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When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phos-
phorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and
tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus,
negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog;
protein kinase B) is activated downstream of PIP3 and mediates physiological processes.
Furthermore, substantial crosstalk exists with other signaling networks at all levels of the
PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also
as a consequence of its central role in several signal transduction pathways, the PI3K-
dependent axis is frequently activated in many tumors and is an attractive therapeutic
target.The preclinical testing and analysis of these novel therapies requires appropriate and
well-tailored systems. Mouse models in which this pathway has been genetically modified
have been essential in understanding the role that this pathway plays in the tumorigenesis
process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been
genetically modified.
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PTEN/PI3K/AKT PATHWAY
Phosphatase and tensin homolog deleted on chromosome 10
(PTEN) is a dual lipid and protein phosphatase that dephospho-
rylates the lipid phosphatidylinositol-3,4,5-triphosphate (PIP3)
(1), which is the product of PI3K. The overactivation or con-
stitutive activation of PI3K as well as the loss of PTEN function
results in the accumulation of cellular PIP3 and its activated down-
stream effectors, including PDK1 and AKT/PKB. The PI3K family
is divided into four classes. The first three classes phosphorylate
lipids while the class IV PI3K-related proteins (composed of ATM,
ATR, mTOR, and DNA-PK) are serine–threonine kinases. In this
review, we focus on the Class I proteins. This class is composed
of heterodimers that consist of a catalytic subunit (p110) and a
regulatory subunit (p85, p65, or p101). The Class I proteins can be
further subdivided into two subclasses. Subclass Ia includes pro-
teins that consist of p110α, p110β, or p110δ catalytic subunit and
a regulatory subunit (p85, p65, or p55), and subclass Ib includes
the heterodimer consisting of the p110γ catalytic subunit and the
p101 regulatory subunit.

Physiological growth factors bind to the receptors, which trig-
gers its cross-phosphorylation and attracts the regulatory subunit
of the heterodimer to the site. These signaling events activate PI3K
where it is in close proximity to its membrane substrate PIP2.
The phosphorylation of PIP2 by PI3K to generate PIP3 triggers
the binding of PIP3 to proteins that contain pleckstrin homol-
ogy domains (PHD). PDK1 contains a C-terminal PHD, which
binds to membrane-bound PIP3 and induces PDK1 activation.
PDK1 phosphorylates AKT at the threonine 308 residue (T308).
This signaling event primes AKT for phosphorylation at serine
473 (S473) by mTORC2 (the complex rictor/mTOR), which acti-
vates the AKT serine/threonine kinase activity. Activated AKT then

phosphorylates its physiological substrates, which promotes sur-
vival, migration, cell cycle progression, and metabolism (Figure 1)
(2–7). To date, hundreds of non-redundant AKT substrates have
been discovered (8). The AKT family consists of three members,
AKT1, AKT2, and AKT3 that are encoded by three different genes
(9). Even though knock-out mice for the specific AKT isoforms
have demonstrated that these three AKT isoforms have different
physiological functions (10, 11); some functional redundancy still
exists between them (3, 12, 13).

The constitutive activation of AKT is important in PTEN-
mediated tumorigenesis and several mechanisms have been pro-
posed for its precise function in this process (3, 5, 14–19).
AKT-independent mechanisms of PTEN-mediated tumorigenesis,
however, have also been proposed (19–22). Among these pro-
posals, direct binding to p53 may promote PTEN stability (21).
Furthermore, PTEN has been shown to dephosphorylate phos-
photyrosyl and phosphothreonyl-containing substrates (23–25),
and mutation altering this phosphatase activity has been found
to be protumorigenic. PTEN is also found in the nucleus (26,
27) where it may contribute to tumorigenesis through a mecha-
nism that is independent of PIP3 dephosphorylation (28). Nuclear
PTEN has been shown to have phosphatase activity that down-
regulates the MAPK pathway and cyclin D1. Furthermore, the
interaction between p53 and PTEN also occurs in the nucleus
(22, 29). Additionally, other studies have shown that PTEN also
interacts with PCAF and p300 transcriptional coactivators that
function as histone acetyltransferases (22, 30).

