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Image guidance allows delivery of very high doses of radiation over a few fractions, known
as stereotactic ablative radiotherapy (SABR). This treatment is associated with excellent
outcome for early stage non-small cell lung cancer and metastases to the lungs. In the
delivery of SABR, central location constantly poses a challenge due to the difficulty of
adequately sparing critical thoracic structures that are immediately adjacent to the tumor
if an ablative dose of radiation is to be delivered to the tumor target. As of current, various
respiratory motion management and image guidance strategies can be used to ensure
accurate tumor target localization prior and/or during daily treatment, which allows for
maximal and safe reduction of set up margins. The incorporation of both may lead to
the most optimal normal tissue sparing and the most accurate SABR delivery. Here, the
clinical outcome, treatment related toxicities, and the pertinent respiratory motion man-
agement/image guidance strategies reported in the current literature on SABR for central

lung tumors are reviewed.
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INTRODUCTION

In the past, thoracic radiotherapy has constantly been limited by
toxicity to the normal tissue, such as the lungs and the esophagus,
which hinders dose escalation to the gross disease to a desired ther-
apeutic level (1-3). This is mainly due to the utilization of large
planning target volume (PTV) margins to compensate uncertain-
ties from respiratory motion and/or in daily patient set up (4, 5).
In recent years, advances in imaging technology have enabled us to
not only more accurately delineate the gross tumor volume (GTV)
and the clinical target volume (CTV), but also given us more infor-
mation on the location of tumor in relation to critical structures
throughout the entire respiratory cycle (1, 2, 4-7). Thus, a PTV
margin reduction is possible through accurate delineation of the
internal target volume (ITV), which allows for dose escalation to
the gross tumor. Tumor localization can be further verified with
additional in-room imaging prior to daily treatment to ensure
accurate radiation delivery (8). With image-guided radiotherapy
(IGRT), ablative doses of radiation can be delivered to treat early
stage non-small cell lung (T1-3, NO, M0) or lung metastases, a
technique known as stereotactic ablative radiotherapy (SABR) or
stereotactic body radiation therapy (SBRT), with excellent clinical
outcome consistently observed (9), while local control of over 80%
at 3 years have been observed following SABR for oligometastases
to the lungs (10, 11).

Despite the rapid clinical adaptation of SABR worldwide, the
feasibility of SABR in the treatment of centrally located lung
lesions continues to be controversial. The central location is
defined as a region that is within 2 cm of the proximal bronchial
tree (12). In a phase I prospective study on SABR for T1-2,N0, M0
NSCLGC, 60-66 Gy was delivered in three fractions to the tumor tar-
get, and the 2-year freedom from severe toxicity was much higher
for peripheral lesions when compared to that for central lesions
(83 vs. 54%) (13). A total of 12 Grade 3-5 treatment related tox-
icities were reported at 4 years in this study of 70 patients (14), 5
of which were Grade 5 toxicities. These consisted of pneumonia
(three cases), hemoptysis (one case), and respiratory failure (one
case). On the contrary, excellent clinical outcome with reasonable
toxicity profile has also been reported by others who used dose
fractionation regimens with lower fractional dose and increased
number of fractions (9). However, treatment related lethal toxicity
following SABR for central lung lesions, such as hemoptysis from
SABR-related necrosis in the major airway, is still observed when
the organ at risk (OAR) was in the high dose volume even when
moderate fractionation schedules have been used (15). Therefore,
not only lower fractional dose with increased number of fractions
is necessary, but geometric accuracy and avoidance of immedi-
ately adjacent OARs from being included in the high dose volume
are also critical in achieving optimal target volume dose coverage
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and OAR sparing in the treatment of central lung lesions with
SABR (16). These objectives are further complicated by breath-
ing motion, which leads to variation in tumor location relative to
adjacent critical organs throughout the entire respiratory cycle. As
a result, a high level of image guidance is required to ensure accu-
rate delivery of ablative doses to the tumor target with the smallest
treatment margin possible for optimal OAR sparing. In this situ-
ation, a sharp dose gradient at the edge of the PTV to spare the
immediately adjacent normal organs from receiving an ablative
dose of radiation is also strongly desired. In the following sections,
the key components of image-guided SABR will be discussed in
relation to clinical experience on SABR for central lung lesions.
Furthermore, how currently available respiratory motion man-
agement and image guidance techniques are used for safe delivery
of SABR for central lung lesions, and how to select patients for
SABR in this setting will be explored.

