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The link between aneuploidy and cancer has been recognized over
a century ago (1). Abnormalities in chromosome copy numbers
arise from persistent errors in chromosome segregation dur-
ing cell division, a process known as chromosomal instability
(CIN) (2). CIN is a principal contributor to genetic heterogene-
ity in cancer (3) and is an important determinant of clinical
prognosis and therapeutic resistance (4, 5). Over the past two
decades, our understanding of the mechanisms that lead to CIN
as well as our appreciation of its consequences on cellular via-
bility and tumor evolution have grown considerably (4, 6). So
has our recognition of the multitude of questions that remain
unanswered.

The papers in this Research Topic broadly address recent
advances in our understanding of CIN in cancer. They also illus-
trate the diverse experimental approaches and model organisms
used in studying genomic instability. This topic is divided into
two major categories: the first five papers address the genesis of
CIN in cancer by summarizing the cell biological mechanisms that
underlie chromosome missegregation. They also venture into the
poorly understood area of the genetic basis of CIN, while develop-
ing an experimental model system amenable to high-throughput
genetic analysis. The remaining papers address the consequences
of imbalance in chromosome number on the cellular fitness and
adaptation.

Multiple mechanisms have been shown to lead to CIN – in
its numerical and structural forms. They include defects in the
spindle assembly checkpoint (7), sister chromatid cohesion (8),
the regulation of microtubule attachments to chromosomes at
kinetochores (9, 10), centrosome duplication (11, 12), telom-
ere maintenance (13), and pre-mitotic replication stress (14).
Herein, German Pihan (15) reviews the regulation of the cen-
trosome duplication cycle and how it is intricately synchronized
with the cell division cycle. The complexity of this regulatory
network might explain pervasiveness of centrosome dysfunction
in human tumors, but it also provides multiple attractive phar-
macological targets that have the potential to induce mitotic
catastrophe. Yokoyama and Gruss (16) further discuss how chro-
mosomes take on part of the responsibility to ensure the fidelity of
their own segregation. Chromatin-associated factors – beyond the
Ran GTPase – have now been shown necessary for a properly

functioning mitotic spindle. Interestingly, many of these fac-
tors localize to the Nuclear Pore Complex (NPC), highlighting
an incipient spatiotemporal relationship between the interphase
nuclear structure and the mitotic spindle (17). Thus the process
of faithful chromosome segregation starts well before the onset of
mitosis.

While many of the cellular events that underlie CIN have now
been uncovered, the genetic basis of chromosome missegregation
and aneuploidy remains elusive. A growing number of genetic
perturbations have been shown capable of inducing CIN in oth-
erwise normal mammalian cell lines (6). Yet, it remains unknown
whether these experimental conditions mimic naturally occur-
ring genetic events that lead to CIN during tumor progression.
Further complicating this matter is the self-propagating nature
of CIN (18), which can mask initial instigating genetic triggers.
Herein, Rao and Yamada (19) review the linear progression model
of colon carcinogenesis from adenoma to carcinoma. They dis-
cuss how many of the sequential genetic events that occur dur-
ing carcinogenesis have the potential to compromise the fidelity
of chromosome segregation. More generally, Orr and Compton
(20) discuss the intimate relationship governing CIN and known
oncogenic pathways. Given what we now know, they argue that
almost every major oncogenic pathway can be implicated in some
manner in the genesis of CIN. Yet this relationship is almost
certainly bidirectional as chromosome missegregation has been
shown to generate downstream structural chromosomal damage,
which can in turn independently activate oncogenic pathways (21–
23). This complex relationship highlights the need for appropriate
genetic models to better understand CIN. To this end, Salemi
et al. (24) develop a chromosome segregation error correction
assay, using the Drosophila melanogaster (Dm) S2 cells, that is
amenable to high-throughput genetic screening. They substitute
the Dm kinesin-5 protein, Klp61F, with its human ortholog, Eg5,
thus acquiring the ability to purposely induce errors in micro-
tubule attachments to chromosomes and subsequent chromosome
missegregation through transient exposure to a small molecule
inhibitor of Eg5 (25). These attachment errors occur in both nor-
mal and tumor cells alike (26), although cancer cells have been
shown less efficient at correcting these errors (9). In this sys-
tem, it would be feasible to screen for genes whose functions are
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to modulate the correction of microtubule attachment to chro-
mosomes with the caveat that microtubule-associated proteins,
particularly the kinesin family, may at times exhibit convergent
evolution (27, 28) thus limiting direct comparative genetic analysis
between Dm and humans.

The second part of this Research Topic addresses the conse-
quences of CIN on cellular fitness in the context of tumor evo-
lution. Roschke and Rozenblum (29) explore how CIN is tightly
interconnected to other aspects of tumorigenesis such as DNA
damage, loss of tumor suppressor genes, and gain of oncogenes.
Importantly, they attempt to consolidate an apparent paradox in
the field whereby the widespread prevalence of CIN in cancer
stands in contrast to evidence showing that aneuploidy induces a
proteotoxic stress response and reduces cellular fitness (30). They
discuss the various pathways, which tumor cells utilize to cope with
the cellular stressors involved with chromosome missegregation
and they propose that tumor cells may balance the ability to rapidly
proliferate with the need to generate sufficient diversity required
for adaptation. One of the important adaptation mechanisms is
the loss of the p53 tumor suppressor pathway that normally lim-
its the proliferation of aneuploid and tetraploid cells (18, 31).
Although in this issue, Ohshima and Seyama (32) devise a method
to derive tetraploid cells that appear to have an intact p53/p21 sig-
naling pathway that adequately responds to DNA damage, strongly
suggesting the existence of alternative pathways that may con-
fer tolerance to non-diploid karyotypes. Finally, Nicholson and
Cimini (33) discuss the uni-directionality of CIN and aneuploidy.
In most cases, it appears that once diploid cells become aneuploid,
they also appear to become chromosomally stable. This positive
feed-forward loop linking aneuploidy and CIN would constantly
generate karyotypic heterogeneity that is shaped by natural selec-
tion. From this, the authors discuss how broad karyotypic patterns
emerge that may shed light on defining karyotypic changes during
tumor evolution.
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