PDK1 also has certain PIP3-dependent, AKT-independent
functions. PTEN(+/−) heterozygous mice, which have a reduced
PDK1 expression level, develop fewer tumors (31). It has been
shown that PDK1 phosphorylates all AGC kinase family members
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Carnero and Paramio Cancer mouse models of the PI3K/AKT pathway

FIGURE 1 | A schematic diagram depicting the most representative signaling of the PI3K/AKT pathway.

(12, 32). Furthermore, other PHD containing proteins are also
recruited to PIP3, which indicates that other pathways are also
affected by PI3K activation (3, 18).

Finally, this pathway may also be activated by RTKs and G-
protein-coupled receptors. Other tyrosine kinase receptors, such
as BCR–ABL and ErbB2, and oncogenes, such as Ras, also signal
through the PI3K pathway. These signaling pathways, however,
have been reviewed elsewhere (13, 32). Therefore, we will focus
on the main pathway members PTEN, PI3K, and AKT in this
review.

PI3K PATHWAY IN HUMAN TUMORS
A loss of PTEN expression can result from several different types
of mutations, such as an insertion into the sequence that alter
the reading frame and promote early termination, deletions, or
promoter methylation, which has been found in many tumors,
especially metastatic human cancers (7, 33). Germline muta-
tions in PTEN have been identified in familial cancer predispo-
sition syndromes, such as Cowden, Bannayan–Riley–Ruvalcaba
and Proteus-like syndromes (34–37). The PIK3CA gene (encod-
ing the p110α catalytic subunit of PI3K) has been found to be
the recipient of many activating mutations in human tumors (33,
38). The mutations E542K, E545K, and H1047R have been found
to be the three most frequent activating mutations. Although

these mutations influence PI3K activity in different ways (39,
40), they all enhance catalytic activity (41). They activate AKT
and promote transcription (42) that stimulates the oncogenic
activity of the mutants (43, 44). Importantly, PIK3CA mutations
have also been found in the non-tumoral tissue of several can-
cer patients (45). In superficial bladder cancer, however, certain
modifications to PIK3CA are associated with better clinical out-
comes, which are also affected by the coexpression of FGFR3
mutations (45). Other p110 isoforms have also been shown to be
oncogenic when amplified, but no mutations have been currently
identified (42–44).

Activating AKT1 mutations have also been reported to occur
at a very low frequency. An AKT1–E17K mutation activates AKT1
by promoting its localization to the plasma membrane (46). The
activation of PI3K and AKT by gene amplification occurs in many
cancer types (33,47), including breast (48–50),ovarian (49,51,52),
pancreas (53), esophageal (54), and thyroid cancer (55) (Figure 2).

Every major protein in this pathway is mutated or amplified
in a large variety of solid tumors, and these mutations are not
exclusive. In many cases, multiple mutations are found in the
same tumor (56–66) and this phenomenon is most likely a tissue-
specific behavior. Furthermore, this finding suggests that different
mutations alter different non-redundant pathways, which allows
these different mutations to coexist in the same tumor.
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FIGURE 2 | Representative images of AKT-positive human tumors (Colorectal carcinoma). The left image (total AKT) shows the total level of AKT protein in
the tumor cells. The right image (Akt-p) shows the level of AKT protein phosphorylated at S473.

PTEN MODELS
In the 1990s, gene knock-out studies demonstrated that PTEN
acts as a tumor suppressor (67–70). PTEN homozygous knock-
out mice are embryonic lethal, but heterozygous PTEN+/−
mice demonstrate many of the features described in human
cancer hereditary syndromes with defective PTEN. These mice
develop tumors in multiple tissues, including breast tissue, the
endometrium, and prostate, which is similar to the cancer
predisposition pattern in human Cowden syndrome (67–70).

