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Lung cancer remains the most lethal malignancy in the world. Despite improvements in sur-
gical treatment, systemic therapy, and radiotherapy, the 5-year survival rate for all patients
diagnosed with lung cancer remains between 15 and 20%. Newer therapeutic strategies
rely on specific molecular alterations, or biomarkers, that provide opportunities for a person-
alized approach to specific patient populations. Classification of lung cancer is becoming
increasingly focused on these biomarkers, which renders the term “non-small cell lung”
cancer less clinically useful. Non-small cell lung cancer is now recognized as a complex
malignancy and its molecular and genomic diversity allows for patient-centered treatment
options. Here, we review advances in targeted treatment of lung adenocarcinoma with
respect to five clinically relevant biomarkers – EGFR, ALK, MET, ROS-1, and KRAS.

Keywords: EGFR, ALK, Met, ROS-1, KRAS, lung adenocarcinoma, biomarkers

INTRODUCTION
Lung cancer remains one of the most commonly diagnosed
malignancy worldwide and the leading cause of cancer-related
death (1). Until the last decade, non-small cell lung cancer
(NSCLC) was considered a single disease, and systemic treatment
of metastatic NSCLC was limited to platinum-based chemother-
apy doublets resulting in approximately 20% response rates and
median survival of 8 months (2). Only recently, we have realized
that recognition of histological subtypes of NSCLC is clinically
relevant when choosing systemic, platinum-based chemother-
apy (3). In recent years, the oncology community has seen a
paradigm shift in the molecular diagnosis and treatment of
lung cancer thanks to identification of sensitizing mutations
within the epidermal growth factor receptor gene (EGFR) to
EGFR tyrosine kinase inhibitors (EGFR-TKIs) (erlotinib, gefi-
tinib, and afatinib), and anaplastic lymphoma kinase gene (ALK)
rearrangements (i.e., EML4-ALK ) to ALK inhibitors (crizotinib
and ceritinib) (4).

These breakthrough discoveries provide the unique oppor-
tunity for molecularly selected lung cancer patients to receive
targeted, personalized treatment options that translate into clini-
cally meaningful benefit (4). Molecular testing of NSCLC is now
widely recommended by oncology societies because it provides
personalized treatment options and better outcomes for patients
with metastatic disease (5, 6).

To improve outcome,molecular profiling of lung cancer tumors
should be available to all NSCLC patients in order to make targeted
therapy available to patients with actionable/“druggable” driver
mutations (7–9). Currently,we can offer these treatments routinely
to patients with EGFR-mutated and ALK -rearranged NSCLC, the
vast majority of whom have adenocarcinoma histology.

This review summarizes the most recent data on efficacy, risks,
and benefits of novel biologic therapies in NSCLC focusing on
EGFR, ALK, MET, ROS-1, and KRAS (Table 1).

EGFR
The epidermal growth factor receptor family (ERBB family) com-
prises four tyrosine kinase receptors: HER-1 (EGFR), HER-2/neu
(ERBB2), HER-3 (ERBB3), and HER-4 (ERBB4) (38, 39). Follow-
ing ligand-binding, EGFR receptors homo- and hetero-dimerize
and promote autophosphorylation of the intracellular tyrosine
kinase domain and initiate molecular cascade of events involved in
growth, cell proliferation, differentiation, and survival (10, 11, 40).
Small-molecule receptor tyrosine kinase inhibitors (TKIs) bind to
the intracellular catalytic domain of the tyrosine kinase and inhibit
receptor autophosphorylation and activation of downstream sig-
naling pathways by competing with adenosine triphosphate (ATP)
(41). Gefitinib and erlotinib are the most extensively studied
reversible EGFR-TKIs in patients with metastatic NSCLC (42, 43).
The majority of unselected NSCLC patients will not respond to
treatment with EGFR-TKIs. Patients of Asian ethnicity, females,
never-smokers, or those with adenocarcinoma histology, were ini-
tially identified as a population with the most substantial clinical
benefit from EGFR-TKIs (12, 44–53). The marker of sensitivity to
EGFR-TKIs was unknown until 2004 when activating mutations in
exon 18, 19, and 21 of the EGFR gene were discovered (54–56). The
majority of mutations are either point mutations leading to amino
acid substitutions (exon 18 and 21) or in-frame deletions (exon
19) clustered around the ATP-binding pocket of the intracellular
tyrosine kinase domain (13). A kinetic analysis of the intracellu-
lar domains of mutant EGFR has shown that the mutant receptor
compared with a wild-type shows reduced affinity for ATP in the
presence of EGFR-TKI (57).

