricted temporally to mitosis,
and locally at the mitotic spindle, by polyadenylation (32, 33).

SAC AND THE RESPONSE TO STRESS IN MITOSIS
Any stress that directly or indirectly prevents the satisfaction of
the SAC prevents cells from progressing past metaphase. How-
ever, some stresses are able to deactivate the SAC and induce

mitotic slippage, therefore bypassing mitotic cell death. Interest-
ingly, mitotic slippage has been suggested as a possible mechanism
for resistance to mitotic chemotherapies, in particular the micro-
tubule poison Taxol (34). Therefore, understanding exactly how
common environmental and cellular stresses affect mitosis is criti-
cal for understanding how and why some cancer cells are sensitive
and others are resistant to this important class of chemotherapies.

DNA damage
Attempting to repair DNA during mitosis is highly dangerous for
cells and can result in the fusion of telomeres, failed separation
of chromatids during anaphase, and the promotion of genomic
instability and cancer (22). Therefore, some have suggested that
the primary mitotic response to DNA damage is to mark sites of
damage (with γ-H2AX), but not to arrest in mitosis (35). Instead,
damaged cells are allowed to exit to the next G1 phase where repair
or death can be triggered (36). However, many cells do arrest for
varying amounts of time in response to an array of DNA damaging
stresses. The length of arrest roughly correlates with the level of
damage, with higher levels that disrupt kinetochore–microtubule
function being more efficient at blocking mitotic exit in a SAC
dependent manner (37). Furthermore, a prolonged arrest can itself
damage telomeres (38), suggesting that mitotic cells damage their
DNA on purpose. The point of this self inflicted damage is still
unclear, but it may act as a backup pathway, ensuring even minor
mitotic DNA damage is fully detected in the following G1 thereby
preventing defects being passed on to subsequent generations.

DNA decatenation. During replication in interphase, sister chro-
matid pairs become interwound, and must be untangled prior to
metaphase by decatenation, a process that requires topoisomerase
II (Topo II). In addition, DNA decatenation is also required for
correct chromatid and telomere separation during anaphase (39).
Inhibition of Topo II during mitosis produces different mitotic
responses, which are dependent on the inhibitor used, and specif-
ically if DNA damage is produced. For example, doxorubicin
creates significant levels of DNA damage (γ-H2AX foci), and con-
sequently cells arrest in metaphase for up to 9 h (40). In contrast,
ICRF-193 generally produces mild damage, and results in cells
only delaying in mitosis for 1–2 h (37, 41) although ultrafine DNA
bridges are formed during anaphase causing cells to fail abscission
and form polyploid cells (41, 42). In all cases, the arrest during
mitosis is dependent on the SAC, and is likely due to direct damage
of kinetochore structure preventing stable microtubule attach-
ments (Figure 2). For example, the delay induced by ICRF-193
requires inhibition of the APC by Mad2, but surprisingly Mad2
does not accumulate at kinetochores (35, 43). This may explain
why this delay is short lived. Unfortunately, the inhibition of Topo
II prior to mitosis blocks cells in G2 phase (44), consequently its
use in combination with mitotic chemotherapies such as Taxol is
often counter-intuitive as cells never enter mitosis and are resistant
to Taxol induced death (45, 46).

Double strand breaks. Extensive double strand breaks during
mitosis produce a strong SAC dependent arrest with cells delay-
ing for more than 5 h over the normal 30–60 min transit time
(37). Furthermore, extensive DNA damage has also been shown
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FIGURE 2 | Common stresses and their effects on mitosis andTaxol
response. A variety of stresses affect mitosis by acting directly or indirectly
on the SAC. Stresses that maintain the SAC and/or increase microtubule
stability often synergize (green line) with Taxol. In contrast, stresses that
inhibit the MCC and/or disrupt microtubule formation commonly antagonize
(red line) Taxol induced mitotic arrest and promote mitotic slippage.

to inhibit the activity of Polo like kinase 1 (Plk1) (47), a mitotic
kinase that plays a key role in mediating attachments between
the kinetochore and mitotic spindle (48). This inhibition occurs
independently of ATM (49), primarily through PP2A mediated
dephosphorylation of Plk1 (50), and likely strengthens the mitotic
arrest induced by extensive double strand breaks by preventing
satisfaction of the SAC (Figure 2). Consequently, combining DNA
damaging agents with Taxol, especially in p53 mutant cancer cells
with dysfunctional interphase DNA damage checkpoints (51),
may greatly enhance the amount of damage produced and pro-
mote a prolonged mitotic arrest resulting in increased levels of cell
death. Accordingly, Taxol is commonly used in combination with
platinum-based chemotherapeutics as a first line treatment for
ovarian cancer (52), and is being trialed in combination with DNA
damaging agents in several other cancer types including small cell
lung cancer, melanoma, and pancreatic cancer (53–55).