Tissue-specific PTEN-deletion models have been generated
using LoxP/CRE technology. The tissue-specific loss of PTEN
expression results in the development of specific tumors
(12, 71–75).

Mouse model studies on the role that PTEN plays in the prostate
have shown that a loss of PTEN expression is essential for initiating
prostate cancer (76, 77), and that there are specific dose-dependent
effects. For example, a complete loss of PTEN expression results
in invasive prostate cancer with a long latency period (78) and
metastasis (79).

This process, however, is more complicated. For example, a
complete loss of PTEN expression also triggers cellular senescence
through a p53-dependent mechanism (73, 80), and the combined
loss of PTEN and p53 dramatically accelerates tumorigenesis and
malignancy. In a prostate tumor model in which tumorigenesis is
initiated by a loss of PTEN expression, the genetic loss of p110β,
but not p110α, is able to simultaneously reduce tumorigenesis and
AKT activation (81).

The relationship between activation of the p53 pathway
and PI3K pathway in vivo is extremely complex. For exam-
ple, the epidermal-specific ablation of p53 results in sponta-
neous tumor development and induces the premature activa-
tion of AKT (82, 83), which then plays specific roles in the
epithelial–mesenchymal transition and the metastatic spread stim-
ulated by the tumors (84). In contrast, the mammary-specific
deletion of the PTEN gene results in increased intra-lumina
focal hyperplasia, which results from an increase in prolifera-
tion and dysplasia. This phenotype is similar to the phenotypes
observed in hereditary PTEN-dependent syndromes (85). PTEN-
null mutant females consistently developed mammary tumors
early in life.

A loss of one PTEN allele occurs in a large portion of human
cancers, and PTEN heterozygous mice have demonstrated the
importance of a dose reduction. In the female mice, 50% of PTEN
heterozygous female mice develop mammary tumors, and most of
these tumors demonstrate endometrial hyperplasia, which results
in a 20% incidence of endometrial cancer. Consistent with the
findings in prostate models, mice carrying deletions for PTEN
and p53 in the endometrium develop aggressive cancer and have
a shorter life span than mice carrying only a PTEN deletion (86).

MMTV-wnt1 transgenic mice in a PTEN heterozygous back-
ground develop mammary tumors faster than their parental
strains (87). A reduced PTEN level also contributes to the growth
of leiomyosarcomas (88) and double NF1/p53 KO mice develop
high grade astrocytomas (89). Additionally, mice heterozygous for
PTEN and p53 develop lymphomas with an onset similar to p53
null mice. This similarity may be because of the reduction in p53
stability that occurs in the absence of PTEN (21).

The loss of one Nkx3.1 allele in a heterozygous PTEN(+/−)
background results in the development of invasive adenocarcino-
mas and lymph node metastases (90), and these results are similar
to the results obtained when c-Myc is overexpressed (91). These
results may be similar because Nkx3.1 and Myc share many tar-
get genes in common (92). Knockout of Nkx3.1 alone, however,
only results in epithelial hyperplasia and dysplasia that does not
develop into an invasive carcinoma (93).

In advanced prostate cancer, the TGFβ/Smad4 signaling path-
way is activated upon the loss of PTEN expression. Consistently,
the prostate-specific PTEN and Smad4 double knock-out results in
the development of prostate cancer with metastasis (94). Further-
more, the expression of active telomerases in a double PTEN/p53
knock-out mouse results in bone metastases with 100% pene-
trance (95). An increase in the onset of prostate cancer is observed
when PTEN expression is lost in combination with another onco-
genic signal, such as HER2, ERG, K-Ras, SOX9, and Bmi1. Like a
loss in Nkx3.1 expression and overexpression of Myc, the expres-
sion levels of many of these oncogenic signals have been shown to
be reduced in advanced prostate cancers in humans (71).