CLINICAL EXPERIENCE WITH SABR FOR CENTRAL LUNG
TUMORS

The clinical experience in delivering SABR for central lung tumors
has been reported together with that for peripheral lung tumors in
multiple studies (12—14, 17-29). In general, no statistically signif-
icant difference in the clinical outcome based on tumor location
was observed following SABR for early stage NSCLC (14, 18, 21,
24,25,27-30). As shown previously, the biologically effective dose
(BED) appears to be a direct predictor of local control following
SABR with increased failures observed when a lower BED is deliv-
ered to the tumor target irrespective of tumor location (12,23, 26).
In recent years, a number of studies have reported the clinical expe-
rience with SABR for central lung lesions alone (30-36). As shown
in Table 1, the local control and overall survival following SABR
for centrally located early stage NSCLC appear to be very similar
to what has been observed following SABR for early stage NSCLC
in general (12). Again, BED appears to be a significant predictor
of local control favoring a BED of >100 Gy [Gy calculated using
ana/f = 10 Gy, BED = total dose x (1 + fractional dose/(a/B))] to
the tumor target (37). These findings corroborate with what have
been observed in the studies including both peripheral and central
lung tumors as mentioned above. Also suggested by studies listed
in Table 1, poorer clinical outcome may be observed in advanced
stage/recurrent NSCLC or metastases to the lungs when compared
with that for early stage NSCLC.

Severe toxicities and deaths following SABR for centrally
located lung lesions have been reported in many studies, which
brought great concern regarding the feasibility of SABR for cen-
trally located lung tumors (13, 14, 17-21, 30, 32-35). In these
studies, large fractional dose, and/or failure to exclude OARs
immediately adjacent to the tumor target from the high dose vol-
ume were frequently observed. Both often associated with deaths
due to pulmonary injury or bleeding in areas of necrosis in the
immediately adjacent organs, such as the esophagus, or the major
airways (Tables 2 and 3). As shown in the Indiana phase II study,
which included both peripherally and centrally located NSCLC
(T1-2,N0,MO0), 8 patients with Grade 3—4 toxicities, and 6 SABR-
related deaths were identified among 70 patients after a median
follow up of 17.5 months when 60-66 Gy was delivered in three
fractions (13). The toxicities were mostly cardio-pulmonary in

nature. The rate of severe toxicity (Grade 3-5, CTCAE version
2.0.) significantly correlated with tumor location initially with an
11-fold increase in the risk of severe toxicity associated with central
location (13). It suggests that centrally located lesions need to be
treated differently even when this correlation lost statistical signif-
icance after a median follow up of 50.2 months due mostly to the
small number of patients included. Death following treatment of
central lung lesions with much lower dose per fraction was initially
reported by Onimaru et al. (17). This occurred when the esoph-
agus was not excluded from the high dose volume. It ultimately
resulted in death due to hemoptysis as a result of an unhealing
esophageal ulcer 5 months after SABR. A hot spot above the pre-
scribed dose on the esophagus was later discovered, which may
have contributed to esophageal ulceration.

Treatment related toxicities causing death have also been
observed in other studies (18—21). As shown in Table 2, death
due to bleeding/hemoptysis has been frequently observed follow-
ing primary or repeat treatments of central lung lesions with
SABR. Bronchial strictures and tissue necrosis have also been
frequently encountered following SABR for lesions that were adja-
cent to or within the airways (18, 19). In one study, partial or
complete bronchial strictures have been observed in 8/9 patients
with centrally located stage I NSCLC after doses from 40-48 Gy/4
to 60 Gy/3 fractions were delivered (18). In their study, severe
pulmonary toxicities associated with partial bronchial stricture
were observed after 40 Gy/4 fractions were delivered. In a different
study, death due to hemoptysis related to bronchial stenosis was
observed after a peri-bronchial lesion was treated with 60 Gy/4
fractions (21). These findings demonstrate the risk for severe tox-
icity due to SABR-related bronchial stricture, which should be
avoided whenever possible.

In studies that evaluated SABR for central lesions only (30—
36), the incidence of severe toxicities was low among the patients
reported. This may be related to lower fractional dose in the
dose fractionation schedules used, patient selection, availability
of cutting-edge technology for image guidance, and respiratory
motion control, as well as many other factors. Among these stud-
ies, 9 deaths were reported following SABR in a total of 287 patients
(Table 3). Again, bleeding due to tissue necrosis of the immedi-
ately adjacent OARs appears to be a common cause of death. Five
deaths occurred after multiple courses of radiotherapy to single or
multiple peri-bronchial lesions (33, 35), while one death occurred
after SABR was delivered to an endobronchial lesion (34). One
potential treatment related death due to a cardiac cause occurred
in a patient with underlying cardiac conditions for whom the PTV
and the heart overlapped (30). One death due to bronchial necrosis
related hemorrhage occurred 10.5 months after SABR to a 5.7-cm
metastasis abutting the left mainstem bronchus (32). The area of
bronchial necrosis was retrospectively found to have received a
maximum dose above the dose prescribed.

