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Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers,
and are involved in cell movement, intracellular trafficking, and mitosis. In the context of
cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding
chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic
arrest and cell death. Importantly, changes in microtubule stability and the expression
of different tubulin isotypes as well as altered post-translational modifications have been
reported for a range of cancers. These changes have been correlated with poor prog-
nosis and chemotherapy resistance in solid and hematological cancers. However, the
mechanisms underlying these observations have remained poorly understood. Emerging
evidence suggests that tubulins and microtubule-associated proteins may play a role in
a range of cellular stress responses, thus conferring survival advantage to cancer cells.
This review will focus on the importance of the microtubule–protein network in regulating
critical cellular processes in response to stress. Understanding the role of microtubules in
this context may offer novel therapeutic approaches for the treatment of cancer.

Keywords: microtubules, tubulin, post-translational modifications, microtubule-associated proteins, stress
response

INTRODUCTION
Microtubules, together with microfilaments and intermediate fil-
aments, form the cell cytoskeleton. The microtubule network is
recognized for its role in regulating cell growth and movement as
well as key signaling events, which modulate fundamental cellu-
lar processes. Emerging evidence also suggests that it is critically
involved in cell stress responses. This review will focus on the role
of microtubules in this context in cancer.

Microtubules are composed of α- and β-tubulin heterodimers
that associate to form hollow cylindrical structures (1) (Figure 1).
They are highly dynamic, and are constantly lengthening and
shortening throughout all phases of the cell cycle. During inter-
phase, microtubules are nucleated at the centrosome (minus end)
and radiate toward the cell periphery (plus end). Interphase micro-
tubules are involved in the maintenance of cell shape and in
the trafficking of proteins and organelles (1). Motor proteins
translocate cell components on microtubule tracks, and protein–
protein interactions with other adaptor proteins co-ordinate this
process. Tubulin heterodimers also exist in soluble form in cells,
and protein interactions with this tubulin population regulate
microtubule behavior.

The addition and removal of soluble tubulin heterodimers to
dynamic microtubule ends is a highly regulated process (Figure 1).
Tubulin dimers are nucleotide binding proteins, with β-tubulin
also possessing GTPase activity. The manner in which tubu-
lin heterodimers are orientated in microtubules gives rise to a
polar molecule that differs in both structure and kinetics at each
end of the microtubule. The dynamics of tubulin addition and
release are much slower at the minus end of the microtubule,
which terminates with α-tubulin proteins, compared with the
plus end of the microtubule, which terminates with β-tubulin

proteins. The addition of a tubulin heterodimer to a micro-
tubule activates the GTPase activity of β-tubulin, locking the
β-tubulins in the microtubule in a GDP-bound state. The β-
tubulins exposed to the solvent at the end of the microtubule
form a GTP cap that is important in preventing microtubule
depolymerization. Therefore, the binding of GTP at the micro-
tubule plus end imparts structural and kinetic polarity to micro-
tubules and is an important regulator of microtubule stability.
It is believed that the polymerized and soluble tubulin pools
interact with different signaling networks, however, the dynamic
exchange of tubulin subunits between these pools makes it diffi-
cult to distinguish the functional roles of soluble and polymerized
tubulin experimentally. The reader is referred to several excellent
reviews for more detailed information on microtubule structure
and dynamics (1, 2).

During mitosis,microtubules form the spindle to enable correct
chromosomal segregation (3). Tubulin-binding agents (TBAs; e.g.,
taxanes, vinca alkaloids, epothilones, and eribulin) are important
chemotherapeutic drugs that suppress spindle dynamics, causing
subsequent mitotic arrest and cell death in rapidly dividing cells
(3). Recent evidence suggests that the induction of cell stress in
interphase cells also contributes significantly to TBA-mediated cell
death (4–6), highlighting the importance of tubulin in cell stress
responses in cancer.

In humans, microtubules are composed of combinations of
eight α-tubulin isotypes and seven β-tubulin isotypes, with
the different tubulin isotypes possessing specific tissue and
developmental distributions (7) (Table 1). The members of
the tubulin family share a high degree of structural homol-
ogy and are distinguished from one another by highly diver-
gent sequences at their carboxy-terminal (C-terminal) tail (8).
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Parker et al. Microtubules and cellular stress

FIGURE 1 | Microtubules are dynamic structures that interact with
diverse proteins. (A) Microtubules form a dynamic network and are
constantly lengthening and shortening. In interphase [(A), left],
microtubules are anchored at the centrosome (minus end) and radiate
toward the cell periphery (plus end). The microtubule network undergoes
dramatic remodeling throughout the cell cycle, from interphase and
through mitosis [(A), right]. Green: α-tubulin, blue: DAPI. Images
courtesy of Dr. Sela Po’uha. (B) Heterodimers of α- and β-tubulin
associate to form microtubules. The dynamic addition and removal of

tubulin heterodimers is faster at microtubule plus ends than at
microtubule minus ends. Both endogenous factors and TBAs regulate
and influence microtubule dynamics. A variety of proteins involved in
cellular homeostatic mechanisms and stress responses also interact
with tubulins either in their soluble or polymerized forms. Post-
translational modifications on tubulins influence these interactions.
Adapted with permission from Macmillan Publishers Ltd: Nature
Reviews Molecular Cell Biology [Ref. (9)], Copyright 2011 and Nature
Reviews Cancer [Ref. (15)], Copyright 2010.

Table 1 |Tubulin isotypes present in humans [Adapted with

permission from Macmillan Publishers Ltd: Nature Reviews Cancer

(Ref. (15)) Copyright 2010 and Elsevier (Ref. (233)) Copyright 2009].

Tubulin isotype Gene name Accession number

α-TUBULIN

α1A-Tubulin TUBA1A NP_006000

α1B-Tubulin TUBA1B AAC31959

α1C-Tubulin TUBA1C Q9BQE3

α3C-Tubulin TUBA3C Q13748

α3E-Tubulin TUBA3E NP_997195

α4A-Tubulin TUBA4A NP_005991

α8-Tubulin TUBA8 Q9NY65

α-Like 3-Tubulin TUBAL3 NP_079079

β-TUBULIN

βI-Tubulin TUBB NM_178014

βII-Tubulin TUBB2A, TUBB2B NM_001069; NM_178012

βIII-Tubulin TUBB3 NM_006086

βIVa-Tubulin TUBB4 NM_006087

βIVb-Tubulin TUBB2C NM_006088

βV-Tubulin TUBB6 NM_032525

βVI-Tubulin TUBB1 NM_030773

The authors direct readers to comprehensive reviews (233) for further information

on tubulin isotype structure.

The C-terminal tails of tubulin are also thought to mediate
protein–protein interactions and act as sites of post-translational
modifications to confer unique functionality to each iso-
type (9).

TUBULIN ALTERATIONS IN CANCER
Diverse changes in the microtubule network have been identi-
fied and characterized in a wide variety of cancers, including
altered expression of tubulin isotypes, alterations in tubulin post-
translational modifications, and changes in the expression of
microtubule-associated proteins (MAPs) (Table 2). Despite evi-
dence from in vitro studies associating tubulin mutations with
resistance to TBAs (10–13), tubulin mutations are not clini-
cally prevalent and their importance in disease progression and
chemotherapy resistance is controversial (14). Microtubule alter-
ations are thought to influence cellular responses to chemother-
apeutic and microenvironmental stressors, thereby contributing
to broad spectrum chemotherapy resistance, tumor development,
and cell survival.