The mammary glands from heterozygous PTEN knock-out
mouse form basal-like mammary tumors (96). Similarly, a loss
of PTEN protein expression is also associated with the basal-like
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breast cancer subtype in humans. Additionally, there are certain
PTEN mutations that are commonly found in BRCA1-deficient
breast cancers (96). In contrast, an increase in the PTEN expres-
sion level reduces the Wnt-1-induced onset of mammary tumors
(97), which indicates that the PI3K/AKT pathway is a good tar-
get candidate for treating mammary cancer. Furthermore, the
development of multifocal, highly metastatic mammary tumors
is greatly accelerated in a transgenic mouse model that overex-
presses ErbB2 in the same mammary epithelial cells in which
PTEN has been deleted. These tumors demonstrate solid nodu-
lar growth of the intermediate cells with central necrosis and
an ErbB2-type pathology. PTEN-null/ErbB2-induced tumorige-
nesis has also been associated with increased angiogenesis and
the constitutive activation of the Akt node. Tumors generated
from PTEN-null/ErbB2-derived tumors, however, demonstrate
characteristics similar to luminal-type human breast cancers (98).

The T cell-specific deletion of PTEN results in elevated levels of
B cells and CD4+T cells in the periphery and increases thymic cel-
lularity, resulting in CD4+T cell lymphomas (99). PTEN-deficient
T cells were hyperproliferative, highly resistant to apoptosis, and
had increased levels of phosphorylated AKT and ERK. Backman
and colleagues generated a brain-specific PTEN-deleted mouse
model that developed seizures and ataxia early in life and died
shortly (100). This brain-specific PTEN knock-out mouse can be
used as an animal model for the human Lhermitte–Duclos dis-
ease (100). Furthermore, the inactivation of the pRb pathway in
brain astrocytes (through the expression of a truncated SV40 T
antigen) induces the development of malignant astrocytomas in
mice, and the development of these astrocytomas is accelerated in
a PTEN-null background (101, 102).

Furthermore, it has been shown that there are important regu-
latory mechanisms between the PTEN/PI3K/AKT pathway and
the cell cycle that can be clearly observed at the physiological
level. For example, PTEN overexpression results in cell cycle arrest
through a pRb-dependent mechanism (103). This relationship,
however, is more complicated. It has also been shown that the spe-
cific inducible loss of pRb and p107 reduces the PTEN expression
level (104), and this finding is most likely caused by impairing the
p53-dependent activation of PTEN gene transcription (105). More
importantly, this process results in squamous tumor development,
which can be attenuated by rapamycin treatment (104).

Phosphatase and tensin homolog deleted on chromosome 10
knock-out mice display highly proliferative ductal structures that
progressively replace the acini in the pancreas. These prolifera-
tive structures express Pdx1 and Hes1, which are two markers for
pancreatic progenitor cells. Moreover, a percentage of these mice
develop PanIN lesions in the pancreas and demonstrate a low
frequency of malignant transformation (106).

In a conditional PTEN knock-out mouse in which PTEN
expression is specifically deleted in the epidermis, chemical
carcinogenesis-induced tumors develop into carcinomas (107).
The mechanism underlying these events involves a failure in
apoptosis and an increase in AKT and ERK activity (108, 109).
Consistent with these findings, the inactivation of PTEN in the
lungs accelerates oncogenic K-Ras-initiated tumorigenesis (110).

The inactivation of one PTEN allele also works in conjunc-
tion with hormone treatments to increase the severity of prostate,

bladder, and ureteral urothelial hyperplasia (111–113). These find-
ings are consistent with a study showing that the prostate epithelial
cells of castrated PTEN(-/-) mice will undergo massive apop-
tosis, unless they are treated with an mTOR inhibitor (114). In
PTEN(+/−); Nkx3.1(-/-) mice, the prostates were unaffected by
castration (115). Altogether, these findings suggest that a loss of
PTEN expression in prostate cancer is sufficient for establishing
androgen-independence.