The Iressa Pan-Asia Study (IPASS) was the first phase III ran-
domized trial that demonstrated superior outcome with first-line
EGFR-TKI treatment in patients with EGFR-mutant NSCLC when
compared with platinum-based chemotherapy in a retrospec-
tive subgroup analysis (58). Other trials have employed a similar
approach to the IPASS study and reported similar results (59, 60).
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Table 1 | Clinically relevant biomarkers in NSCLC.

Biomarker Treatment Genomic aberration Prevalence in NSCLC patients Reference

EGFR 1. Tyrosine kinase inhibitors (e.g.,

gefitinib, erlotinib, and afatinib)

1. Activating mutation within

intracellular catalytic domain of EGFR

EGFR mutations (non-squamous

histology)

(10–14)

2. Monoclonal antibodies (e.g.,

cetuximab and necitumumab)

2. Over-expression of extracellular part

of EGFR

1. ~15% in Caucasians
2. ~40% in Asians

3. ~75–80% in never-smoker Asians

EGFR mutations (squamous histology)

1. ~5%

EGFR over-expression

1. 39% in adenocarcinoma

2. 58% in squamous cell carcinoma

3. 38% in large-cell carcinoma

ALK Tyrosine kinase inhibitors (e.g.,

crizotinib and ceritinib)

Chromosomal translocation and fusion

of ALK gene

1. 3–5% in unselected NSCLC (15–19)
2. ~10% in non-never-smokers

3. <1% in squamous carcinoma

MET 1. Tyrosine kinase inhibitors (e.g.,

tivantinib, cabozantinib, and crizotinib)

2. Monoclonal antibodies

(onartuzumab, AMG 102, ficlatuzumab)

1. Increased MET copy number

2. Over-expression of extracellular part

of MET receptor

1. 2–4% MET amplification (untreated)

2. 5–20% MET amplification in

EGFR-TKI-resistant tumors

3. 25–75% over-expression of

extracellular part of MET receptor

(20–23)

ROS-1 Tyrosine kinase inhibitor (crizotinib) Chromosomal translocation and fusion

of ROS-1 gene

1–2% in unselected population (24–27)

KRAS Downstream pathway inhibitors (e.g.,

MEK inhibitors selumetinib and

trametinib)

Activating mutation within catalytic

RAS domain

1. KRAS are rare in never-smokers

2. ~25–30% in adenocarcinoma

3. ~5% in squamous cell carcinoma

(28–37)

Four randomized phase III trials prospectively compared the
efficacy of first generation EGFR-TKIs against standard platinum-
based chemotherapy in patients with EGFR mutation-positive
NSCLC (61–67). In all four trials, EGFR-mutated NSCLC patients
treated with TKIs (erlotinib or gefitinib) had significantly better
ORR, PFS, and quality of life (QOL) when compared with patients
treated with platinum-based chemotherapy (58, 61, 63, 65, 67–70).
Despite significant PFS benefit of EGFR-TKIs in EGFR-mutant
NSCLC patients, none of the trials showed statistically signifi-
cant survival improvement, which is likely related to a high rate
of patient crossover to EGFR-TKI from first-line chemotherapy
upon progression or development of acquired resistance.

Afatinib is a second-generation EGFR-TKI that irreversibly
blocks EGFR and Her-2 (71, 72). LUX-Lung 3 was a phase III clini-
cal trial of afatinib compared to cisplatin-pemetrexed chemother-
apy in treatment-naïve patients with EGFR-mutant advanced lung
adenocarcinoma (73). Both median PFS and ORR were signif-
icantly better in patients treated with afatinib compared with
chemotherapy. A pooled, retrospective subgroup analysis of LUX-
Lung 3 and LUX-Lung 6 trial at 2014 ASCO annual meeting
demonstrated better OS for patients with EGFR exon 19 dele-
tion vs. EGFR L858R exon 21 insertion mutations (HR= 0.59;
CI 0.45–0.77; p < 0.001 vs. HR= 1.25; CI 0.92–1.71; p= 0.16)
(74). First-line treatment of EGFR mutation-positive NSCLC
with EGFR-TKIs (gefitinib, erlotinib, and afatinib) is now recom-
mended worldwide (5, 9). AZD9291 and CO-1686 are irreversible