CHANGES IN TUBULIN ISOTYPE COMPOSITION
Altered tubulin isotype expression is the most widely charac-
terized microtubule alteration reported in cancer and has been
observed in both solid and hematological tumors. These changes
are often associated with chemotherapy resistance and poor
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Table 2 | Clinical studies of tubulin alterations in cancer.

Microtubule

alteration

Observation Effect Cancer Reference

Altered isotype expression High βI-tubulin Poor response to docetaxel

treatment

Breast cancer (234)

High βIII-tubulin expression Poor survival, poor outcome for

surgical resection or TBA response;

correlates with subtype

Non-small cell lung cancer

(NSCLC)

(21, 31, 108,

235–238)

Correlates with poor survival, poor

response to platinum and taxane

treatment, advanced stage, or

aggressive disease

Ovarian cancer (13, 16, 35,

239–242)

Favorable response to taxane

treatment

Ovarian (clear cell

adenocarcinoma)

(243)

Poor response to taxane treatment Breast cancer (234, 244)

Correlates with disease stage Pancreatic ductal

adenocarcinoma

(17)

Correlates with disease stage Glioblastoma (101)

Localized to invasive edge Colorectal cancer (245)

Poor response to taxane/platinum

treatment

Uterine serous carcinoma (246)

Poor response to taxane treatment Gastric cancer (247)

Aggressive disease, patient

outcome

Prostate cancer (36, 248, 249)

Low βII-tubulin expression Correlates with poor response to

taxane treatment or advanced stage

disease

Breast and ovarian cancer (239, 250)

High βIVa-tubulin expression Poor response to taxol treatment Ovarian cancer (240)

High βV-tubulin expression Favorable response to taxane

treatment

NSCLC (251)

High α1b-tubulin expression Histological grade Hepatocellular carcinoma (252)

High γ-tubulin expression Poorly differentiated Medulloblastoma (253)

Altered post-translational

modification

High ∆2α-tubulin Poor response to vinca alkaloid

treatment

Advanced NSCLC (238)

High detyrosinated tubulin Disease aggressiveness Breast cancer (48)

Active tyrosination cycle Favorable patient outcome Neuroblastoma (50)

prognosis (Table 2) [reviewed in Ref. (15)]. Compared with α-
tubulin isotypes, β-tubulin isotypes have received more atten-
tion in this context, largely due to the availability of isotype-
specific antibodies, and the fact that TBAs bind to the β-tubulin
subunit to exert their toxic effect. Furthermore, βIII-tubulin is
the most comprehensively examined isotype across a variety of
cancers.

Elevated βIII-tubulin levels are associated with poor progno-
sis in a host of different epithelial cancers. In addition to TBA

resistance, βIII-tubulin levels influence sensitivity to non-tubulin-
targeted agents [reviewed in Ref. (15)]. The clinical observations
are supported by numerous in vitro studies where altered βIII-
tubulin levels confer resistance to a broad spectrum of drug classes
in solid and hematological tumors [reviewed in Ref. (15)]. Cou-
pled with evidence that βIII-tubulin is also involved in tumor
development and disease aggressiveness (16–18), these results
suggest that βIII-tubulin may be acting as a survival factor in
cancer.
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Altered levels of βII-, βIVa-, βIVb-, and βV-tubulins have also
been associated with resistance to TBAs in a number of drug
resistant cancer cell types (19–26). However, the clinical rele-
vance of these specific tubulin isotypes is limited and requires
further investigation. Moreover, the involvement of tubulin iso-
types in disease progression is complex, and depends on both
the treatment regime and disease stage (27). Additional complex-
ity may be conferred by interactions between different isotypes,
since the overexpression of specific β-tubulin isotypes, such as βI,
βII, and βIVb, does not affect TBA resistance in Chinese Hamster
Ovary cells (28, 29). For βIII-tubulin the results have been con-
flicting. Overexpression of βIII-tubulin failed to confer resistance
to TBAs in prostate cancer (28, 29). In contrast, overexpressing
this isotype in Chinese Hamster Ovary cells conferred resistance
to paclitaxel (30).

In cancer, alterations in the tubulin isotype composition have
been detected at both the gene and protein level and result from
increased gene transcription and enhanced mRNA stability (24).
However, tubulin mRNA levels do not always reflect protein
expression due to the complexity of post-translational mecha-
nisms that control tubulin expression (24, 31). For instance, the
tumor suppressor miR-100 and the miR-200 family of microRNAs
(24, 32, 33) as well as epigenetic mechanisms (34, 35) are impli-
cated in coordinating β-tubulin isotype expression. Therefore,
dysregulation of miRNA networks and epigenetic mechanisms in
cancer may also contribute to aberrant tubulin isotype expression
in cancer. Recent evidence showing an association between ele-
vated βIII-tubulin expression and PTEN deletions in prostate
cancer also suggest that changes in the levels of this isotype may
result from PTEN-mediated genetic reprograming (36).

Cell stress influences the tubulin isotype composition. For
example, βIII-tubulin expression can be induced (24, 37) or
decreased (16) by chemotherapy treatment. The induction of βIII-
tubulin has been observed in response to vinca alkaloid treatment
in breast cancer cells through an activator protein-1 (AP-1) site on
the βIII-tubulin promoter (38), while its induction in hypoxic and
hypoglycemic conditions in ovarian cancer cells is mediated by
hypoxia-inducible factor (HIF) 1α and Hu antigen (HuR), respec-
tively, at the 3′ untranslated region (UTR) (39, 40). The latter
mechanism is a regulatory feature commonly utilized by proteins
involved in cell stress, and enables rapid changes in protein levels
(41). However, it is to be noted that the regulation of βIII-tubulin
levels in cell stress responses may depend upon the basal expression
of the protein and may also be cell type specific.

Initially, differences in the drug binding affinity and structural
characteristics of microtubules composed of different β-tubulin
isotypes were thought to explain correlations between aberrant
tubulin isotype compositions and resistance to TBAs. However,
recent observations correlating changes in isotype expression with
tumor development and resistance to non-TBA agents have chal-
lenged the simplicity of this model. With increased recognition
of the importance of cell stress responses in chemotherapy effi-
cacy, isotype-mediated modulation of these responses may con-
tribute to chemotherapy resistance. In particular, cellular home-
ostasis relies on a dynamic microtubule network and may be per-
turbed by alterations in microtubule stability and dynamics. The
microtubule isotype composition does affect microtubule stability,

with consequences for TBA sensitivity (7, 23, 42). Stable micro-
tubules play an important role in cellular trafficking and their role
in multiple stress responses are discussed below. Chemotherapy
agents that do not bind to tubulin can also affect microtubule
stability by unknown mechanisms (43), and this may represent a
mechanism common to chemotherapy agents of different classes.

The tubulin isotype composition can also influence micro-
tubule dynamics. In non-small cell lung cancer (NSCLC) cells,
suppression of βIII-tubulin using RNA interference technology
decreases microtubule dynamics in the presence of TBAs, but
has no effect under basal conditions (44). These observations
suggest that changes in isotype composition may influence micro-
tubule dynamics in the presence of chemotherapeutic stressors
but not under basal conditions; however, a direct causal relation-
ship between isotype expression, microtubule dynamics, and cell
survival in response to these and other stressors has not been
established. In general, the importance of microtubule dynamics
in homeostatic cell signaling suggests that cell stress responses, and
not just spindle dynamics, may be impacted by aberrant isotype
expression in cancer, thus offering an additional determinant of
chemosensitivity.