Stereotactic ablative radiotherapy for central lung tumors has
been shown to be feasible without any treatment related severe
toxicities by many as well (22-29). No fractional dose of over
12.5 Gy was used among them, which further supports the need
to lower the fractional dose when treating centrally located lesions
to avoid severe late toxicities (Table 4). However, SABR may not
be the best treatment option for endobronchial lesions as it was
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Table 1| Clinical outcome following SABR for centrally located lung tumors alone.

Reference No. of Median Histology Median FU Dose Local control DFS/PFS/CSS oS Severe toxicities
patients age (months)
Haasbeek 63 74 (47-87) NSCLC:T1-3, NO, 35 60 Gy/8 frx byears: 92.6% 5years-DFS: 71% 5years: 49.5% Acute: 1 Grade 3 chest wall
et al. (30) MO pain
Late: 2 Grade 3 dyspnea
1 Grade 3 chest wall pain
1 Grade 3 rib fracture
2/9 Deaths potentially
related to SABR
Nuyttens et al. 56 73 (34-88) NSCLC: 69.6%; 23 45-60 Gy/5 frx 2years: 76% (early ~ 3years-CSS (early 2 years: 60% (early Acute: 4 Grade 3
(31) metastases: 30.4% 48 Gy/6 frx stage NSCLC: 85%) stage NSCLC): 80% stage NSCLC: 53%)  pneumonitis
Late: 6 Grade 3 pneumonitis
Rowe et al. 47 72 (41-90) NSCLC: 59%; 1.3 50 Gy/4 frx (67%) Two local failures 4 Grade 3 dyspnea within
(32) metastases: 41% observed 2-4 months after SABR
One SABR-related death
Oshiro et al. 21 71 (35-89) Recurrent/metastatic 19.8 25-35 Gy/1 frx 2years: 59.6% 2years-PFS: 23.8%  2vyears-OS: 62.2% Acute: none
(33) NSCLC: 95% 40-48 Gy/4 frx Late: 1 Grade 3 productive
Stage 1A: 1 40-50 Gy/5 frx cough due to bronchial
Stage IV: 8 48 Gy/8 frx stenosis requiring dilatation
Recurrent 50-60 Gy/10 frx 1year after treatment
rl: 4 39 Gy/3 frx 1 Grade 3 dyspnea
rllA: 1 18 months after SABR,
which was preceded by
three courses of RT to
bilateral tumors
One SABR-related death
Unger et al. 20 ~(23-82) Hilar lesions 10 30-40 Gy/5 frx 1year: 63% 1year: 54% Acute: 1 Grade 3 radiation
(34) abutting or invading pneumonitis 8 months after

the mainstem
bronchus.
Metastases: 85%

SABR
One SABR-related death

(Continued)
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One brachial plexopathy

Three failures

40-50 Gy/4 frx

NSCLC 17

27

Chang et al.

(36)

with partial arm paralysis

following 40 Gy
delivered; no

Stage 1 48.15%

after significant volume of

Recurrent 51.85%

the brachial plexus received

40 Gy

failures in the 50 Gy

group

DFS, disease-free survival, PFS, progression-free survival, CSS, cause-specific survival; OS, overall survival; SABR, stereotactic ablative radiotherapy; oligomet, oligometastasis; frx, fraction.

frequently found to result in bronchial necrosis related compli-
cations, causing death (18, 19, 34). In addition, re-irradiating
central lung lesions with hypofractionated dose fractionation reg-
imens needs to be considered very carefully given the already
increased risk of normal tissue injury from prior treatment
(20, 33, 35).

As suggested by the clinical experience summarized above, the
following are of pertinent importance in minimizing the risk of
severe toxicities following SABR for central lung tumors: the use of
dose fractionation schedules with relatively lower fractional dose
while increasing the number of fractions accordingly to main-
tain an adequate BED; carefully respecting the dose constraints
for the immediately adjacent OARs during treatment planning;
and validation of accurate tumor localization through daily image
guidance to ensure that the immediately adjacent structures are
kept outside of the high dose region in the context of respi-
ratory motion. Furthermore, sharp dose gradient at the PTV’s
edge through intensity modulation is strongly desired to optimize
conformal avoidance of the immediately adjacent OARs when
treating central lesions with SABR (12). This makes image guid-
ance even more critical in the delivery of daily treatments. In the
following sections, the current available respiratory motion man-
agement/image guidance techniques that can be used to optimize
the safe and accurate delivery of SABR to treat central lung lesions
in the context of the clinical studies described above will be further
described and assessed.

RESPIRATORY MOTION MANAGEMENT IN LUNG SABR
Patient immobilization, respiratory motion management, and
appropriate image guidance are closely integrated in thoracic
IGRT. Multiple image guidance techniques are currently in use
to ensure accurate tumor localization during lung SABR and these
are closely related to the strategy for respiratory motion manage-
ment that is used in conjunction with them. Tumor motion due
to respiration in various locations of the lungs has been previ-
ously described by Seppenwoolde et al. (4). The greatest motion
was observed in lower lobe tumors that were not attached to rigid
structures in the cranio-caudal direction (12 42 mm), while the
lateral motion appears to be much less (2 & 1 mm). The tumors
were found to be more stable and spending more time in the expi-
ratory phase of respiration. In addition, hysteresis of 1-5 mm has
been observed commonly (4).