PI3K MODELS
The initial models inducing activation of the PI3K signaling path-
way targeted the heart using tissue-specific expression of an acti-
vated form of p110α (116). This specific activation resulted in
an increase in cell size, which resulted in an increase in heart
size. Taken together with studies using AKT models, these studies
stress the importance of PI3K signaling in determining cell size.
Later, it was demonstrated that the activation of PI3K through
the expression of p65, which is a constitutively active truncated
form of p85 that activates the p110αβ and δ isoforms, induces a
lymphoproliferative disorder that progresses to lymphoma when
the mice are crossed with p53 null mice (117). Similarly, a form
of p110α that is constitutively active because it is directly targeted
to the membrane of epithelial cells in the prostate did not induce
tumor development (118), but some hyperplasia in this tissue was
observed. In contrast, targeting p110α to the membranes of epithe-
lial cells in the mammary glands predisposes the mammary glands
to neoplastic transformation (119). This mild tumor phenotype
becomes more severe in the presence of an active CDK4-allele
mutant (R24C). Activation of the CDK4/Rb/E2F pathway and
PI3K-pathway results in increased tumorigenesis (74, 119).

Transgenic mice that carry the PIK3CA-H1047R mutation in
the Rosa 26 locus express the PI3Ka mutation in mammary epithe-
lial cells when CRE expression is under the control of the MMTV
promoter and develop adenosquamous carcinoma or adenomy-
oepithelioma (120, 121). When this transgenic mouse was bred
into a heterozygous p53(+/−) background, tumorigenesis was
accelerated and the tumors were mainly adenosquamous carci-
nomas (120). The expression of the PIK3CA-H1047R mutation in
the luminal cells of the mammary epithelium induced the devel-
opment of tumors with several different phenotypes, including
ER-expressing tumors (122–124). These PI3K-dependent tumors
have been used in pharmacological intervention studies (125).
Similar to the observations made in other PI3K-mutant models,
the tetracycline-inducible expression of human PIK3CA-H1047R
in the mammary gland induced the development of adenocarcino-
mas and adenosquamous carcinomas (126). After downregulating
PI3K signaling by removing the doxycycline, tumorigenesis was
inhibited. Two-thirds of the tumors, however, resumed growth
even though the PIK3CA-H1047R mutant protein was inactivated.
This finding may partially be the result of Met amplifications,
which promote tumor survival. Other tumors have also been
shown to be independent of PI3K signaling because of Myc ampli-
fications (126). This same human PIK3CA-H1047R model under
the control of tetracycline-inducible expression in the lungs has
been shown to induce the development of lung adenocarcino-
mas (127). After the doxycycline is removed from this tissue,
two-thirds of the tumor growth was inhibited as a result of
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PIK3CA-H1047R inactivation. In the mammary gland, the expres-
sion of the PIK3CA–E545K mutant induces the development of
tumors that express basal and luminal markers, but these tumors
demonstrate less potent oncogenic activity in vivo than the tumors
that developed because of the H1047R mutant (128).

The pancreas-specific expression of the PIK3CA-H1047R
mutant in acinar cells using an elastase-1 Cre driver line (129)
induces premalignant PanIN and acinar-to-ductal metaplasia
(106) at a similar frequency as the expression of oncogenic
K-RasG12D and phenocopies the K-RasG12D-induced metasta-
tic ductal adenocarcinoma. Furthermore, when the oncogenic
PIK3CA-H1047R mutant is expressed in the pancreas, a senes-
cence program is activated, which can be bypassed by a loss of
Cdkn2a.