TUBULIN POST-TRANSLATIONAL MODIFICATIONS
Tubulins are subject to diverse post-translational modifications
(PTMs) [reviewed in Ref. (9)]. The majority of tubulin PTMs are
highly heterogeneous, and little is understood about the regulation
and impact of these modifications. Post-translational modifica-
tions are thought to regulate protein–protein interactions with
the microtubule cytoskeleton, thereby affecting signaling events
within the cell. The majority of these modifications are localized to
the tubulin C-terminus and potentially impart specific functions
to the different tubulin isotypes.

Removal and addition of the α-tubulin C-terminal tyrosine
occurs cyclically in cells. Tyrosine addition and removal are cat-
alyzed by tubulin tyrosine ligase (TTL), and carboxypeptidases,
respectively (9). Highly dynamic microtubules are more likely to
be detyrosinated, due to the kinetic balance between higher TTL
and carboxypeptidase activities on the soluble and polymerized
tubulin pools, respectively (45). While traditionally viewed as an
intrinsic hallmark of stable microtubules, the detyrosination motif
alters motor protein recruitment to microtubules, thereby stabi-
lizing microtubules and influencing trafficking functions within
the cell (46).

Tyrosination modifications of α-tubulin are known to be criti-
cal for differentiation, cell cycle progression, organelle trafficking,
and vesicular transport (9). Altered levels of tyrosination modifica-
tions and the enzymes responsible for them have been detected in
a range of cancers and are associated with more aggressive disease
(47–50). For instance, loss of TTL induces mesenchymal transition
in breast cancer cells, which may contribute to increased metastatic
potential and altered cell stress responses (51).

Increased acetylation of α-tubulin on Lys40 has also been
observed in tumor cells (52). Elevated HDAC6 expression, one
of several regulators of tubulin acetylation, is associated with
better prognosis in breast cancer (53). Sirtuin-2 is also respon-
sible for tubulin deacetylation (54) and has been linked with
the regulation of autophagy in response to stress [reviewed in
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Ref. (55)]. HDAC6 does influence microtubule stability (56),
however, whether acetylation itself influences microtubule sta-
bility remains uncertain. Acetylated tubulin is implicated in
intracellular trafficking (57), endoplasmic reticulum (ER) local-
ization, and ER–mitochondria interactions (58), as well as
the regulation of microtubule dynamics (59). The involve-
ment of α-tubulin acetylation in a broad range of cell func-
tions may reflect its importance in the maintenance of cellular
homeostasis.

Other post-translational modifications have been detected in
prostate and hepatic cancers. Removal of the final two residues of
the βIVb-tubulin C-terminal tail was identified in higher stage liver
cancer and in a mouse model of hepatic carcinoma (60). Polyg-
lutamylated α-tubulins (47) and the polyglutamylation enzyme
TTL-like 12 are elevated in prostate cancer and correlate with more
aggressive disease (61).

Overall, despite a lack of clarity surrounding the mechanis-
tic details of the function of tubulin PTMs, mounting evidence
points to their role in fundamental cell processes. The diverse
PTM alterations observed in a range of cancers are likely to perturb
homeostatic processes, thereby contributing to stress response sig-
naling. Detailed spatiotemporal mapping of tubulin PTMs and
proteomic studies investigating their role in signaling networks
are required to elucidate the influence of tubulin PTMs on cellular
stress responses.

MICROTUBULE-ASSOCIATED PROTEINS
A wide variety of proteins are known to interact with tubulins.
Interactions between tubulin and MAPs influence microtubule
stability and dynamics, and are known to affect chemotherapy sen-
sitivity and tumor growth in cancer [reviewed in Ref. (62)]. Aber-
rant expression of primarily neuronal MAPs (e.g., Tau, MAP2)
has been detected in non-neuronal cancer tissue. For example, tau
overexpression is correlated with poor outcome in breast cancer,
and this protein may influence taxane sensitivity by decreasing the
affinity of the drug for β-tubulin (63). Altered MAP2 expression
is also associated with taxane resistance (22, 64), with differential
effects in primary and metastatic melanoma (65).

Increased MAP4 expression and altered expression of multi-
ple MAP4 isoforms have been detected in TBA-resistant leukemia
and NSCLC cells in vitro (10, 11, 66). In addition, changes in
stathmin, survivin, BRCA1, CLIP170, and VHL expression have
all been associated with chemotherapy resistance and disease pro-
gression (62, 67). For instance, stathmin was recently shown to
play an important role in regulating neuroblastoma cell migration
and invasion (68). Moreover, silencing its expression using RNAi
gene-silencing technology significantly reduced lung metastases in
a clinically relevant orthotopic neuroblastoma mouse model (68).
The overexpression of kinesins also influences chemotherapy sen-
sitivity and disease progression through mitotic and non-mitotic
mechanisms [reviewed in Ref. (69)]. A recent study has shown
that kinesins interact differentially and specifically with tubulin
isotypes and tubulin post-translational modifications (70). In this
way, changes in tubulin isotype expression and post-translational
modifications seen in cancer may also influence motor protein
function and the numerous basic processes that depend upon these
interactions.

The effect of MAPs on cell function in cancer is complex,
with interactions between individual MAPs influencing survival
and metastases. Progress toward understanding the functional
consequences of these proteins and their signaling networks in
cancer relies upon more comprehensive characterization of the
interactions between tubulins and MAPs, and the influence of
tubulin isotypes and PTMs on these interactions.

MICROTUBULE CYTOSKELETON IN STRESS RESPONSES
Microtubules influence homeostatic mechanisms and cell stress
responses by regulating intracellular trafficking, acting as a scaffold
for the co-localization and sequestration of stress response pro-
teins, transmitting stress signals through cytoskeletal remodeling
and modulating the induction of cell death pathways. Examples
of their role in these processes are described below.

MICROTUBULES AND CELLULAR SIGNALING
While microtubules possess distinct functions in particular stress
responses, the microtubule network also influences common sig-
naling pathways engaged by a variety of cellular stresses. Stress
response signaling requires trafficking of proteins and organelles
throughout the cell and modulation of the microtubule network
is expected to influence signal transduction events. For example,
TBAs differentially suppress microtubule-mediated intracellular
transport in neuronal cells (71).

In addition to general effects on signal transduction, micro-
tubules regulate mitogen activated protein kinase (MAPK) sig-
naling. The MAPK superfamily includes extracellular regulated
kinases (ERK), c-Jun N-terminal protein kinase (JNK), and p38
families and is critically involved in mediating the initiation and
execution of a range of cellular stress responses [reviewed in Ref.
(72)]. MAPK proteins interact extensively with the microtubule
network, with one-third of the total MAPKs associating with
microtubules through kinesin motor proteins (73). Interactions
between microtubules and these signaling proteins can regulate
and co-ordinate widespread cellular stress signaling events.

The JNK signaling pathway is induced by a wide range of envi-
ronmental stressors (72) and TBAs activate this pathway in the
induction of apoptosis (74–76). In particular, JNK signaling is
required for the execution of apoptosis in response to ER stress
and autophagy (77). JNK co-ordinates cytoskeletal architecture in
normal cells and JNK1 regulates microtubule dynamics (78, 79).
JNK1 also phosphorylates MAP1 and MAP2 to alter their distri-
bution and microtubule architecture (79). In this context, JNK,
the heavy chain kinesin family-5B protein and βIII-tubulin form
a complex, raising the possibility that alterations in β-tubulin iso-
type composition may affect JNK pathway activation and cell death
responses.