A more detailed description of respiratory motion can be found
in a report by AAPM task group 76 (38), which further illus-
trates that patients’ breathing patterns are irregular, and are highly
variable in magnitude, and period. They not only vary intra-
and inter-fractionally, but also vary between different patients. As
shown by Wulf et al., a uniform ITV margin of 5 mm in transverse
and 10 mm cranio-caudally still led to partial misses of tumor tar-
gets in 12-16% of the patients even in the setting of stereotactic
body frame usage (39). Therefore, individually accounting for res-
piratory motion with patients breathing in a repeatable fashion is
essential for the most accurate and precise capturing of internal
organ motion. Furthermore, tumor location needs to be verified
under daily image guidance to ensure appropriate dose distribu-
tion during actual treatment to justify small PTV margins for the
most optimal OAR sparing.
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Table 2 | Deaths following SABR for central lung tumors in studies including both peripheral and central lesions.

Reference Median FU No of central  Lesions associated Dose schedule Cause of death/time
(months) lesions/study  with death associated with death of death
Fakiris et al. (14) 50.2 22 A pericarinal and a 60-66 Gy/3 frx Hemoptysis (19.5 months after
pericardial NSCLC SABR) and pericardial effusion
Onimaru et al. (17) 18 9 A 3.5-cm metastasis from 48 Gy/8 frx Bleeding from an unhealing
melanoma posterior to the R esophageal ulcer 5 months after
mainstem bronchus SABR
Esophageal dose
parameters
Maximum dose: 50.5 Gy
Mean dose: 10.6 Gy
1cc dose: 42.5 Gy
Song et al. (18) 26.5 9 Endobronchial NSCLC in the 48 Gy/4 frx Hemoptysis, aspiration, and
mainstem bronchus pneumonia from treatment induced
complete bronchial stricture
13 months after SABR
Stauder et al. (19) 15.8 47 A recurrent NSCLC that is 48 Gy/4 frx Pulmonary failure caused by
obstructing the L mainstem progressive bronchial obstruction
bronchus (pneumonectomy due to tumor necrosis 7.5 months
on the contralateral side after SABR
17 years ago)
Peulen et al. (20) 12 1 Bilateral hilar metastases 40 Gy/4 frx, then 40 Gy/5 Hemoptysis 10 months after second
from RCC, then R hilar frx course of SABR
recurrence 3 years later 40 Gy/4 frx to the primary Hemoptysis/hemorrhage 6 weeks
L hilar NSCLC encasing a disease followed by after second course of SABR
lobar bronchus 33 Gy/3 frx 13 months later A fistula between G-tube and
Carinal recurrence from 40 Gy/5 frx following trachea developed 10 months after
esophageal cancer chemotherapy followed by  second course of SABR; local
40 Gy/5 frx 29 months later  progression 13 months after second
SABR was treated with 40 Gy/5 frx,
then again 42 Gy/7 frx 8 months
later; The patient was found to have
developed SVC syndrome due to
severe RT induced fibrosis 7 months
after third course of SABR and died
of an Ml during stent placement
Bral et al. (21) 16 17 Peri-bronchial early stage 60 Gy/4 frx Hemoptysis related to Grade 3

NSCLC

dyspnea due to bronchial stenosis.
The patient died during stenting

Frx, fractions; RCC, renal cell carcinoma.

Respiratory motion management strategies currently in use are
usually separated into five different categories: motion encompass-
ing, respiratory gating, breath hold, forced shallow breathing with
abdominal compression and breath-synchronized, or real time
tumor tracking techniques (38). Among them, motion encom-
passing techniques to estimate the range of tumor motion have
been most commonly used in the treatment of central lesions with
SABR (Table 5). These include slow CT scanning, ITV generation
with inhalation and exhalation breath hold CTs combined with
free-breathing CT, and 4D or respiration corrected CT. A slow CT

is generated with a speed that would allow multiple respiratory
cycles to be captured per slice to generate a tumor encompass-
ing volume, which depicts tumor location throughout the entire
respiratory cycle. This approach is limited by the lack of con-
trast between tumor from normal tissue when it is located in the
vicinity of the mediastinum, the diaphragm, or the chest wall as
a result of respiration related blurring. Alternatively, FDG PET
registered to the planning CT has been used by some to aid tar-
get volume delineation due to the enhanced resolution of tumor
in areas of soft tissue associated with image registration; and the
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Table 3 | Deaths reported in studies on SABR for central lung tumors only.