Chromatin structure. Disruption of the mitotic chromosome
architecture also produces a temporary mitotic delay. Treatment
with histone deacetylase inhibitors (HDACi) prevents correct
chromosome condensation and increases the access of transcrip-
tion factors to the DNA, disrupting correct kinetochore formation
(56). This delays the correct capture and alignment of chromo-
somes by the mitotic spindle, leading to SAC-dependent mitotic
arrest (44, 57). However, if this damage is too severe, SAC pro-
teins fail to remain at kinetochores, leading to silencing of the SAC
and premature exit (slippage) from mitosis (58, 59). Interestingly,
although HDACi have been highly successful in treatment of lym-
phoma, they have not been as successful with solid tumors, which
could be due to SAC dysfunction (e.g., BubR1 mutation) in these
cancers and an increased rate of mitotic slippage.

Hypoxia and oxidative stress
Reduced oxygen supply especially within the core of solid tumors
results in a hypoxic environment within the tumor mass. Hypoxia
is a poor prognostic factor, and correlates with resistance to

radiation and many chemotherapeutic agents (60). Exposure to
hypoxia during mitosis results in the rapid disruption and desta-
bilization of microtubules (61), which delays mitotic progression.
However, this arrest is unstable and cyclin B levels decrease rapidly
(62), in turn inactivating Cdk1, and promoting mitotic slippage,
providing an explanation for why hypoxia induces tetraploidiza-
tion in melanoma (63). However, hypoxia induces a wide variety
of intracellular responses including formation of reactive oxygen
species (ROS), and a switch to anaerobic glycolysis resulting in
decreased levels of ATP. The effects of hypoxia on mitosis are most
likely due to the increased formation of ROS. In support, exposing
mitotic cells to hydrogen peroxide (H2O2) to mimic ROS, induces
mitotic slippage and the formation of hypertetraploid cells (64).
The mechanism for this slippage is yet to be full elucidated, how-
ever, in yeast, H2O2 exposure depletes the SAC protein BubR1
from kinetochores, silencing the SAC allowing cells to exit mitosis
prematurely (65). In addition, H2O2 also depolymerizes micro-
tubules (66), which results in need for higher doses of Taxol to
stabilize microtubules and induce cell death (67). These effects
may explain why hypoxia reduces toxicity to Taxol in cancer cells
(Figure 2). Consequently, reducing ROS with antioxidants has
long been proposed as a co-treatment to enhance the effects of
Taxol, with some limited success (68). The inconsistent results are
likely due to the specific antioxidant used. For example, the pop-
ular dietary antioxidants Resveratrol and Fisetin (found in red
wine), inhibit Cdks, induce a G2 arrest and prevent entry into
mitosis (69, 70), providing an explanation for why they antago-
nize Taxol (71, 72). Therefore, finding methods that specifically
reduce ROS without off target effects will be critical for the future
success of co-treatment regimes.

ATP depletion
Hypoxia can also cause depletion of ATP pools, however the
mitotic effects of ATP depletion are opposite to that of hypoxia
and oxidative stress. Specific depletion of ATP pools with DNP,
Azide, or AMP-PNP, results a rapid prolonged mitotic arrest in
mammalian cells (73). ATP is needed for microtubule disassem-
bly (74), and therefore depletion of ATP stabilizes microtubules
(75). In addition, depletion of ATP activates AMP-activated pro-
tein kinase, which phosphorylates myosin regulatory light chain,
and promotes astral microtubule growth (76) (Figure 2). Sur-
prisingly, depletion of ATP also depletes Mad2 and BubR1 from
kinetochores, with both proteins accumulating at spindle poles,
however this does not appear to affect their ability to bind Cdc20
and inhibit the APC (77–79). Taken together, this area has signifi-
cant potential for future novel therapeutic approaches, with some
metabolic inhibitors already showing synergy with Taxol (80).

Thermal shock
Heat-shock (hyperthermia) has been commonly used as adjunc-
tive cancer therapy to augment radiotherapy and chemotherapy,
with varying levels of success (81). The initial mitotic response
to acute (42°C) heat-shock is to arrest in mitosis (82). This
delay is most likely SAC dependent due to effects on micro-
tubules and centrosomes, which become permanently disorga-
nized and destabilized upon exposure to heat (83). In addition,
heat can increase the binding of the heat-shock transcription
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factor 2 (HSF2) to DNA during mitosis (84). HSF2 binding
attracts PP2A, which dephosphorylates condensin, thereby reduc-
ing the compaction of the chromosomes (85), and acting sim-
ilar to HDACi treatment (Figure 2). Consequently, the mitotic
delay is only temporary, and cells rapidly reform a nuclear enve-
lope around chromosomes, and undergo mitotic slippage (86,
87), even in the presence of Taxol (88). Hyperthermia has been
shown to both antagonize (89) and synergize (88) with Taxol,
with the outcome dependent on the functionality of the apoptotic
pathway (90, 91).