While TBAs generally activate JNK signaling to initiate apop-
tosis [reviewed in Ref. (80)], microtubule stabilizing and destabi-
lizing agents differentially influence downstream signaling events,
suggesting that microtubule stability regulates JNK signaling (81).
Compared with etoposide and doxorubicin, vinblastine uniquely
causes c-Jun phosphorylation, AP-1 activation, ERK inactiva-
tion, and p53 downregulation (81). Microtubule destabilizing and
stabilizing agents initiate apoptosis via JNK signaling through
AP-1 dependent and AP-1 independent mechanisms, respectively
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(82). The AP-1 dependent pathway leads to positive feedback of
c-Jun levels and sustained JNK signaling (82), suggesting that
microtubule–JNK interactions may constitute a feedback loop for
the amplification and damping of signaling pathways to regulate
stress response kinetics.

Extracellular regulated kinase also interacts with microtubules
and phosphorylates MAPs to regulate their activity (83, 84).
MAPK-mediated MAP phosphorylation is implicated in hypoxic
stress responses (85). Differential induction of ERK signaling
by TBAs may also mediate downstream effects independently of
apoptosis induction (86).

It is well established that microtubules are involved in the
translocation of messenger proteins between different cell com-
partments to enable efficient signal transduction. However,
increasing evidence supports a role for microtubule dynamics,
tubulin isotypes, and MAPs in specifically regulating the course,
amplitude, and kinetics of MAPK signaling.

p53 AND MICROTUBULES
p53 is a key mediator of cellular stress responses and its activity
heavily depends on microtubules (87). p53 is translocated to the
nucleus along microtubule tracks by dynein proteins in a complex
with heat shock protein 90 (Hsp90) and Hsp90 immunophilins
(87–89). The binding of Hsp90 to p53 inhibits MDM2-mediated
degradation of the protein by the ubiquitin–proteasome sys-
tem (90).

Microtubule dynamics regulate p53 levels. p53 levels and its
nuclear accumulation are increased by TBA treatment at doses that
suppress microtubule dynamics but do not disrupt the structure
of the microtubule network (87, 91). MAP1B also associates with
p53, decreasing its activity and inhibiting doxorubicin-induced
apoptosis in neuroblastoma cells (92). p53 signaling can influence
microtubule dynamics and remodeling, as well as the expression
of tubulin isotypes and MAPs (93). Taken together, by regulating
p53 levels and translocation, microtubules significantly impact
p53-mediated stress response signaling.

HYPOXIA
Rapid cell proliferation and poor vascular development leads to
hypoxic regions within solid tumors. Hypoxia-inducible factor 1
(HIF1) is considered to be the master regulator of cellular adap-
tation to hypoxia and is upregulated in a large proportion of solid
cancers (94).

In the absence of oxygen, HIF1α heterodimerizes to the con-
stitutively active β subunit to initiate transcriptional changes
[reviewed in Ref. (95)]. HIF1α stabilization is regulated by
enzyme-mediated hydroxylation, which enables recognition of
HIF1α for ubiquitinylation and degradation by proteins such as
the von Hippel–Lindau (VHL) protein (96). Low oxygen levels
inactivate the hydroxylases, leading to stabilization and nuclear
translocation of the α subunit where the HIF1 heterodimer binds
to hypoxia responsive elements in target gene promoters (95).

Dramatic microtubule remodeling occurs under hypoxic con-
ditions. Decreased microtubule polymerization has been observed
in response to anoxic conditions (0–2% O2) (85, 97), while
increased microtubule polymerization has been observed in
physiological hypoxia (3% O2) (98). Enhanced microtubule

polymerization under these conditions is coupled with increased
tubulin detyrosination and glycogen synthase kinase 3β (GSK3β)
inhibition (98), while phosphorylation of the MAPs dynein light
chain tctex-type 1 (DYNLT1), MAP4, and stathmin have each been
associated with microtubule depolymerization (85). Discrepancies
between these observations may be due to the differential effects
of anoxia compared with physiological hypoxia, or alternatively
may reflect the role of the GSK3β pathway and MAP interac-
tions on microtubule remodeling (98). Hypoxic activation of the
p38/MAPK pathway contributes to phosphorylation of MAP4 and
stathmin (85). Microtubule remodeling in response to hypoxia
may impact metastatic processes with increased microtubule poly-
merization influencing integrin trafficking and invasion in breast
cancer cells (98).

MAP4 protects against microtubule disruption during hypoxia
by enhancing tubulin polymerization and concomitant upreg-
ulation of tubulin expression (97). It also maintains ATP pro-
duction under hypoxic conditions and prevents mitochondrial
permeabilization (97). The non-phosphorylated form of DYNLT1
also protects against microtubule disruption and mitochondr-
ial permeabilization and maintains the cellular energy status
in hypoxia, with phosphorylation of DYNLT1 potentiating cell
death through mitochondrial permeabilization (99). DYNLT1-
mediated interactions between tubulin and Voltage Dependent
Anion Channels (VDACs) may facilitate cross-talk between the
microtubule cytoskeleton, intrinsic apoptotic pathway, and mito-
chondrial quality control system to influence cell survival in
hypoxia (97).

Hypoxic adaptation may also be regulated by specific tubu-
lin isotypes in cancer cells. For instance, βIII-tubulin (encoded
by the TUBB3 gene) is induced under hypoxic conditions by
direct binding of HIF1α to the E box motif within its 3′UTR (39).
Hypoxic upregulation of this isotype appears to be cell type spe-
cific, depends on the epigenetic status of the TUBB3 3′UTR and is
also influenced by the basal βIII-tubulin expression level (26, 39).
The expression of this tubulin isotype is also regulated by HuR
(40), which is involved in HIF1α stabilization (100). High βIII-
tubulin expression is also detected in close proximity to necrotic
tumor regions, further supporting a role for this protein in hypoxic
adaptation (101).

Hypoxia-inducible factor 1α degradation is dependent on the
short isoform of VHL, while the long isoform is a known regula-
tor of microtubule dynamics (102). In renal cell carcinoma, where
VHL mutations result in upregulated HIF expression, there is a
loss of microtubule–HIF coupling, suggesting that VHL may be
responsible for microtubule-mediated regulation of HIF signal-
ing (103). However, the mechanisms underlying this observation
and the functional consequences of this regulatory process are
uncertain.

Hypoxia-inducible factor 1 activity depends upon its ability
to translocate to the nucleus, and microtubules act as tracks
for dynein-mediated HIF1 translocation (103). Suppression of
microtubule dynamics decreases HIF1α levels by increasing HIF1α

mRNA association with inactive ribosomal subunits and by tar-
geting this mRNA to P-body components (104). Suppression
of microtubule dynamics and HIF nuclear translocation pre-
vents VEGF-mediated hypoxic adaptation in prostate and breast
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cancer cells and decreases angiogenesis in a murine ortho-
topic breast tumor model (94). However in this study, micro-
tubule dynamics regulated HIF1α levels to the same extent in
both normoxic and hypoxic conditions; therefore, this mecha-
nism may not be responsible for regulating HIF1α levels specif-
ically in response to hypoxia. Recent evidence suggests that
hypoxic adaptation also depends upon microtubule-mediated
perinuclear mitochondrial clustering (105), and highlights the
importance of organelle localization in cellular adaptation to
hypoxia.

Overall, the hypoxic response is associated with dramatic
microtubule remodeling, and altered MAP signaling to main-
tain bioenergetics and organelle function under hypoxic condi-
tions. The microtubule network also regulates hypoxic adaptation
by affecting HIF1α signaling and organelle localization, placing
microtubules as a central player in the hypoxic stress response.
While current evidence suggests that β-tubulins may function in
an isotype-specific manner in this context, a more comprehensive
analysis of the contributions of each individual isotype to hypoxic
adaptation is required.