Reference Dose prescribed Immediately Dose to critical Cause of death/time
adjacent organs organs of death
Haasbeek et al. (30) 60 Gy/8 frx Pericardium overlapping Unknown Cardiac event 2.5 years after

Rowe et al. (32)

Oshiro et al. (33)

Unger et al. (34)

Milano et al. (35)

50 Gy/4 frx to a metastasis from
melanoma

25 Gy/1 frx?

30-40 Gy/5 frx to an
endobronchial lesion from
mesothelioma

49.5 Gy/11 frx to one central
NSCLC followed by 48 Gy/4 frx
15 months later

the target volume
R hilum

L mainstem bronchus

Hilum of unknown side

Unknown mainstem
bronchus

Bronchus

Bronchus and trachea

Airway point dose: 54.2 Gy

Airwaysc. dose: 12.7 Gy
(overall: 14.7 Gy)

Unknown

Maximum point dose:
49 Gy

Bronchus received 98 Gy
cumulatively

SABR
Respiratory failure

Hemorrhage with bronchial
necrosis in the region of the
maximum point dose

10.5 months after SABR

Hemoptysis 18 months after
SABR

Bronchial fistula related,
7 months after SABR

Hemoptysis 6.5 months after
second course of SABR

50 Gy/10 frx to one central and
one peripheral NSCLC followed
by 50 Gy/10 frx to three new
central lesions and one bulky
recurrence of the previously
treated peripheral lesion

11 months later

35-50 Gy/10 frx to five central
NSCLC

35 Gy/14 frx then 18 Gy/6 frx to
three central NSCLC and

50 Gy/10 frx to one peripheral
NSCLC

from tumor)

Bronchus and trachea

Bronchus (0.5c¢m from
tumor) and trachea (1 cm

Unknown Dyspnea 2 weeks after
second course of SABR

Unknown Bronchitis 6 months after
second course of SABR

Unknown Dyspnea 4 months after SABR

sAfter previous intra-tracheobronchial brachytherapy to bilateral hilar lesions and SABR to the apical area of the same lobe.

volume encompassing effect associated with the relatively slower
speed of a PET scan (Table 5). The inhalation and exhalation
breath hold CTs have been used to estimate the extremes of breath-
ing motion. Respiration monitoring may be used in this setting to
confirm that the breathing range is constant and the ITV generated
adequately encompasses the tumor at the time of actual treatment.
Both methods provide less detail on tumor motion than 4D CT. As
shown in Table 5,4D CT was used for motion management in 7/14
studies in which motion encompassing techniques were used (19,
23,25,29,30,32,36). It can estimate the mean tumor position and
the range of tumor motion in relation to adjacent normal thoracic
organs with increased sophistication when compared to the other
two approaches, which is critical for target volume delineation in
central locations of the thorax. The use of 4D CT in the treatment
planning of lung SABR has been described in detail by Slotman
et al. (40). As shown by Wang et al., 4D CT based target volume
delineation consistently resulted in smaller PTV volume in lung
SABR, which may potentially lead to an increase in normal tissue
sparing (41).

Other respiratory motion management techniques are also
used in the treatment of central lung tumors with SABR. The
breath hold technique has been used by Song et al. and Milano
et al. in the delivery of SABR, while respiratory gating has been
used by Song et al. and Oshiro et al. in their patients (18, 33, 35).
Forced shallow breathing with abdominal compression has been
commonly used to reduce respiratory motion in the pre-4D CT
era, when SABR began to become a treatment option for early stage
NSCLC (14, 39, 42). Both deep inspiration breath hold (DIBH)
and end expiratory breath hold (EEBH) can be used for the breath
hold technique while the DIBH approach can potentially improve
the sparing of the normal lung tissue (35, 38). However, breath
holding requires a high degree of patient cooperation and is often
limited to the delivery of 3D-CRT and step-and-shoot IMRT due
to the short duration of breath holding of <30s.

Respiratory gating refers to the delivery of radiation within
a particular portion of a patient’s respiratory cycle. The respira-
tory cycle can be monitored through external respiratory signal
or internal fiducial markers, while the gating criteria can be set
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Table 4 | Studies on lung SABR reporting no severe toxicity associated with central location.

Reference Median FU No of central Dose fractionation Severe toxicities
(months) lesions/total lesions schedule used

Xia et al. (22) 27 9/43 50 Gy/10 frx None

Guckenberger et al. (23) 14 22/159 48 Gy/8 frx@ None
26 Gy/1 frx
375 Gy/3 frx

Baba et al. (24) 26° 29/124 44-52 Gy/4 frx None

Olsen et al. (25)¢ N 19/130 45-50 Gy/5 frx@ None

16 54 Gy/3 frx
13

Andratschke et al. (26) 21 24/92 35 Gy/5 frx@ None
40 Gy/4 frx@
30-45 Gy/3 frx

Takeda et al. (27) OLTs from CRC 29 33/232 50 Gy/5 frx None

OLTs from other origins 15
NSCLC 24

Stephans et al. (28) 15.3 7/94 50 Gy/5 frx@ None
60 Gy/3 frx

Janssen et al. (29) 13.8 29/65 40-48 Gy/8 frx@ None
375 Gy/3 frx

#Dose fractionation schedule for central lesions.

b For living patients only.