PI3K has been shown to be an important effector of onco-
genic Ras (130). Mutant oncogenic Ras physically interacts with
the p110a catalytic subunit to trigger its own activation. The Ras–
PI3K interaction plays an important role in Ras-induced skin and
lung carcinogenesis (131). Disrupting the direct Ras/p110α inter-
action by expressing a PIK3CA allele carrying mutations in two
residues that are critical for the Ras–p110α interaction, T208D,
and K227A, dramatically decreases the number of Ras-induced
lung adenomas and papillomas (131). Most of these genetically
altered mice, however, die perinatally, and this tumor-reduction
effect was only observed in the small number of surviving mice.
Furthermore, p110α is also required for neo-angiogenesis (132),
and the observed effects on tumor reduction may be because of
its effects in the stroma. Disrupting the interaction between Ras
and p110α may alter the vasculature, which could significantly
affect the phenotype observed in this model. Consistent with this
proposal, a study using transgenic mice with K-RasG12D-driven
lung tumors demonstrated that inhibition of the PI3K–mTOR axis
in vivo produced poor efficacy results with only a marginal reduc-
tion in lung tumors (127). In contrast, targeting the PI3K pathway
in a K-RasG12D-driven PDAC model produced a good response
by inhibiting the initiation and progression of tumors (133).

AKT MODELS
The mechanism underlying the induction of tumor development
by activated AKT appears to be more complicated and depends
on the AKT level, target tissue, and possibly even the molecu-
lar context. Despite the apparent linear PTEN–PI3K–PDK1–AKT
pathway and the proposed relevance of AKT in the PTEN pathway,
no consistent results have been found when comparing PTEN dele-
tion with activated AKT transgenes in certain tissues (12). Several
groups, including our group, have generated transgenic mice that
specifically express different forms of constitutively active AKT in
the mammary gland using an epithelial-specific MMTV promoter
(12, 134–136). Unlike the PTEN conditional knock-out mice, no
increases in the tumor growth rates were observed (12, 135). And
this result was observed at the different levels of active AKT gener-
ated in the different models (137). Activation of the AKT pathway,
however, did result in involution defects, which is consistent with
PTEN KO mouse phenotype. It has been proposed that the pheno-
typic differences observed between mammary targeted PTEN KO
and mammary-specific activation of AKT are because an optimal
level of AKT activation has not yet been generated in an animal

model. An activation level that is too low will not activate the
oncogenic pathway, and an activation level that is too high will
activate the fail-safe mechanism of cellular senescence. It has been
shown that AKT activation leads to p53- or p27-dependent senes-
cence (73, 80, 138) and does not reach the actual physiological
levels. Furthermore, it is also possible that transgenic AKT acti-
vation does not occur in the appropriate target cell. Perhaps, the
cells in which AKT activation will induce a tumor are not the same
cells in which PTEN loss of expression will. The increase in the
preneoplastic phenotype observed because of AKT activation was
not affected by a loss of p27 or p53 (137). The coexpression of the
p53 mutant p53-R172H and activated AKT significantly increased
the size of mammary carcinomas; however, this coexpression was
not sufficient to promote full penetrance of the tumorigenic phe-
notype (137). The results from a molecular analysis suggest that
the tumors observed in the AKT-activated, p53(R172H) mice
result from stimulating p53(R172H) initiated tumors and not
from the AKT-induced bypass of oncogenic senescence (137).
In these models, it appears that AKT-induced oncogenic senes-
cence is more dependent on pRb than p53 because most of the
tumors carrying activated AKT do not express the p16INK4a
protein.

Other tissues, however, are more susceptible to tumorigenesis
upon AKT activation. AKT is an essential node in mouse skin
carcinogenesis that promotes the development of tumors (108).
Additionally, a constitutively active AKT transforms keratinocytes
by activating transcriptional and post-transcriptional mechanisms
(139). The AKT activation level has also been shown to have a
dose effect in another mouse model. In this model, the individu-
als with the highest levels of AKT activity developed spontaneous
epithelial tumors in multiple organs as they aged. Furthermore,
the expression of either wtAKT or myr-AKT in the epidermal basal
cells dramatically enhanced the animal’s susceptibility to DMBA–
TPA-induced skin carcinogenesis (109). Altogether, these findings
show that the deregulation of AKT expression in combination
with alterations in the signaling pathways and gene expression
can result in tumor development and an enhanced response to
chemical carcinogenesis (109).