OXIDATIVE STRESS
Aberrant oxidative stress signaling has been reported in many
cancers. The upregulation of enzymes responsible for redox home-
ostasis, metabolic reprograming, and exposure to extracellular
inducers of intracellular oxidative species all contribute to aberrant
oxidative conditions in cancer [reviewed in Ref. (106)]. Markers of
oxidative stress correlate with chemotherapy response and upreg-
ulation of redox enzymes, such as glutathione peroxidases, have
been observed in the acquisition of chemotherapy resistance and
genomic instability [reviewed in Ref. (106)].

Tubulins interact with mediators of the oxidative stress
response, with direct interactions between βIII-tubulin and
glutathione S-transferase µ4 observed in ovarian cancer cells
(107). βIII-tubulin and the DNA damage repair enzyme exci-
sion repair cross-complementation group-1 (ERCC1) act together
to influence patient response to taxane and paclitaxel combina-
tion treatment (108); however, the mechanisms underlying this
co-operative effect are unknown.

Specific tubulin isotypes may also alter oxidative stress
responses by acting as redox switches (109). In particular,
ser/ala124, which is a cysteine in βIII-, βV- and βVI-tubulins,
and cys239, which is a serine in βIII-, βV-, and βVI-tubulins,
have been specifically identified as potential sensors of oxidative
stress (109). Cys239 is readily oxidized and its oxidation inhibits
microtubule assembly and stability (109). Therefore, alterations in
tubulin isotype composition may influence microtubule stability
in an oxidative environment to maintain microtubule integrity and
cell survival in these adverse conditions. Moreover, oxidative stress
influences tubulin post-translational modifications. Nitrotyrosine
is a common byproduct of nitrosyl radical production in oxida-
tive stress and can be incorporated into microtubules through
the tyrosination/detyrosination cycle (110). While nitrotyrosine
incorporation does not affect microtubule assembly, architecture,
or cell viability (111), it does increase the stability of neuronal
microtubules (112). Furthermore, elevated levels of nitrosylated
α-tubulins correlate with disease stage in gliomas (113).

Oxidative stress is also induced by TBAs, suggesting an
involvement of microtubules in oxidative stress responses, and
is an important mechanism of action for platinum-based
chemotherapeutic agents (114). Paclitaxel treatment induces reac-
tive oxygen species through activation of the JNK pathway in
melanoma cells (115). TBA treatment also influences NADPH oxi-
dase activity, increases ROS levels and induces bystander effects in
breast cancer cells (116). This effect may be mediated by changes
in microtubule dynamics and stability, with these factors regulat-
ing Rac1 translocation and subsequently, NADPH oxidase activity
(117, 118).

Studies in neurons and endothelial cells indicate that the micro-
tubule cytoskeleton undergoes remodeling in response to oxidative
stress (119). Oxidative stress induces microtubule depolymer-
ization, and increases the pool of soluble tubulin (120, 121).
4-Hydroxy-2-nonenal (4-HNE), a secondary product of lipid per-
oxidation and marker of oxidative stress, also causes microtubule
depolymerization, together with tubulin crosslinking (122, 123).
This depolymerization may be caused by preferential reaction of 4-
HNE with soluble tubulin, thereby disrupting the soluble/polymer
fractionation of tubulin subunits and subsequent microtubule
assembly (124). Interactions between microtubules and MAPs
protect microtubules from depolymerization in response to oxida-
tive stress (122, 125), and alters cellular trafficking in oxidative
conditions (126).

Collectively, there is growing evidence supporting a role for
tubulin isotypes and the microtubule network in both sensing and
responding to oxidative stress in cancer through direct structural
changes and protein–protein interactions. This is supported by
observations in neuronal models, however, the specific roles of
tubulin isotypes and their accessory proteins in oxidative stress
responses remain to be clarified.

METABOLIC STRESS
Metabolic stress occurs in cancer as a result of uncontrolled cell
proliferation in the absence of adequate nutrients [reviewed in Ref.
(127)]. Microtubules and tubulins are involved in responding to
metabolic stress by sensing and modulating metabolic processes
to maintain cellular energy levels. The microtubule network is
hypothesized to play a critical role in the regulation of cellular
metabolism (128).

Early studies suggested that microtubules may act as a sensor of
the energy state of the cell (129) with ATP depletion causing insta-
bility of detyrosinated microtubule plus ends (130, 131). AMPK is
a major sensor for the metabolic state of the cell and affects micro-
tubule dynamics by phosphorylation of CLIP170 (132). CLIP170
alters paclitaxel sensitivity in breast cancer cells by enhancing the
binding of the drug to tubulin (67). In neuronal cells, activation
of AMPK in metabolic stress prevents growth of axonal micro-
tubules (133), further supporting a role for microtubules in early
metabolic stress signaling events. The main neuronal tubulin, βII-
tubulin, was also identified as a downstream target of AMPK in
murine brain extracts (134).

Metabolic modulation of microtubule dynamics and tubu-
lin post-translational modifications may allow for rapid and
widespread stress responses. For example, nutrient starvation
induces hyperacetylation of tubulin, which may act in concert with
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AMPK to induce autophagy in response to decreased ATP levels
(77), thereby engaging multiple stress response pathways through
microtubule-related signaling.

METABOLIC REGULATION
Tubulins and microtubules have been suspected to function as a
key modulator of mitochondrial metabolism for some time (128).
Recent studies have demonstrated that tubulin is capable of inter-
acting with, and blocking the VDAC, thereby regulating ATP and
metabolite compartmentalization and contributing to the War-
burg effect (135–138). This interaction is mediated by the tubulin
C-terminal tail (135), raising the possibility that post-translational
modifications and different tubulin isotypes may differentially reg-
ulate VDAC dynamics to influence metabolic reprograming in
cancer.

Tubulins, and in particular βIII-tubulin, associate with enzymes
of the tricarboxylic acid cycle and glycolysis (107). In vitro studies
in reduced systems showed that tubulin interacts with a variety
of glycolytic enzymes including pyruvate kinase, phosphofruc-
tokinase, aldolase, hexokinase, GAPDH, and lactate dehydroge-
nase (139–144). Interactions with some of these enzymes may be
isotype-specific, by interacting with the α-tubulin C-terminal tail
(142) rather than the tubulin body (140).

Preferential interactions between glycolytic enzymes and either
the soluble or polymerized tubulin pool may also influence meta-
bolic activity and microtubule dynamics (139, 141, 144). GAPDH
activity is differentially regulated by its interaction with either the
soluble or polymerized tubulins (143), and this interaction influ-
ences microtubule dynamics (145). Interactions between meta-
bolic enzymes and tubulins may therefore mediate bi-directional
signaling events to sense and respond to metabolic stress. Indeed,
mathematical modeling of metabolic pathways and tubulin’s mod-
ulation of enzyme activity suggest that glycolytic flux is regu-
lated by microtubule polymer levels (146), however, the mech-
anisms by which the microtubule network influences metabolic
homeostasis and the importance of the soluble and polymerized
tubulin fractions in these functions remain to be characterized
experimentally.