°Median FU based on dose fractionation schedule used.
OLTs, oligometastases; frx, fractions.

by either displacement (33), or phase based on a certain pre-set
displacement distance or phase window, respectively. This tech-
nique requires respiration to be continuously monitored using
surrogate markers of breathing motion (18, 33, 43). Although it
can potentially spare more normal tissue compared to the motion
encompassing method, it requires a high degree of quality assur-
ance to validate the accurate representation of tumor motion by
the external signal and the internal fiducial markers (38). In addi-
tion, treatment time is increased with gating as radiation is only
delivered when the target is in the gated window.

Real time tumor tracking is different from the other techniques
of respiratory motion management in that the radiation beam
moves in synchrony with the tumor as the patient is breathing. The
use of this technique is commonly observed with lung SABR deliv-
ery by the CyberKnife (CK, Accuray Corp.), a device that attaches
a linear accelerator to a robotic arm to allow for beam adaptation
to full three-dimensional motion of the tumor under close image
guidance (31, 34). This is achieved through the intermittent mon-
itoring of internal fiducial markers or the tumor itself, coupled
with the continuous monitoring of external respiratory markers
(44). Although the treated volume can potentially be reduced with
this highly automated approach, the treatment time is usually long
(60-90 min), and the localization of centrally located lung tumors
on in-room x-rays may be difficult without the use of internal
fiducial markers (44).

IMAGE GUIDANCE IN THE DELIVERY OF LUNG SABR
Regardless of the motion management strategy used, image guid-
ance during daily treatment is essential in ensuring the accurate
localization of the target volume in relation to adjacent normal
structures. This allows for smaller PTV margins to be used, espe-
cially for centrally located lung tumors, with optimal dose volume
coverage and OAR sparing. Image guidance strategies are on-
board, peripheral, or integrated on various treatment delivery
systems (1). Despite the ability to achieve very sharp dose gradient
for normal structure sparing in SABR for central lung lesions, the
clinical use of helical tomotherapy (a image-guided IMRT delivery
system integrating a six MV linear accelerator with a helical CT)
for this purpose has not be extensively reported (12). However, the
first two strategies are widely adopted in SABR delivery.
On-board image guidance is conducted when the imaging
device is attached to the actual treatment delivery system. The
most commonly used on-board imaging device for the delivery of
lung SABR is the cone beam CT (CBCT), which is re-constructed
from a series of x-ray projections obtained in a single rotation
of the source and detector around the patient (45). In the most
commonly available CBCT systems, the imaging axis is chosen to
be 90° to the treatment beam. CBCT provides 3D information of
the tumor in relation to the critical normal structures for online
verification of tumor localization prior to the delivery of daily
treatment. It can be obtained with either MV or KV imaging. KV
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Table 5 | Treatment planning, immobilization, and image guidance in SABR for central lung tumors.

Reference Respiratory FDG PET Dose calculation/TPS Technique Immobilization Image guidance
motion for target
management definition
Haasbeek et al. (30) e —/BrainLab 3D - ExacTrac system
Nuyttens et al. (31) RTT —/CyberKnife IMRT - Fiducial marker tracking per CyberKnife
system
Rowe et al. (32) € AAA/— 3D, IMRT Full length vacuum cushion ~ CBCT
Osbhiro et al. (33) ¢ —/Eclipse (Varian) 3D Individualized body casts Gated KV-radiographs
Unger et al. (34) RTT Non-isocentric inverse planning IMRT - IR emitting external markers and
algorithm with heterogeneity internal fiducial markers used for real
correction/CyberKnife time tumor tracking with CyberKnife
Milano et al. (35) d Y —/BrainLab Arcs - ExacTrac system
Chang et al. (36) € —/— 3D - CT-on-rail with orthogonal radiographs
to confirm isocenter
Fakiris et al. (14) a —/— 3D SBF with abdominal Daily treatment guided by external
compression markers on SBF
Onimaru et al. (17) b 3D RTP with heterogeneity correction 3D No immobilization cradles Orthogonal radiographs on the first day
Song et al. (18) acd —/Render 3D system (Elekta) or - Vacuum fitted SBF CBCT
Eclipse (Varian)
Stauder et al. (19) e Y —/Eclipse (Varian) 3D BodyFix vacuum system CBCT
Peulen et al. (20) a Pencil beam algorithm with 3D SBF with abdominal CT prior to each treatment
heterogeneity correction/— compression
Bral et al. (21) b.e Y —/BrainLab 3D Low density cradle with IR ExacTrac-like system using both
skin markers on the thorax external and internal markers
Xia et al. (22) f N1 LN Body gamma knife planning system MLC based Vacuum bag from head to -
delineation gamma knife pelvis
Guckenberger et al. (23) € Collapsed cone algorithm/— 3D SBF or BodyFix systems CT, in-room CT, then CBCT since 2005
Baba et al. (24) b ? AAA/eclipse (Varian) 3D BodyFix system -
Olsen et al. (25) € Superposition convolution algorithm 3D SBF system or alpha cradle ~ CBCT
with heterogeneity correction/—
Andratschke et al. (26) f Unknown algorithm with 3D/arcs Vacuum couch and low CT prior to each treatment, then CBCT