Interestingly, like hyperthermia, cold-shock (hypothermia)
has also shown some success in synergizing with radiotherapy
and a variety of chemotherapeutics (92, 93). Exposure to cold
induces a transient mitotic delay in cells, however cells eventu-
ally complete mitosis and segregate their chromosomes normally
(94). Hypothermia reversibly destabilizes non-kinetochore micro-
tubules (95, 96), but this still allows chromosomes to be captured
by kinetochore microtubules and positioned at the metaphase
plate (94). However, a reduction in microtubule dynamics and
loss of astral microtubules results in reduced tension at kineto-
chores leading to the retention of Bub1 and BubR1 at kinetochores
and a SAC-dependent mitotic delay (97). The ability of cells to
recover from hypothermia and complete mitosis may explain why
cold-shock can reduce the number of mitotic defects induced by
chemotherapies (98), and minimize side effects (e.g., hair loss) of
Taxol in cancer patients (99). However, given that the delay is tran-
sient and reversible, it also explains why co-treatment regimes have
not shown any significant synergy and are unlikely to be useful for
enhancing the killing of cancer cells.

Mechanical stress
As cells enter mitosis they transform their architecture to create a
spherical shape, which is driven by changes in the actin cytoskele-
ton (100), and by regulation of osmotic pressure (101). The small
GTPase RhoA is critical for cortical retraction during mitotic cell
rounding (102). During early prophase RhoA promotes remod-
eling of the actin cytoskeleton, increasing the mechanical stiff-
ness of the cell (103). Cell rounding is achieved by combining
RhoA-mediated cellular rigidity with increased hydrostatic pres-
sure inside the cell. This occurs by increasing intracellular sodium
levels resulting in an influx of water (101). Failure to round up,
and/or disruption of the RhoA pathway prevents mitotic exit in a
SAC-dependent manner by inducing spindle pole fragmentation
(104), disruption of astral microtubule organization and spin-
dle function (105, 106) (Figure 2). Interestingly, placing cells in
hypertonic solution (preventing water influx) stably arrests cells
in mitosis and was originally used in the 1970s as a method for
enriching mammalian cells in mitosis (107). After several hours
most arrested cells die, although some escape via mitotic slippage
to form polyploid cells (108). Interestingly, in yeast, hypertonic
stress can promote activation of Cdc14 phosphatase (109), which
then dephosphorylates Cdk substrates driving cells out of mito-
sis, suggesting that phosphatases can drive slippage. However, in
humans the role of Cdc14 is not conserved (110), and PP2A
appears to be the primary phosphatase responsible for remov-
ing mitotic Cdk1 phosphorylations (111, 112). If PP2A is directly
activated in response to hypertonic stress it could promote mitotic

slippage in human cells, providing a rational for future research
focusing on the effectiveness of PP2A inhibitors in combination
with mitotic chemotherapies.

Exposure of mitotic cells to hypotonic conditions increases
water influx, rising internal pressure and a swelling of mitotic
cell size, with weak hypotonic solutions arresting cells in pro-
metaphase (113). However, unlike hypertonic stress, this arrest
is far less stable and cells rapidly undergo mitotic slippage, char-
acterized by chromosome decondensation, disrupted kinetochore
and spindle structure, and reformation of the nuclear envelope
around un-segregated chromosomes (114, 115), which all pro-
mote chromosome aberrations and polyploidy (116). The effects
of hypotonic stress in combination with Taxol have not been stud-
ied in detail, however, hypotonic solutions can increase the uptake
of chemotherapies in cells (117), and have shown some promise
in enhancing response to platinum-based treatments (118). Con-
sequently, it is likely that similar to hyperthermia, local hypotonic
conditions could be used to enhance Taxol response in tumors
with a functional apoptotic pathway.

CONCLUSION/PERSPECTIVES
In summary, the ability of cells to arrest during mitosis in response
cellular and environmental stresses is dependent on the presence
of a functional SAC, the correct suppression of transcription and
translation, and critically the maintenance of Cdk1 activity. Stress
that prevents the satisfaction of the SAC results in a mitotic arrest,
while those stresses that disrupt Cdk1 activity or directly disable
the SAC force cells to prematurely exit mitosis. Future research on
the role mitotic phosphatases, such as PP2A, play in stress response
and slippage will be critical for fully elucidating the mechanisms of
how a specific cancer will response or can be sensitized to mitotic
chemotherapies such as Taxol.
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