selective EGFR inhibitors, which demonstrate significant activity
in patients with acquired resistance to first-generation EGFR-TKI,
and are currently under development. One of the most common
mechanisms of resistance to EGFR-TKIs is the development of
T790M mutation (~50% of patients), which prevents binding of
reversible EGFR-TKI to the EGFR kinase domain while preserv-
ing its catalytic activity (75). In patients with tumors harboring
T790M mutation, AZD9291 and CO-1686 show promising 64 and
58% ORR, respectively (76, 77).

ALK
The EML4-ALK fusion gene is a product of inversion within the
short arm of chromosome 2, where ALK (anaplastic large-cell
lymphoma kinase) joins EML4 (echinoderm microtubule-associated
protein-like 4) to form a fusion gene (15). The product of
EML4-ALK fusion is a chimeric protein with constitutive ALK
activity and is detected in 3–6% of unselected NSCLC and
especially among never-smokers or light ex-smokers who have
adenocarcinoma histology (16–19). ALK rearrangements are
nearly almost mutually exclusive with EGFR or KRAS muta-
tions, although some rare exceptions exist (78). ALK -positive
NSCLC represents a distinct molecular subtype that can be tar-
geted with ALK-specific treatments (15, 24). Crizotinib is an
oral small-molecule TKI that targets ALK, MET, and ROS1 tyro-
sine kinases (79–82). Crizotinib received accelerated US Food
and Drug Administration (FDA) approval for treatment of
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ALK -positive NSCLC based on an objective response rate of 60%
and median PFS of 8–10 months in single-arm studies (16, 79,
83, 84).

A first-line phase III study (PROFILE 1014) assessed efficacy
of crizotinib vs. cisplatin/carboplatin-pemetrexed chemotherapy
in patients with ALK -positive NSCLC. Recently presented data
at the 2014 ASCO Annual Meeting demonstrated significantly
better median PFS and ORR when compared with patients who
received chemotherapy – 10.9 vs. 7.0 months and 74 vs. 45%,
respectively (85). No survival benefit was demonstrated at the
time of data cut-off and may never be, since patients who pro-
gressed on chemotherapy were allowed to crossover to crizotinib.
The PROFILE 1007 phase III study investigated the efficacy of
crizotinib vs. standard of care second-line chemotherapy (peme-
trexed or docetaxel) in previously treated ALK -positive NSCLC
(86). Patients treated with crizotinib demonstrated significantly
improved median PFS when compared with chemotherapy – 7.0
vs. 3.0 months. No overall survival benefit was noted likely due
to a high rate of patient crossover to the crizotinib arm from
chemotherapy. Patients treated with single-agent pemetrexed had
higher ORR when compared with docetaxel (29 vs. 13%).

After clinical recognition of acquired resistance to crizotinib,
multiple second-generation ALK inhibitors (LKD378, AP26113,
and TSR-011) entered early phase clinical trials for patients with
ALK-positive solid tumors, including NSCLC (87, 88). Recently
published results of a phase I clinical trial of ceritinib (LDK378)
in patients with ALK -rearranged NSCLC demonstrated a ORR of
58% in all patients and 56% in crizotinib-resistant patients (88).
Median PFS in crizotinib-naïve patients was 10.4 and 6.9 months
in the crizotinib-pretreated population. Ceritinib received accel-
erated FDA approval in April 2014 and confirmatory trials with
ceritinib in this group of patients are ongoing (http://www.fda.
gov/newsevents/newsroom/pressannouncements/ucm395299).

MET
MET is a proto-oncogene that encodes for the heterodimeric
transmembrane MET tyrosine receptor kinase. Its only known
ligand – hepatocyte growth factor (HGF) (89). Binding of HGF to
the MET receptor activates the tyrosine kinase and downstream
signaling pathways including PI3K/AKT, Ras-Rac/Rho, mitogen-
activated protein kinase (MAPK), and phospholipase C (PLC)
involved in cell motility and invasion (20, 21, 89). The MET
receptor is expressed in approximately 40–50% of NSCLC tumors;
high levels of receptor expression, as well as high MET gene copy
number are independent prognostic factors of poor outcome in
patients with resected NSCLC (22, 23). MET amplification is rec-
ognized as one of the potential molecular mechanisms of acquired
resistance in EGFR-mutated NSCLC to EGFR-TKIs (90, 91).

