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Purpose: To introduce the concept of energy minimization-based inverse optimization for
external beam radiotherapy.

Materials and Methods: Mathematical formulation of energy minimization-based inverse
optimization is presented. This mathematical representation is compared to the most
commonly used dose–volume based formulation used in inverse optimization. A simple
example on digitally created phantom is demonstrated. The phantom consists of three
sections: a target surrounded by high and low density regions.The target is irradiated with
two beams passing through those regions. Inverse optimization with dose–volume and
energy minimization-based objective functions is performed. The dosimetric properties of
the two optimization results are evaluated.

Results: Dose–volume histograms for all the volumes of interest used for dose optimization
are compared. Energy-based optimization results in higher maximum dose to the volumes
that are used as dose-limiting structures. However, the average and the integral doses
delivered for the volumes outside of the target are larger with dose–volume optimization.

Conclusion: Mathematical formulation of energy minimization-based inverse optimization
is derived.The optimization applied on the digital phantom shows that energy minimization-
based approach tends to deliver somewhat higher maximum doses compared to standard
of care, realized with dose–volume based optimization. At the same time, however, the
energy minimization-based optimization reduces much more significantly the average and
the integral doses.

Keywords: dose, volume, mass, energy, integral dose, inverse optimization

INTRODUCTION
The basic principle of external beam radiotherapy involves irra-
diation from a number of different directions (cross-firing) with
beams of uniform or non-uniform energy fluences (intensities).
The aim of this arrangement is to deliver a high dose to the target
volume, while delivering as low doses as possible to the surround-
ing normal tissues. Radiotherapy dose calculations are based upon
the following framework. CT derived attenuation coefficients (or
Hounsfield Units) are mapped to electron density through a cali-
bration procedure. The electron density (which scales with physics
density of the material) governs the number of photon Compton
interactions. The electrons, set in motion due to those Comp-
ton interactions, lead to ionizations, which affect the underlying
biological response in the living cells and in particular lead to
cell kill.

By its very definition dose is the radiation energy imparted
per unit mass of material (Gy= J/kg). The volume integral of the
deposited dose therefore has units of energy and is also known
as “integral dose.” Alternatively in the discrete case applicable in
radiotherapy, if dose is multiplied by mass on a dose voxel-by-voxel
basis, and a summation over all dose voxels within a volume of
interest (VOI) is performed, then the total energy imparted to that
VOI would be obtained. It is often mentioned in the literature that

the large number of beamlets and monitor units used in intensity
modulated radiotherapy (IMRT) leads to an increase in integral
dose compared to conformal radiotherapy (3DCRT) (1, 2). Fur-
thermore, it is also commonly assumed that higher-energy photon
beams substantially reduce the integral dose to normal tissue (3).
However, an alternative hypothesis suggests that the total energy
deposited in a patient during irradiation is relatively independent
of treatment planning parameters, with some reduction of integral
dose with higher-energy beams (4–6).

The use of integral dose in plan evaluation has been underuti-
lized, although it could be a valuable metric, especially in cancer
cases with curative intent for patients with long life expectancy.
Therefore, it is somewhat surprising that so far integral dose (or
total energy) minimization has been neglected in radiotherapy
plan optimization. The aim of this work is to shed some light on
the mathematical basis for the utilization of integral dose min-
imization in IMRT, and to present its application on a simple
example.

MATHEMATICAL FRAMEWORK OF INTEGRAL DOSE
MINIMIZATION-BASED INVERSE IMRT OPTIMIZATION
Energy minimization approaches are commonly encountered in
physics where the solutions of many problems are very often based
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Mihaylov Mathematical formulation of energy optimization

on this fundamental principle. The total energy imparted on an
anatomical organ of interest is given by the integral dose and can
be expressed according to Eq. 1,

Etotal = I =
∑N

i=1
dimi =

∑N

i=1
diρivi

=

∑N

i=1

Ei

ρivi
ρivi =

∑N

i=1
Ei (1)

where di, mi, ρi, and vi are the dose, mass, density, and volume
of dose voxel i, respectively. The summation is over all dose voxels
contained in the volume of the organ, and Ei is the energy imparted
on voxel i. Mathematical incorporation of Eq. 1 in inverse opti-
mization can be achieved after rewriting the representation as
described in Eq. 2,

F j
=

1

Edesired

∑
i∈V

dimi (2)

where Fj is the jth objective function, Edesired is the desired integral
dose, and the summation i is over all voxels within the volume
of a given anatomical structure. Note that for each anatomi-
cal structure, where integral dose minimization is required, only
one objective can be specified, as opposed to dose–volume his-
togram (Dvh), or generalized equivalent uniform dose optimiza-
tion (gEUD-based), where multiple objectives can be specified for
the same anatomical structure (7–10). The minimization of course
is applicable to organs at risk (OARs), where it is required that
the delivered dose is as low as possible. The normalization to the
desired integral dose Edesired is performed such that a composite
objective function (cf. Eq. 3) can be constructed, where individ-
ual objective functions Fj can be expressed in terms of other dose
representations (7, 11, 12).