The association between GAPDH and microtubules may also
influence cellular trafficking, with a recent study finding that ATP
generated from vesicular GAPDH activity fuels the energy con-
sumption of motor proteins during vesicular transport (147).
Furthermore, GAPDH is known to mediate membrane fusion,
and its association with microtubules may co-regulate membrane
trafficking during glycolytic stress (148). The presence of GAPDH
on microtubules allows the recruitment of Rab2 protein to reg-
ulate membrane and ER–Golgi trafficking independently of its
catalytic activity (145, 149). Given the importance of ER–Golgi
trafficking in protein glycosylation, the interaction of GAPDH
with microtubules may function as a point of communication
between metabolic and protein modification pathways under a
range of stresses. For example, in neuronal cells, GAPDH binds
tubulin through the neuronal MAP1B protein but is relocalized
upon oxidative stress (150).

Specific interactions between tubulin isotypes and glycolytic
enzymes support the pro-survival effect of altered tubulin isotypes
in cancer. Pyruvate kinase interacts with tubulin via the tubulin

C-terminal tail and depolymerizes stabilized microtubules (140,
151). In particular, βIII-tubulin interacts with the mitochondrial-
localized pyruvate kinase M2 (107), which is associated with the
Warburg effect. Feedback from metabolic products also influences
the association of pyruvate kinase with microtubules, as well
as microtubule stability (151), further supporting a role for the
microtubule cytoskeleton in the regulation of metabolic flux.
Altered metabolic activity also influences microtubule architec-
ture (152), raising the possibility that the microtubule system may
communicate with metabolic networks in a bi-directional manner.

βIII-tubulin has been specifically implicated in glucose stress
responses. Treatment of ovarian cancer cells with tunicamycin
or wortmannin to block protein glycosylation and PI3K signal-
ing, respectively, upregulates βIII-tubulin and alters the post-
translational modifications of non-mitochondrial tubulins in cell
lines with low basal βIII-tubulin expression (107). βIII-tubulin
induction and decreased βI-tubulin expression have also been
observed for ovarian cancer cells under glucose starvation (40).
Upregulation of βIII-tubulin in these conditions correlates with
HuR binding to the βIII-tubulin 3′UTR (40). This function of HuR
is independent of its role in the nuclear export of mRNA; how-
ever, whether HuR is involved in the stabilization of βIII-tubulin
mRNA under hypoglycemic conditions was not investigated. Cor-
relations between increased HuR, βIII-tubulin expression, and
poor survival in ovarian cancer samples further support a role
for this mechanism in influencing cancer progression and patient
outcome (40).

The current evidence strongly supports a role for the micro-
tubules in regulating metabolic activity and metabolic reprogram-
ing in response to nutrient starvation. However, the mechanistic
details underpinning these observations is lacking and the impor-
tance of specific tubulin isotypes, tubulin post-translational mod-
ifications, and associated proteins in regulating metabolic stress
responses requires further characterization.

AUTOPHAGY
Macroautophagy (hereafter referred to as autophagy) can be
induced in cells in response to diverse stresses, including meta-
bolic and ER stress [reviewed in Ref. (153)]. Autophagy is a
catabolic process that enables isolation and recycling of protein
and organelle components by sequestering them into vacuoles
for subsequent lysosomal degradation (154). It is also an impor-
tant quality control process, allowing for the removal of damaged
organelles and proteins, and protects cells from oxidative stress
damage (155). Autophagic activity can support cells during ATP
depletion, and thus is intrinsically linked with metabolic stress
responses (154).

Recent evidence supports a role for autophagy in the survival
and treatment sensitivity of cancer cells, and several recent reviews
have been devoted to this topic (156–158). Microtubules have
been known to play a critical role in autophagic flux for several
decades (159), however our understanding of their importance in
autophagy initiation, trafficking, and lysosomal fusion has been
furthered in recent years.

Evidence for a microtubule role in autophagy regulation
comes from the alteration of autophagic flux upon treatment
with TBAs in vitro (160–163). Disruption of autophagic flux by
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TBAs is important in the mechanism of action of, and resis-
tance to, TBAs in cancer (4, 164). The influence of TBAs on
autophagy may be mediated by inhibition of Akt/mammalian
target of rapamycin (mTOR) signaling (165), or suppression of
microtubule dynamics, and additional studies are required to
characterize this mechanism.

Microtubule-associated protein-1 light chain 3 (MAP1LC3,
also referred to as LC3), a critical member of the autophagy
network, interacts directly with tubulin in both its free and
phosphatidylethanolamine-conjugated form (77, 160). LC3 also
interacts with microtubules through MAP1 proteins (166–168).
The promotion of autophagy by MAP1S reduces genomic
instability to suppress tumor development in hepatocarcinoma,
and MAP1S may also co-ordinate mitochondrial dynamics and
autophagy (155, 167). Other autophagy proteins also associate
with microtubules, including ULK1, Beclin-1, WIPI1, autophagy
related (Atg) protein 5, and Atg12, which are thought to be prin-
cipally involved in autophagosome formation (77, 169, 170). In
neuronal models derived from neuroblastoma cells, autophagy
inhibition is associated with decreased β-tubulin levels and sup-
pressed neurite outgrowth (171). However, links between altered
tubulin expression and autophagy have not yet been reported in
non-neuronal cancer cells.

Autophagy initiation involves activation of the master regu-
lator mTOR and the formation of the mTOR-containing com-
plexes. mTOR activity is regulated by lysosomal localization (172),
with mTOR associating specifically with peripheral lysosomes
(173). Peripherally localized mTOR is sensitive to nutrient star-
vation, which causes it to be released from lysosomes to form the
mTORC1 complex and initiate autophagy (172). Microtubules
control the peripheral localization of lysosomes, and therefore
ensure the sensitivity of mTOR to nutrient starvation (172). Spa-
tial partitioning of the microtubule-interacting kinesins KIF2A
and KIF1B between peripheral or perinuclear lysosomes also
influences mTOR activation and the initiation of autophagy (173).

Microtubules act as scaffolds and sequester proteins to regulate
autophagy. Activating molecule in BECN1-regulated autophagy
1 (AMBRA1) acts as a linker protein between microtubules and
the PI3K signaling complex responsible for autophagy induction
(169). Starvation induces phosphorylation of AMBRA1 by ULK1,
releasing the Beclin-1-PI3K complex from microtubules to the
ER to initiate autophagosome formation (169). Beclin-1–Bcl-2
complexes are also sequestered on microtubules during periods
of high nutrient availability. JNK1-mediated phosphorylation of
Bcl-2 in response to nutrient starvation causes dissociation of
Beclin-1 from this complex to initiate autophagosome signaling
and influence apoptosis (174). Microtubules are also involved in
the transport of several proteins whose localization is required for
autophagosome formation (175).

Tubulin post-translational modifications also regulate autophagy
initiation, as tubulin hyperacetylation occurs before autophago-
some formation in response to nutrient starvation (77). Acety-
lation modifications signal kinesin recruitment to microtubules,
with subsequent JNK activation, and release of Beclin-1 from
Beclin-1–Bcl-2 complexes to initiate autophagy (77). There-
fore, tubulins serve as interacting partners in the regulation of
autophagy initiation.

During autophagy initiation autophagosome membranes are
produced from existing intracellular membranes and micro-
tubules are well positioned to act as carriers of these mem-
brane components from existing organelles to sites of phagophor
nucleation. Recent studies have shown that LC3 enrichment and
autophagosome formation occur at contact sites between Parkin-
tagged mitochondria and the ER (176). Microtubules mediate
translocation of both these organelles (177, 178) and may crit-
ically regulate their co-localization to initiate autophagosome
formation.

The role of microtubules in autophagosome formation is differ-
entially regulated in basal and starvation conditions. Microtubule
dynamics are required for autophagosome formation in response
to nutrient starvation (77, 162) but not under basal conditions
(162, 179, 180).