Pre-clinical studies showed promising results of combined
blockade of EGFR and MET signaling pathways in NSCLC (92).
MET inhibitors can be divided into mAbs targeting HGF or
the MET receptor (AMG 102, ficlatuzumab, and onartuzumab)
or MET TKIs (tivantinib, cabozantinib, foretinib, and crizo-
tinib) (93).

A phase II randomized study compared onartuzumab plus
erlotinib vs. erlotinib alone in second- and third-line treat-
ment. Onartuzumab, in combination with erlotinib, significantly

improved PFS and OS in patients with increased MET gene copy
(≥5) assessed by FISH (MET -FISH positive) as well as in patients
with over-expression of MET receptor as assessed by immunohis-
tochemistry (MET-IHC positive) regardless of gene amplification
status (94). Unfortunately, a confirmatory phase III MET-Lung
trial that randomized MET-IHC-positive NSCLC patients to com-
bination onartuzumab/erlotinib vs. erlotinib alone was stopped
prematurely due to lack of clinically meaningful efficacy in the
combination arm (95).

Tivantinib was investigated in combination with erlotinib
(EGFR-TKI) in patients with previously treated NSCLC in
both phase II and phase III trials (96, 97). In the phase
II trial, an exploratory subgroup analysis showed that MET-
IHC-positive patients with non-squamous histology harbor-
ing KRAS mutations had better PFS and OS with tivantinib
and erlotinib treatment when compared with erlotinib and
placebo. MARQUEE, a phase III, double-blind trial random-
ized 1048 patients with metastatic pre-treated non-squamous
NSCLC to tivantinib plus erlotinib vs. tivantinib plus placebo
(98). While median PFS and ORR significantly favored tivan-
tinib plus erlotinib (3.6 vs. 1.9 months; 10.3 vs. 6.5%, respec-
tively), MARQUEE did not reach its primary endpoint of
improved overall survival (http://eccamsterdam2013.ecco-org.eu/
Scientific-Programme/Abstract-search.aspx?abstractid=6904). A
subgroup analysis of patients with 2+-positive MET immunos-
taining demonstrated better OS, PFS, and ORR when compared
to patients who had lower levels of tumoral MET expression. A
further retrospective molecular subset analysis is underway to
identify other potential biomarkers (MET copy number, KRAS,
and EGFR mutations) that may help to select a target population
for MET-directed treatments.

Crizotinib, which inhibits both ALK and MET, demonstrated
promising results in a small pilot study (N = 13) of patients with
MET -amplified NSCLC (99).

ROS-1
ROS-1 is an orphan receptor tyrosine kinase that is phylogenet-
ically related to ALK (100–103). ROS-1 chromosomal rearrange-
ments with CD74, EZR, SLC24A2, and FIG genes define a new
genomic driver in 1–2.5% of NSCLC patients (25, 26). Clinical
characteristics of NSCLC patients with ROS-1 rearrangements are
similar to patients with ALK -rearranged NSCLC – more com-
monly seen in patients of Asian ethnicity, young age (median
age 49.8 years), female sex, never-smokers, and adenocarcinoma
histology (25). ROS-1 rearrangements appear mutually exclu-
sive of other known oncogenic drivers like EGFR, KRAS, HER-
2, ALK, RET, and MET aberrations (27, 104). Pre-clinical data
showed activity of ALK inhibitors (i.e., crizotinib and TAE684)
in ROS-1-rearranged NSCLC cell lines given the high degree of
homology between ALK and ROS-1 tyrosine kinase domains
(25). This led investigators to assess the benefit of crizotinib in
this unique patient subset. Efficacy has been demonstrated with
an overall response rate of 56% and 6-month PFS of 71% in
25 evaluable patients (105). There are a number of currently
ongoing phase I and II studies investigating activity of crizo-
tinib, dual ALK/ROS1 inhibitor PF-06463922, and ceritinib in
ROS-1-rearranged NSCLC.
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Since ROS-1-rearranged NSCLC is rare and detection of ROS1
fusions by a break-apart FISH assay is expensive and labor inten-
sive, diagnostic algorithms and simpler screening methods (e.g.,
by immunohistochemistry) are needed to identify patients with
ROS-1-rearranged NSCLC (104, 106). At this moment, patients
without driver mutations like EGFR, KRAS, HER-2, ALK, and RET
rearrangements and MET amplifications should be screened for
ROS-1 fusions (preferentially never-smokers) since they can be
offered targeted treatment with crizotinib.