F =
∑M

j=1
F j (3)

Each individual term in the summation in Eq. 2 is always positive
by construction since dose and mass can only be positive variables.
Therefore, there is no need to introduce a quadratic form which
requires minimization, as it is the case in Dvh- or gEUD-based
optimizations (7, 12–14).

EXAMPLE
An example is presented to illustrate the basic points of the
derived framework for energy minimization-based optimization,
and to outline the differences with Dvh-based optimization.
Figure 1 depicts a digital phantom in an axial view, on which
the example will be illustrated. The phantom consists of three
10 cm× 10 cm× 10 cm cubical VOIs with densities of 0.2 (yellow),
0.8 (red), and 1.0 (green) g/cm3. In the middle of the green VOI,
there is a cylindrical target 3 cm in diameter and 3 cm in length.
The high (red) and low (yellow) density regions are combined to
form an “OAR” to which the dose is to be minimized through an
inverse optimization. The target is irradiated with an anterior–
posterior (AP) and a lateral (Lat) beam centered on the geometric
center (isocenter) of the target. The two beams – AP and Lat are
allowed to have only one IMRT segment each. Two IMRT plans

FIGURE 1 | Schematic diagram of the phantom and the beam
arrangement used to demonstrate the basic physics principle of
Energy-based inverse optimization.

FIGURE 2 | Comparison between dose-volume histograms resulting
from Dvh-based and Energy-based optimization.

are generated with that beam configuration. In the first plan, the
cost function for OAR dose optimization is constructed according
to Eq. 4,

F j
=

∑
i∈V

(
di − d j

d j

)2

∆vi (4)

where V denotes the volume of the OAR for which F j is evaluated,
di is the dose in voxel (3D volume element) i, d j is the desired dose
in each voxel, and vi is the normalized (with respect to the entire
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Table 1 | Integral doses and doses to 1% volumes of OAR, high density, and low density VOIs.

OAR High density VOI Low density VOI

Dvh-based Energy-based Dvh-based Energy-based Dvh-based Energy-based

Dmax (cGy) (1% volume) 520 541 248 216 540 564

Integral dose (J) 0.342392 0.26327 0.197955 0.120046 0.144438 0.143224

The doses to 1% volumes of the different regions are used as surrogates for maximum doses.

OAR volume) voxel volume (12). In the second plan, the OAR dose
optimization is based on Eq. 2. Those two optimization schemes
are termed Dvh-based and Energy-based, respectively. The inverse
optimization was performed with a gradient decent method (7,
12, 15–18) and was realized similarly to what other investigators
have proposed (7). With each optimization the dose to the OAR
is iteratively decreased until the standard deviation of the dose
across the target reaches 6% of the prescription dose, i.e., no more
than 30 cGy. The Dvhs of the two optimization approaches are
presented on Figure 2. In addition, maximum and integral doses
for the OAR, as well as the high and the low density VOIs are
presented in Table 1. As can be noted on the figure and the table
the high dose tails to the low density region (yellow) and the OAR
(blue) are higher with Energy-based optimization, while the entire
Dvh for the higher density region is lower than in the case of Dvh-
based optimization. Therefore, in solving the global optimization
problem, it seems that Energy-based optimization delivers more
dose through the lower density region. Calculated doses to 1% of
the OAR (as surrogate for maximum dose) are 541 and 520 cGy
with Energy- and Dvh-based optimizations, respectively. This dif-
ference indicates ~4% difference in the maximum dose to the
OAR. However, the average doses delivered to the OAR are 45
and 50.2 cGy, respectively, indicating that the Energy-based based
optimization delivers 11.5% lower average dose to the OAR.

Furthermore, comparison of the integral doses to the irradi-
ated volume, excluding the target, is evaluated. All three VOIs
red, green, and yellow from Figure 1 are combined in a sin-
gle structure and the integral dose to that volume is evaluated.
The total imparted energy to that structure with Dvh-based opti-
mization is 1.09977 J, while with Energy-based optimization the
imparted energy is 0.941815 J. Therefore, in this very simple sce-
nario the Energy-based inverse optimization results in an integral
dose reduction to the entire volume in excess of 16%. If only the
integral doses to the OAR are considered (combination of red and
yellow VOIs) then the total energy imparted to this region with
Energy-based optimization is ~30% lower, as can be concluded
from Table 1.

CONCLUSION
A new approach based on energy-reduction inverse optimization
was outlined. The mathematical framework for this optimiza-
tion was defined. The energy-reduction approach was compared
to the standard of care in inverse IMRT optimization, realized
through Dvh-based optimization. Both optimization techniques
were applied to a simple digital phantom for a very simple
beam geometry, and their dosimetric properties were compared.

Energy-reduction approach resulted in lower average and integral
doses to the volumes surrounding the irradiated target.
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