Once formed, autophagosomes are transported along micro-
tubules in both anterograde and retrograde directions (77), where
they are fused with lysosomes. The role of microtubules in medi-
ating the fusion of autophagosomes with lysosomes remains con-
troversial. Microtubule dynamics do not affect the co-localization
and fusion of autophagosomes and lysosomes (162), which can
occur in the absence of microtubules (160). However, Kimura et al.
argue that more efficient fusion is enabled by active transport along
microtubule (181). These contrary observations may be explained
by the influence of pharmacological or RNA interference-based
modulators on lysosomal behavior in addition to their effects
on microtubule cytoskeleton. However, studies using tools that
more selectively target the autophagy machinery are required
to clarify the importance of microtubules in autophagosome–
lysosome fusion in autophagy, and the mechanisms regulating
these processes.

Overall, microtubules regulate autophagy through scaffolding
functions and in the intracellular trafficking of autophagy compo-
nents. While precise mechanistic details remain elusive, it is likely
that tubulin alterations seen in cancer would influence autophagic
function and the ability of cells to cope with microenvironmental
and chemotherapeutic stressors that cause nutrient starvation and
cellular damage.

PROTEIN FOLDING STRESS
Misfolded proteins may arise from protein damage, inadequate
chaperone activity, and malfunction of protein processing systems.
The ER is responsible for ensuring correct folding of membra-
nous and secretory proteins and this organelle is highly sensitive
to cellular conditions. Slight changes in any number of parame-
ters can lead to accumulation of unfolded proteins in the ER
lumen and initiation of the unfolded protein response (UPR)
[reviewed in Ref. (182)]. The UPR involves the induction of the
ER-associated degradation machinery that allows transport of
unfolded proteins to cytoplasmic proteasomal systems, suppres-
sion of translation, and upregulation of chaperones in a concerted
effort to reduce the burden of misfolded proteins (182). Initiation
of the UPR leads to amelioration of ER stress, or the initiation
of cell death (182). The UPR is upregulated in many cancers and
is an important contributor to tumor development and main-
tenance (182–184). ER stress sensitizes cells to a broad range
of chemotherapeutics including topoisomerase inhibitors (185),
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temozolomide (186), platinum-based agents (187, 188), and TBAs
(189).

Glucose regulated protein 78 (GRP78) is a member of the heat
shock protein 70 (Hsp70) family and a master regulator of the
ER stress response (190). Alterations in GRP78 expression and
localization have been linked with tumor aggressiveness, migra-
tion, and invasion as well as chemoresistance, where it acts as a
pro-survival factor (182). Taxanes and vinca alkaloids induce ER
stress through upregulation of GRP78 in breast cancer cells (5).
ER stress is also associated with JNK activation and apoptosis,
which are inhibited upon GRP78 knockdown (5, 191). GRP78
interacts with βIII-tubulin (107), however, the functional con-
sequences of this association are unknown. These observations
suggest an intrinsic link between the microtubule cytoskeleton
and the initiation of ER stress responses.

Tubulin-binding agent treatment also initiates mechanisms to
repress translation and ameliorate misfolded protein accumula-
tion. Treatment of cervical cancer cells with TBAs induces P-body
formation, which are cytoplasmic regions where mRNA transla-
tion is inhibited (104). P-body targeting of miRNA and mRNA is
also an important regulator of numerous stress responses, includ-
ing the regulation of HIF1α levels in normoxic and hypoxic con-
ditions (192). Microtubule dynamics are also critically involved in
the association of mRNA with stress granules (193), which also
regulate mRNA processing in response to stress (194).

Expansion of the ER network occurs during the UPR (195),
where it acts to relieve ER stress (196). Microtubules are critically
involved in regulating ER morphology, trafficking, and expansion
of the organelle to the periphery of the cell by direct attach-
ment of the ER to microtubules (197). Microtubule dynamics
are tightly co-regulated with ER dynamics, which are suppressed
by microtubule depolymerizing agents (178, 198). ER movement
can occur by attachment to the microtubule plus ends (198), or
kinesin-mediated ER sliding along microtubules (58, 199). While
the former mechanism occurs on highly dynamic microtubules,
ER sliding occurs on acetylated microtubules (58). Therefore,
tubulin post-translational modifications may act as important
regulators of ER expansion during the UPR. Mitochondria are
also localized to acetylated microtubules, with this PTM poten-
tially facilitating functional ER–mitochondrial interactions with
diverse consequences for the cell, including autophagy induction
(58, 176). Therefore, the microtubule network may co-ordinate
whole cell reprograming in response to localized ER stress.

In neuronal neuroblastoma models, collapse of the microtubule
network and evolution of ubiquitinated protein aggregates at the
centrosome were observed in parallel with the initiation of ER
stress (200). While this suggests that maintenance of a functional
ER network relies heavily upon the microtubule cytoskeleton, sim-
ilar observations are yet to be reported in non-neuronal cancer
cells.

These observations suggest an intrinsic link between ER home-
ostasis, the initiation of ER stress responses and the microtubule
network; however, the mechanisms co-regulating these systems
remain elusive. Improved understanding of the role of micro-
tubules in ER function, and the importance of this organelle in
tumor development and cell survival may reveal strategies for more
effective use of existing treatments in cancer.

TUBULIN AND MOLECULAR CHAPERONES OUTSIDE OF THE ER
Other chaperones outside of the ER system also interact with
microtubules (201). The small heat shock protein (Hsp) α

B-crystallin regulates microtubule dynamics (202) and tubulin
polymerization (203) by associating with microtubules through
interactions with MAPs (204). The association between α B-
crystallin and tubulin may also prevent the aggregation of
misfolded tubulin (202).

Heat shock protein 27 (Hsp27) associates with microtubules
(205) and alters the microtubule structure by promoting micro-
tubule nucleation distant to the centrosome (206). TBAs induce
Hsp27 phosphorylation through the p38 signaling pathway in
MCF-7 cells, with microtubule stabilizers and destabilizers induc-
ing different phosphorylation patterns on this protein (207).
However, the functional consequences of these phosphorylation
sites are unclear. Hsp70 also associates with tubulin by interact-
ing with the tubulin C-terminal tail, and this interaction may
be mediated by MAP1B (208, 209). In particular, βIII-tubulin
has been found to associate with mitochondria-localized Hsp70
(107). Hsp70 expression is induced by vinblastine treatment in
melanoma cells (210). Furthermore, crosstalk between Hsp70 and
oxidative stress enzymes (211) suggests that interactions between
the microtubule network and these proteins could have profound
implications for a variety of stress responses.

The Hsp90 family is the main cytosolic chaperones in basal
and stressed conditions, where they mediate maturation of folded
proteins (212). Hsp90 client proteins are diverse and include
oncoproteins that promote survival in response to environmen-
tal stress [reviewed in Ref. (213)]. Hsp90 proteins have been
found to associate with tubulin; however, this occurs in an ATP-
independent manner, suggesting that tubulin–Hsp90 associations
are not related to global tubulin re-folding or the targeting of tubu-
lins to proteasome machinery (214, 215). The binding of Hsp90
to tubulins may instead ensure correct folding of nascent tubulin
peptides, and prevent the formation of tubulin aggregates during
cellular stress (214). The association between these proteins may
also reflect the role of Hsp90 as a molecular chaperone for proteins
translocating on microtubules (216).