KRAS
The RAS oncogene family,HRAS,KRAS, and NRAS, encodes intra-
cellular transducer proteins (small GTPases) that are involved
in transmitting signals from extracellular growth factor recep-
tors like EGFR to the cell (107, 108). As G proteins, they are
located on the intracellular side of the plasma membrane, bind
guanine nucleotides, and have GTP-ase activity (109). In the rest-
ing state, RAS proteins are bound to GDP and are inactive. Upon
exchange of GDP to GTP, the RAS-GTP complex activates multiple
downstream pathways (MAPK, STAT, and PI3K) that regulate cell
proliferation, motility, and apoptosis (110). After a short period,
the signaling configuration of RAS is halted by intrinsic GTP-
ase activity. Activating RAS mutations prevent GTP hydrolysis to
GDP, thus the RAS protein is rendered constitutively active with
uncontrolled activation of downstream signaling pathways (111).

KRAS mutations are present in approximately 30% of lung ade-
nocarcinomas and less commonly in squamous NSCLC (~5%)
(28). They are found more frequently in Caucasians with lung
cancer than in the Asian population and in current- or ex-smokers
when compared with never-smokers (29, 110). Most KRAS muta-
tions in NSCLC are single amino acid substitutions in codon
12 (80%) and to a lesser extent in codons 13 and 61 (30). In
current- or ex-smokers, KRAS mutations are usually transver-
sions (pyrimidine nucleotide is exchanged for purine or vice versa;
e.g., G→T or G→C) and transitions in never-smokers (purine
nucleotide is exchanged for another purine or pyrimidine for
another pyrimidine; e.g., G→A or C→T) (29). KRAS muta-
tions are nearly always mutually exclusive with EGFR and BRAF
mutations although rare co-existence of EGFR and KRAS muta-
tions has been observed (12, 31–33). KRAS mutations co-exist
with PIK3CA mutations in approximately 19% of PIK3CA-mutant
NSCLC (32).

It has been postulated for over 20 years that KRAS-mutant
NSCLC may be associated with poor outcome. However, multiple
studies have shown conflicting results due to heterogeneity among
the studies, including tumor type, stage, treatment, and study end
points (28, 34). A meta-analysis of 28 studies published in 2005
demonstrated that KRAS mutation was a significant prognostic
marker when polymerase chain reaction sequencing was used as a
detection method (35). Recently published results of a LACE-Bio
pooled retrospective analysis reported no prognostic or predictive
(in regard to benefit from adjuvant chemotherapy) effect of KRAS
mutations in patients with resected NSCLC (36). A subset analysis
of patients with NSCLC with KRAS codon 13 mutations suggests
that adjuvant chemotherapy may have a deleterious effect in this
subgroup, but needs to be further validated (HR – 5.78; 95% CI,
2.06–16.2) (36). In the absence of prospective, large, randomized

clinical trials, KRAS mutation status in NSCLC cannot be used as a
prognostic nor predictive biomarker for treatment with exception
of negative predictive value of KRAS mutations and response to
EGFR-TKI (37, 112).

Direct inhibition of KRAS has been unsuccessful so far due to
its molecular and functional complexity (113). The activation of
the RAS-RAF-MEK-ERK signaling pathway as a consequence of
KRAS mutations renders it an attractive target for small-molecule
inhibition in KRAS-mutated NSCLC. Given the critical location in
this signaling pathway, MEK has been recognized as an important
target, downstream from KRAS, for anti-cancer therapy (114).

The efficacy of treatment with a combination of the orally
available potent MEK inhibitor selumetinib plus docetaxel
chemotherapy has been demonstrated in the treatment of patients
with advanced KRAS-mutant NSCLC (115). Median PFS was
5.3 months in the selumetinib group and 2.1 months in the placebo
group (p= 0.014), with a 37% ORR in the selumetinib/docetaxel
arm and no response in the docetaxel alone arm (p < 0.0001).