Accordingly, mice expressing a constitutively active AKT in
combination with loss of p53 expression in the stratified epithelia
develop oral cavity tumors that are similar to human head and
neck squamous cell carcinomas (HNSCCs) (73) (Figure 3). These
lesions become malignant as a result of the subsequent loss of p53
expression. Importantly, the mouse oral tumors closely resemble
the human tumors as they demonstrate activation of the nuclear
factor-κB and STAT-3 pathways, a decrease in TGF-β type II recep-
tor expression, and a high metastatic potential by their ability to
colonize regional lymph nodes (73).

The stem cells of the hair follicle have been identified as a poten-
tial initiation site for skin cancer. These cells are localized in the
bulge of the hair follicle and alternate between periods of quies-
cence and proliferation until they differentiate. The expression of a
constitutively active AKT results in several physiological changes in
these bulge stem cells, such as increased sensitivity to proliferative
signals and changes in cell migration and metabolism that causes
them to exit from quiescence (140). These changes are similar to
those changes observed in human cancer cells.
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FIGURE 3 | Representative images of squamous skin tumors generated in transgenic mice expressing active AKT (myr-AKT) in K14-positive tissues
(K14Cre) and a p53 null background (p53F/F). The images show tumors stained for AKT phosphorylated at S473 (Akt-p), β-catenin, cyclin D1, and c-myc.

The expression of activated AKT in the prostate also increases
the proliferative capacity of the cells, which results in prostate
intraepithelial neoplasia (PIN) (118, 141) even though no malig-
nant tumors were observed. This mouse lesion has a gene expres-
sion profile that resembles the expression profile of the human
prostate cancer transcriptome despite their non-malignant status.
This finding indicates that the PI3K–AKT pathway plays an impor-
tant role in prostate cancer development but that other additional
factors are also necessary for the development of prostatic adeno-
carcinomas. For example, the coexpression of activated Ras and
activated AKT causes glioblastome multiforme in mice, which is
not observed in mice when these oncogenes are expressed alone
(142). Mice with mammary gland-specific AKT1 expression under
the control of the MMTV promoter that are orally treated with
the carcinogen DMBA develop ERα-positive tumors that closely
resemble Era-associated human tumors (12). Furthermore, in a
mammary gland-specific ErbB2 expression model, tumorigenesis
is reduced in an AKT1 null background (143) and the concomi-
tant expression of activated AKT accelerates the development
of these ErbB2-induced tumors (135, 144, 145). The expression
of AKT1, however, also reduces ErbB2-induced lung metastasis.
The mammary-specific expression of polyoma middle T anti-
gen promotes the growth of metastatic mammary tumors that
are of multifocal origin (146). When the antigen is mutated to
reduce its ability to activate PI3K, tumorigenesis is reduced and
most of the lesions found to demonstrate hyperplasia and a high
level of apoptosis. Finally, when this defective polyoma Middle

T antigen (∆PI3K) is coexpressed with active AKT, accelerated
tumorigenesis is once again observed (147).

FUTURE DIRECTIONS
Most of the mouse models use tissue-specific expression of PTEN,
AKT, or PI3K and rarely manipulate their expression by manip-
ulating their regulators. Furthermore, this pathway is considered
to be linear in most of the in vivo studies and an insufficient
amount of attention has focused on the nuclear effects of PTEN
or on the AKT-independent effects of PI3K and PDK1. For
example, very informative mouse model studies on the nuclear
functions of PTEN could be conducted by knocking in PTEN
nuclear mutants. Other informative studies could be conducted
by knocking in other p110-alpha mutants or other proteins
involved in the metabolism of phospholipids. Additionally, the
roles that specific PI3K and AKT isoforms play in the tissue-
specific phenotypes induced by PTEN are also poorly under-
stood. Finally, studies that combine PTEN deletions or PI3K
mutants with other functionally related but AKT-independent
proteins may elucidate the PIP3-dependent cancer activities of
these genes.
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