Heat shock protein 90 recruitment to microtubules depends
on acetylated tubulins, with HeLa cells having higher levels of
acetylated tubulin and Hsp90 recruitment to microtubules com-
pared with non-tumoral RPE1 cells (52). Tubulin acetylation is
also associated with recruitment of the Hsp90 client proteins
Akt and p53 to microtubules, with significant implications for
downstream signaling events and chemosensitivity (52). Whether
tubulin hyperacetylation is a widespread feature of cancers, or
is specific to these cell types, is unclear, but these observations
suggest that tubulin post-translational modifications may impact
upon protein folding stress in cancer. Overall, interactions between
tubulins and Hsp90 may act as an important link between tubulin
PTMs, protein folding, and stress response signaling.

MITOCHONDRIAL FUNCTION
As integrators of cell state and mediators of apoptotic sig-
naling, mitochondria play a critical role in determining cell
fate in response to stress. There is growing evidence that
tubulin, microtubules, and the microtubule network regulate
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mitochondrial function in cancer (217). Microtubules are involved
in mitochondrial trafficking and degradation, with these processes
influencing microtubule stability and tubulin degradation (218).
Tubulin is an integral component of mitochondrial membranes
(136, 137, 219), and these membranes are enriched with βIII-
tubulin (107, 137, 217). Mitochondria-associated βIII-tubulin is
distinguished from the cytoplasmic tubulin pool by distinct post-
translational modifications (107). Interactions between tubulin
and VDAC discussed above, also support a role for tubulins in
mitochondrial function.

Tubulin-binding agents are known to affect mitochondrial
stress (115). Microtubule stabilizing and destabilizing TBAs cause
changes in the mitochondrial membrane potential, which is criti-
cal for the maintenance of respiration and regulation of apoptosis
(135, 220). It is currently unclear whether these effects are inde-
pendent of the tubulin-targeted activity of these agents. Neverthe-
less, higher levels of soluble tubulin are associated with a lower
mitochondrial membrane potential in cancer cells but not in non-
transformed primary cells (220). Therefore, modulation of mito-
chondrial function by tubulin and microtubules may influence cell
stress responses and cell survival signaling in cancer.

CELL DEATH SIGNALING
Failure of cellular stress responses to alleviate cellular dysfunction
can result in the induction of cell death. Emerging evidence sup-
ports a role for tubulins and microtubules in the execution of cell
death in response to stress. For instance, tubulins interact with reg-
ulators of mitochondrial membrane permeability and apoptosis.
Interactions between tubulin, VDAC, and p53 (discussed above)
may influence the mitochondrial permeability transition and reg-
ulate apoptosis induction (221). This is supported by evidence that
TBAs mediate their apoptotic effects by directly compromising the
mitochondrial outer membrane integrity (222), whether through
interactions with their traditional target, tubulin, or with B-cell
Lymphoma/Leukemia-2 (Bcl-2) (223).

Crosstalk between microtubules and apoptotic networks is also
suggested by Bcl-2 involvement in TBA-mediated cell death. In
leukemic cell lines, the overexpression of Bcl-2 suppresses the
apoptotic response of TBAs independently of G2/M arrest and
structural microtubule alterations (224–226). High Bcl-xL levels
are protective against taxol-induced cell stress (225). These effects
may be explained by direct interactions between Bcl-2 and tubulin
(217, 227). Bcl-2 interacting mediator of cell death (Bim) is also
sequestered on microtubules by binding to the dynein light chain,
thereby preventing initiation of apoptotic signaling (227, 228).
Once released from microtubules, Bim translocates to mitochon-
dria, and interacts with Bcl-2, Bcl-xL, or Bax to promote apoptosis
(228). Biophysical studies have also indicated that BH3-domain
proteins, of which Bim is a member, can interact with tubulin
through this domain (227). The pro-survival factors semaphorin
6A and survivin also associate with microtubules (107, 229, 230)
with the latter affecting microtubule dynamics (229). Semaphorin
6A interacts directly with βIII-tubulin in ovarian cancer cell lines
and its expression correlates with resistance to a broad range of
chemotherapy agents (230). By interacting with apoptotic pro-
teins, tubulin alterations may have a pro-survival effect by reducing
the apoptotic potential of cancer cells.

Manipulation of the soluble and polymerized tubulin frac-
tions may also modulate apoptotic potential. Bak associates with
the polymerized fraction while Bid preferentially associates with
the soluble fraction (227). This interaction is mediated by the β-
tubulin C-terminal tail region (227), suggesting that tubulins may
modulate apoptotic potential in an isotype-specific manner. How-
ever, this interaction, its tubulin isotype specificity and functional
consequences are yet to be validated in the more complex cell
environment.

Tubulin-binding agents are known to induce Bcl-2 phosphory-
lation,a state that inhibits the anti-apoptotic activity of this protein
(231), suggesting that Bcl-2 activity may be regulated by micro-
tubule integrity. However, Bcl-2 phosphorylation is elevated in
cells undergoing G2/M arrest and this observation may reflect the
action of TBAs on the cell cycle checkpoint, rather than apoptotic
signaling (232).

Direct and indirect interactions between tubulins, apoptotic
proteins, and mitochondria suggest that the microtubule network
communicates with the apoptotic machinery to regulate the exe-
cution of the final stages of cell death signaling. While the precise
mechanistic details of this cross-talk remain elusive, the current
evidence supports a role for isotype-specific regulation of cell
death by tubulins.

CONCLUSION
Tubulins, microtubules, and their interacting partners are increas-
ingly recognized as central players in the maintenance of cell
homeostasis and execution of cell stress responses. Emerging
evidence suggests that the modulation of tubulin isotype com-
position, post-translational modifications and the expression of
MAPs seen in cancer influence diverse cellular functions to
promote cell survival under metabolic, protein, oxidative, and
hypoxic stress. Microtubules and tubulins influence protein sig-
naling networks through molecule and organelle transport, act
as scaffolds for protein–protein interactions, modulate enzyme
activity, and sequester stress response mediators. Developing a
detailed spatiotemporal knowledge of the specific function of
tubulin isotypes, their post translation modifications and the
proteins they associate with presents a major challenge, and
is a necessary foundation for understanding the role of the
microtubule network in the regulation and execution of stress
responses.

By influencing a variety of cell stress responses, microtubules
are well positioned to act as coordinators of cell function in
response to stress. Furthermore, crosstalk between different stress
response signaling events means that microtubule involvement in
this context may have profound implications on diverse cellular
functions (Figure 2).

Improved understanding of the role of tubulins and micro-
tubules in cell stress responses in cancer has appreciable clini-
cal benefits. The identification of signaling pathways influenced
by the microtubule cytoskeleton may offer a source of novel
anticancer treatments. A firmer grasp on the role of the micro-
tubule cytoskeleton in cell stress responses, and in particular in
chemotherapeutic stress, should also enable more effective use of
existing treatments. By profiling tubulin and microtubule aberra-
tions in tumors, chemotherapeutic combinations known to induce
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FIGURE 2 | Microtubules regulate and co-ordinate diverse cellular stress
responses in cancer cells. Alterations in the expression of tubulin isotypes,
tubulin post-translational modifications, and the interaction of microtubules
with MAPs seen in cancer affect a wide range of homeostatic mechanisms in

response to cellular stress. Microtubules may function to co-ordinate stress
responses across the cell, resulting in enhanced cell survival in the harsh
tumor microenvironment, resistance to chemotherapy treatment, and the
development of more aggressive disease; MT, microtubules.

particular stress states could be selected to exploit altered stress
response signaling in cancers. Through these avenues, a thor-
ough understanding of the role of the microtubule cytoskeleton in
stress responses has the potential to lead to larger therapeutic win-
dows, reduced chemotherapy resistance, and more effective cancer
treatment with reduced side effects.
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