heterogeneity correction/—

pressure foil

since 2008

(Continued)

219 1y

slown} Bun| |es3uad 1o} Hgys pepinb-abew|


http://www.frontiersin.org/Radiation_Oncology
http://www.frontiersin.org/Radiation_Oncology/archive

Chi et al.

Image-guided SABR for central lung tumors

Image guidance

Immobilization

Corset

Technique
DCMAT

Dose calculation/TPS
Superposition algorithm with

FDG PET
for target
definition

ITVv
Y

Respiratory
management
f

motion

Table 5 | Continued

Reference
Takeda et al. (27)

heterogeneity correction/XiO (CMS)

ExacTrac system

BodyFix system

IMRT

Unknown with heterogeneity

correction/BrainLab

Stephans et al. (28)

CBCT

SBF with abdominal

compression

Janssen et al. (29)

@Forced shallow breathing with abdominal compression.

®Inhalation and exhalation breath hold CTs used to generate ITV.

°Respiratory gating.

9Breath hold/active breathing control

e4D CT.

fSlow CT.

SBE, stereotactic body frame; DCMAT, dynamic conformal multiple arc therapy; RTT, real time tracking, Y, yes; ITV refers to that generated with motion encompassing technique or that accounted for when generating

the PTV: —, unknown.

imaging is superior to MV imaging in providing better soft tissue
resolution with low to moderate imaging doses, which potentially
improves patient set up accuracy and alignment of tumor target
volume in relation to adjacent critical structures (46). This may
be especially helpful in the treatment of central lung lesions with
SABR, as a high degree of anatomical information is necessary for
the most optimal tumor localization. However, KV CBCT requires
regular quality assurance for the alignment of the imaging and
treatment beams (46).

Both 2D and 3D imaging are used in peripheral in-room image
guidance strategies. The advantage of using imaging devices not
directly attached to the treatment delivery system is that respira-
tory motion may be monitored during the delivery of radiation.
However, they need to be carefully calibrated with the treatment
beam’s isocenter to minimize additional geometric uncertainties
(1). CT-on-rails/in-room CT has been used for online image guid-
ance with the treatment table moved to the imaging position after
the patient is set up on the treatment table. Diagnostic quality CT
images can be obtained with this approach for the best resolution
of soft tissue structures prior to each treatment. However, addi-
tional set up errors may be introduced during patient movement
between the imaging and treatment positions (46). Both CBCT
and CT-on-rails/in-room CT have been used in image-guided
SABR for central lung lesions. These strategies are frequently used
with the motion encompassing method of respiratory motion
management with low incidence of severe toxicities in the set-
ting of primary irradiation, and tumor not directly involving the
normal critical structure at risk (18, 19, 22, 23, 25-27, 29, 32, 36).
As shown by Grills et al., small PTV margin accounting for sys-
temic and random error may be consistently maintained when
CBCT in conjunction with appropriate immobilization were used
during SABR delivery for early stage NSCLC (47). In this study,
the PTV margin may be reduced to <5 mm with the patient in a
stereotactic body frame and to ~5 mm with a regular alpha cra-
dle. Their findings were corroborated in a study by Guckenberger
et al., which showed that the PTV margin can be reduced from
12 to <5 mm when KV CBCT is used in addition to a stereotactic
body frame (48). In another study, the mean lung dose and the
V2o (volume of the normal lung receiving 20 Gy) were reduced
by 47-77.3%; while the spinal cord dose was reduced by 55.2—
58.5% for central lung lesions when CBCT image guidance was
used with active breathing control (a breath hold technique) in
the delivery of lung SABR as a result of reduction in treatment
set up margins enabled by combining image guidance and respi-
ratory motion management (49). In this study, pre-correction set
up margins of 14.1 mm in the cranial-caudal direction was able
to be reduced to 4.7 mm, while pre-correction set up margins of
~10 mm in the left-right and anterior—posterior directions were
reduced to 3.2 and 3.5 mm, respectively. More recently, 4D CBCT
has been under investigation to better capture tumor motion at
the time of treatment, which may allow for small PTV margins of
within 3 mm (50-52). Although fairly accurate with respiratory
motion of <5mm, 3D CBCT was shown to be less accurate in
capturing respiratory motion than 4D CBCT as motion artifacts
increase with increased tumor motion (53, 54). In addition, accu-
rate localization of the target volume during daily treatment may
provide information for adaptive adjustment of the PTV margin
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and adaptive planning daily. Further exploration in this area is
definitely warranted.

