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HEPARAN SULFATE
GLYCOSAMINOGLYCANS
Heparan sulfate (HS) glycosaminoglycans
(HSGAGs) are highly complex biopoly-
mers (1, 2). HS structural diversity is char-
acterized by a repeat disaccharide unit of
uronic acid (either iduronic or glucuronic
acid) linked to a glucosamine (1). Due
to the extensive structural diversity of HS
resulting from the assembly of 23 distinct
disaccharides, it has been called the “most
information dense biopolymer in nature”
(3, 4), which in turn enables it to inter-
act with a multitude of different proteins.
Indeed, the specificity of these interactions
would depend on HSGAG composition,
tertiary structure, and spacing of binding
sites (1).

Heparan sulfate glycosaminoglycans
play an essential role in key biological
processes and are of particular importance
to the survival and progress of various can-
cers (5). Alterations of the HSGAG epitope
repertoire were observed both within var-
ious normal tissues and between normal
and cancerous tissues (6–8). Indeed, some
tumors can exhibit unique carbohydrate
profile: over-express certain HSGAGs or
express unique HSGAG epitopes (9, 10)
that can be rarely found in normal tissue
(11). In both tumor and normal mam-
malian tissue, HSGAGs are usually found
covalently attached to various core pro-
teins such as heparan sulfate proteoglycans
(HSPGs). The two main groups of cell
surface expressed HSPGs are the Synde-
cans (SDCs) and the Glypicans (1). Bear-
ing in mind the alterations of HSGAG

epitope repertoire, HSPGs could be con-
sidered as self “modifiable” ligands for
HSGAG-binding receptors.

NATURAL KILLER CELL RECEPTORS
AND THEIR LIGANDS
Natural killer (NK) cells are innate immune
cells that are capable of directly attack-
ing tumor, virus-infected, and stressed
cells. These functions are controlled by a
wide array of germline-encoded activating
and inhibitory receptors. NK cell activat-
ing receptors include activating forms of
killer cell Ig-like receptors (KIR [KIR2DS,
KIR3DS, and KIR2DL4]), 2B4, NKG2D,
NKp80, and natural cytotoxicity receptor
(NCR) -1, -2, and -3 called NKp46, NKp44,
and NKp30, respectively. Selective engage-
ment of primary activating receptors such
as NCRs can stimulate both cytotoxicity
and cytokine production (12–14).

Protein–carbohydrate interactions play
a major role in NK cell responses mediated
by various activating receptors, includ-
ing members of the C-type lectins family,
such as NKG2D (15–17), and Ig domain-
containing family members, like KIR2DL4
and NCRs (12, 18). On the one hand, we
and others have shown that NKp46 and
NKp44-conjugated glycans are imperative
for their interaction with viral hemagglu-
tinins (12). On the other hand, distinct
NK cell activating receptors can recog-
nize both proteins (e.g., MICA, HLA-G,
B7-H6, and PCNA) and HSGAGs as lig-
ands or co-ligands (2, 15–21). As afore-
mentioned, NCRs were reported to directly
bind HSGAGs, yet each of these receptors

has been shown to recognize distinct HS
structures with fine specificity (2, 22).
Both NKp30 and NKp46 recognize highly
charged HS/heparin epitopes that are O-
sulfated at C2 of iduronic acid and bear
one to two sulfate groups at the GlcN
moiety. However, NKp30 preferentially
binds the fully sulfated hexasaccharide,
whereas NKp46 interacts more strongly
with the analogous tetrasaccharide. In con-
trast, NKp44 displays a different binding
preference toward 2-O-sulfation of IdoA,
as well as N-acetylation of GlcN contribut-
ing to the binding. Importantly, all the
NCRs preferably recognize HSGAGs that
are sulfated above average (2).

HEPARAN SULFATE DIRECTLY
MODULATES NK CELL RECEPTOR
FUNCTION
We recently demonstrated that KIR2DL4
can also interact with HS/heparin and
HSPGs, and these interactions can modu-
late function of KIR2DL4 to impact NK cell
activation, similar to HS-mediated modu-
lation of the function of NCRs (2, 18). The
results observed for KIR2DL4 also indi-
cate that NK cell receptor functions may be
modulated through interactions with HS
either on target cells (-trans) or on NK cells
themselves (-cis). It should also be con-
sidered that the high affinity interaction
of NCRs/KIR2DL4 with HS/heparin (KD

range of 2 µM–20 nM) may, in fact, be ade-
quate to physically engage signaling within
an immune synapse upon interaction with
HSPG on target cells in trans after exchange
from a similar -cis interaction with HSPG
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Brusilovsky et al. NK cell receptors function autoregulation

FIGURE 1 | Model of NK-function autoregulation by HSPG. Interaction of NKR with the HSPG on
the NK cell surface: NKR can be recycled back to the cell surface, promote signaling or destined for
degradation. If cells are exposed to ligand stimulation, this displaces HSPG from interacting and NKR is
instead available to promote signaling and then can be recycled, or destined for degradation.

on the NK cell surface (Figure 1) (18).
Therefore, we suggest that HS binding
function can both directly engage NK cell
receptors to initiate signal transduction
and act as an allosteric regulator to modu-
late the capacity of the receptor to interact
with other ligands (18).

Most of the HS on mammalian cells is
derived from the SDC HSPGs, and SDC4
in particular (18, 23). We and others have
found high expression of SDC4 also in NK
cells (18, 24). It has been suggested that
SDC4 can oligomerize (23) and may pro-
vide a mechanical link between extracellu-
lar ligands (i.e., NK receptors (NKR), inter-
acting with HSPG) and the actin cytoskele-
ton (18, 25–27), and thus stabilize the for-
mation of the receptor–ligand complex as
it was previously reported for FGFR (18,
28). Therefore, the primary impact of the
NKR–HS interaction could be the autoreg-
ulation of the receptor through -cis inter-
action with NK cell-expressed HSPG rather
than a trans interaction with target cell-
expressed HSPG (18). An analogous mode
of -cis interaction between NK cell receptor
and its ligand could be occurring between
Siglec 7 and α2, 8-linked disialic acid struc-
tures, while both are widely expressed on
the NK cell surface (29).

We have previously reported that exoge-
nous HS can potentiate IFN-γ secretion in
NK cells stimulated with specific anti-NKR
mAbs (18, 22, 30, 31). We theorize that

exogenous HS can block a -cis interac-
tion between NKR and HSPG, and there-
fore releases the receptor, making it avail-
able for more efficient engagement by spe-
cific mAbs. Here, we theorize that the
main function of the NK receptor–HS
interaction is to regulate receptor function
through the NK cell-expressed HSPG and
not through the target cell-expressed HSPG
(Figure 1) (18).

Recent advances in clinical research
indicate that use of HS and structurally
similar Low Molecular Weight Heparin can
inhibit tumor progression and metastasis
(1). Based upon our data, we postulate
that the use of HS/heparin as a thera-
peutic agent in patients may in fact be
significantly altering the activation thresh-
old of the NK cells that express KIR2DL4,
NKp44, NKp46, and NKp30. It remains to
be determined whether HS/heparin based
therapies can regulate these NK cell recep-
tors and modulate NK cell physiology to
improve anti-tumor responses. Indeed, the
accumulating evidence from our laborato-
ries and others suggests that this possibility
should be further explored.
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