Trametinib is another orally available MEK inhibitor that has
been combined with docetaxel or pemetrexed in phase I/Ib trial in
patients stratified by KRAS mutation status (116). While no dif-
ference in response rate was seen between the pemetrexed-treated
groups, these response rates compare favorably with historical data
for second-line chemotherapy treatment and support the absence
of any negative interaction between these agents (117). Given these
promising findings, ongoing studies are investigating the opti-
mal combination of MEK inhibition and chemotherapeutic agents
(www.clinicaltrials.gov).

Early studies have also suggested that the subgroup of KRAS-
mutant NSCLC patients may benefit from targeting the PI3K-
AKT-mTOR signaling pathway, downstream from KRAS. The
mTOR inhibitor, ridaforolimus, has been investigated in patients
with disease progression following chemotherapy with random-
ization to continued therapy or placebo after 8 weeks of treatment.
Improved PFS was seen in the ongoing therapy group (4 vs.
2 months) with a trend toward survival benefit (18 vs. 5 months;
p = 0.09) (118).

KRAS mutations in NSCLC, despite being the most com-
mon, remain the most intriguing and elusive of therapeutic tar-
gets. At present, targeted treatment is not available for KRAS-
mutated NSCLC outside clinical trials. However, novel agents tar-
geting downstream effector signaling pathways are under clinical
development (119).

CONCLUSION
In the addition to the emergence of histological subtypes as key
factors in the treatment decision-making process for patients with
advanced NSCLC, identification of certain genomic abnormali-
ties and protein expression signatures that drive progression and
metastasis of lung cancer have led to a completely new approach to
treatment of NSCLC patients (120). For the first time, we recognize
NSCLC as a heterogenous entity and are able to use the differ-
ences within tumors to tailor treatment with clear improvements
in outcome for patients.

Biomarker-driven treatment has proven to be a major break-
through in the modern management of lung cancer. New ther-
apeutic modalities target specific genomic aberrations resulting
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Unknown - 43%

KRAS - 25%

EGFR - 15%

ALK - 5%

HER-2 - 2%

BRAF - 2%

MET - 2%

PIK3CA - 2%

MAP2K1 - 1%

ROS-1 - 1%

RET - 1%

AKT - 1%

NRAS - 1%

FIGURE 1 | Molecular subsets of lung adenocarcinoma. KRAS: v-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog; EGFR: epidermal growth
factor receptor; ALK: anaplastic lymphoma kinase fusion; HER-2: human
epidermal growth factor receptor 2; BRAF: v-raf murine sarcoma viral
oncogene homolog B1; PIK3CA: phosphoinositide-3-kinase, catalytic, α

polypeptide; MAP2K1: mitogen-activated protein kinase kinase 1; RET:
rearranged during transfection; AKT1: v-akt murine thymoma viral oncogene
homolog 1; NRAS: neuroblastoma RAS viral (v-ras) oncogene homolog (4,
9, 14, 18, 24, 31, 104).

in deregulation of select signaling pathways that are crucial for
proliferation and metastasis of lung cancer.

There are a number of clinically and therapeutically relevant
molecular changes within the lung cancer genome that can be
now effectively targeted with systemic therapy in specific sub-
groups of patients (14). Ongoing research involving genomic
efforts to elucidate further molecular subsets of NSCLC with ongo-
ing development of biomarker-guided targeted therapies hope-
fully will continue to expand the therapeutic options for NSCLC
patients.

Unfortunately, the number of patients for whom targeted
therapy is suitable is still very small (Figure 1). The access to
tumor tissue for biomarker assessment and de novo molecular
and genomic tumor heterogeneity (that may be further increased
during the biomarker-driven therapy) remain a serious chal-
lenge. Ongoing research in detection of cell-free circulating tumor
DNA (cfDNA) and circulating tumor cells (CTCs) may become
clinically relevant alternatives for tumor biopsy that will pro-
vide measurements of the total tumor burden as well as identify
mutations arising during therapy that may be responsible for
development of acquired resistance (121). Genomic screening of
NSCLC tumors will continue to facilitate identification of mol-
ecular mechanisms of acquired resistance to targeted therapies.
Ongoing translational and clinical research will facilitate a greater
understanding of genomic alterations within lung cancer, with
the aim of increasing benefit to wider population of lung cancer
patients.
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