Commonly used 2D-imaging based peripheral strategies, such
as the Novalis ExacTrac and Synchrony for CK, usually monitor
external markers of respiration continuously with periodical veri-
fication of tumor location through x-rays of internal tumor mark-
ers. With the Novalis ExacTrac system, respiratory motion can be
captured by continuous monitoring of infra-red (IR) reflecting
markers attached to the patient’s abdomen, while KV x-rays can
be matched to digitally re-constructed radiographs for localiza-
tion verification of internal tumor markers (43, 54). This system
can be used for respiratory gating, which may potentially limit the
amount of normal tissue irradiated as the gating window can be
limited to as small as 2mm (43). When used to delivery SABR
for central lung tumors (21, 28, 30, 35), low incidence of severe
toxicities have been observed when re-irradiation was excluded
in general (14, 17-21, 30, 32-35). However, Grade 5 toxicities
related or potentially related to SABR for lesions in close prox-
imity to the major airway and the heart were reported with this
approach of image guidance (21, 30). This suggests that online
correction with 3D imaging may be beneficial in certain situ-
ations due to the increased amount of 3D geometric detail of
critical normal structures in relation to the PTV it provides to
avoid non-intended inclusion of critical structures in the high
dose volume.

Real time tumor tracking of the CK system is accomplished in
a way that is very similar to the ExacTrac system (43, 44). With
the Synchrony system, the internal and external marker motions
appear to be highly correlated (55). However, external marker
based tumor motion prediction are influenced by multiple fac-
tors, and its correlation with tumor motion may deteriorate with
prolonged treatment duration (56). In addition, a high rate of
pneumothorax has been observed after thoracic fiducial marker
placement with frequent marker migration (57, 58). Clinically,
CK-based SABR has been correlated with excellent clinical out-
come (59). It was used to deliver SABR for central lung tumors with
only one Grade 5 toxicity encountered when an endobronchial
lesion in the mainstem bronchus was treated to the prescribed
dose among a total of 76 patients reported in two studies (31, 34).
The safe delivery of SABR with CK for central lesions, and espe-
cially hilar lesions with relative low incidence of severe toxicity
may be due to the fact that relatively smaller PTV can be used
with real time tumor tracking as no ITV is needed in this situa-
tion (60, 61). When compared with linac-based systems, CK may
also be associated with improvement in the sparing of the nor-
mal lungs from low dose irradiation for anteriorly located tumors
(60, 61). This location-based difference was mostly due to the sys-
tem’s inability to deliver radiation from underneath the patient.
However, these findings suggest that it may provide an advantage
in the delivery of SABR for relatively more anterior central lung
tumors.

CONCLUSION AND FUTURE DIRECTIONS

As shown above, image guidance techniques integrated with res-
piratory motion management enhances tumor localization in the
delivery of SABR for central lung tumors, which are mobile as
a result of respiration. As result, very small PTV margin can be

safely used to achieve optimal dose coverage of the tumor target
and sparing of the adjacent critical normal structures. This makes
SABR for central lung lesions feasible when the following criteria
are met: primary irradiation of a limited number of lung lesions;
dose constraints of the critical structures are strictly respected; and
no direct overlap between the PTV and any immediately adjacent
OARs. Therefore, the integration of respiratory motion manage-
ment and image guidance is warranted in future clinical trials on
SABR for centrally located lung tumors.

Particle therapy, such as proton therapy, has been increasingly
investigated and utilized for the treatment of lung cancer in recent
years due to the finite range of charged particles, which may pro-
vide an advantage over photon therapy in normal tissue sparing
(62). Clinical experience in the delivery of stereotactic body proton
therapy has been excellent without any severe toxicity reported in
the treatment of central lesions (63, 64). Large smearing margins
may be necessary to achieve the most optimal dose distribution in
the delivery of passively scattered beams (PT), which may impair
OAR sparing in situations of complex geometry (65). Active spot
scanning, or intensity modulated proton therapy (IMPT) has been
shown to provide a dosimetric advantage in the treatment of cen-
tral lung lesions over PT and photon therapy (66, 67). However,
dose distribution in IMPT is very sensitive to beam and tumor
motion, as well as set up uncertainties. Methods to minimize inter-
play uncertainties have been proposed, which warrants further
investigation in the future (65, 68, 69).
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