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Multi-modality cancer treatments that include chemotherapy, radiation therapy, and tar-
geted agents are highly effective therapies. Their use, especially in combination, is limited
by the risk of significant cardiac toxicity. The current paradigm for minimizing cardiac mor-
bidity, based on serial cardiac function monitoring, is suboptimal. An alternative approach
based on biomarker testing, has emerged as a promising adjunct and a potential sub-
stitute to routine echocardiography. Biomarkers, most prominently cardiac troponins and
natriuretic peptides, have been evaluated for their ability to describe the risk of potential
cardiac dysfunction in clinically asymptomatic patients. Early rises in cardiac troponin con-
centrations have consistently predicted the risk and severity of significant cardiac events
in patients treated with anthracycline-based chemotherapy. Biomarkers represent a novel,
efficient, and robust clinical decision tool for the management of cancer therapy-induced
cardiotoxicity.This article aims to review the clinical evidence that supports the use of estab-
lished biomarkers such as cardiac troponins and natriuretic peptides, as well as emerging
data on proposed biomarkers.

Keywords: breast cancer, cardiac biomarkers, chemotherapy, radiation therapy, cardiotoxicity

INTRODUCTION
Due to earlier detection and highly effective multi-modality treat-
ments, cancer has become a largely curable disease and a chronic
illness. There were an estimated 11.7 million cancer survivors in
2007, a number that has grown from 3.0 million in 1970, to 9.8
million in 2001 (1). The Centers for Disease Control estimated
in 2007 that 64.8% of cancer survivors had lived at least 5 years
past their initial diagnosis, and approximately 60% of survivors
were at least 65 years old. Because of the now-chronic nature of
malignant diseases, and the age composition of the survivors, the
cardiac side effects of cancer treatments must be heeded. Cytotoxic
chemotherapies such as doxorubicin, targeted therapies including
trastuzumab, and radiotherapy have all been implicated as risk fac-
tors for subsequent cardiac disease. The timing of cardiac toxicity
can vary from acutely during treatment, to chronically months
after treatment completion. The most clinically significant end-
point is impaired left ventricular ejection fraction (LVEF) and
ensuing symptomatic heart failure. The current standard of detec-
tion is by serial echocardiography, a resource-intensive test whose
accuracy is operator-dependent. Biomarkers on the other hand,
can be tested at closer intervals given its low-cost approach; and
its accuracy is independent of operator skill. Most importantly,
biomarkers have demonstrated the ability to predict cardiotox-
icity before it becomes clinically apparent. The use of cardiac
biomarker in specific settings have been reviewed several times,
and most recently in 2011 (2–6). However, the role of biomarkers
is continually redefined by ongoing investigations. The purpose

of this review is to provide a comprehensive assessment of the
evidence on cardiac troponins and natriuretic peptides as bio-
markers of cardiac toxicity. Results for other proposed biomark-
ers, including heart-type fatty acid-binding protein (H-FABP),
glycogen phosphorylase isoenzyme BB (GPBB), C-reactive pro-
tein (CRP), myeloperoxidase (MPO), and nitric oxide (NO) will
also be examined.

CARDIAC TOXICITY AFTER CANCER TREATMENT
Anthracyclines (AC), either used alone, or in combination with
other chemotherapy agents, are widely used agents for the treat-
ment of breast cancer (7). However, their use has been limited
by significant cardiotoxicity (8). AC-induced injury has been
described as “type I” cardiotoxicity, a dose-dependent, progres-
sive, and generally irreversible type of toxicity (9). Its mecha-
nism is based on oxidative damage, mediated by reactive oxygen
species, and leads to necrosis and apoptosis (10). Risk of devel-
oping AC-induced cardiotoxicity varies between individuals, and
even low doses have led to clinical cardiac dysfunction for certain
patient subsets (11). Risk factors for developing AC-induced car-
diotoxicity include cumulative dose, age, female gender, exposure
to cardiotoxic agents, prior AC chemotherapy, and mediastinal
radiation. The clinical manifestations of AC-associated cardiotox-
icity range from left ventricular dysfunction to progressive car-
diomyopathy. Doxorubicin administration is generally limited to
a cumulative dose of 600 mg/m2 in patients without underlying
cardiac morbidity (12).
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The pediatric population is particularly susceptible to AC-
induced cardiomyopathy; and there is likely no safe dose in chil-
dren (13). The incidence of cardiotoxicity after AC treatment in
childhood is similarly dose-dependent: 11, 23, 47, and 100% suf-
fered from cardiac complications after being treated with <400,
400–599, 600–799, and >800 mg/m2 of AC-based chemotherapy
(14, 15). Treatment with ACs has long-term implications. Sur-
vivors of pediatric cancers are 8.2 times more likely to die from
cardiac causes than the general population, and 15 times more
likely to experience heart failure, with some eventually requiring
heart transplants (16–18).

About 25–30% of breast cancers overexpress the cell surface
receptor HER2. These malignancies are typically more aggres-
sive, with enhanced proliferation and metastatic potential, and
are associated with poor prognosis (19). Trastuzumab (Herceptin)
is a monoclonal antibody that binds to the extracellular domain
of the HER2 protein. Its efficacy in the adjuvant setting has
been investigated in numerous clinical trials. A meta-analysis
demonstrated reduction in mortality, recurrence and metastases
rates, and improved disease-free survival with trastuzumab (20).
Trastuzumab, though generally well tolerated, is associated with
an infrequent but clinically significant risk of long-term car-
diotoxicity. Unlike AC-induced cardiac injury, trastuzumab is
described as “type II” cardiotoxicity. The risk of damage is dose-
independent, generally reversible with discontinuation, and causes
minimal ultrastructural changes (21–23). The risk of develop-
ing trastuzumab-induced heart failure has been reported as 2–
4% when given alone, but as high as 27% when administered
in conjunction with ACs (24, 25). With the advent of newer
HER2-directed therapies, additional consideration will need to
be given to long-term cardiac side effects associated with their
use. Clinical trials have reported fewer grade three or four car-
diac toxicity with lapatinib, pertuzumab, trastuzumab emtansine
(T-DM1), or neratinib in comparison to trastuzumab (26–34). As
other HER2-targeted agents are under development or evaluation
for combinatorial therapy, cardiotoxicity will remain a topic of
interest.

Radiation therapy (RT) is major component cancer treatment;
and adjuvant radiotherapy for breast cancer reduces the risk of
local recurrences and mortality (35). However, mediastinal irradi-
ation has been linked to increased cardiotoxicity, via micro- and
macrovascular damage (36, 37). A surveillance, epidemiology, and
end results (SEER) analysis of 15,165 breast cancer patients found
that of those who died more than 10 years after radiotherapy, 42%
died from recurrent breast cancer, while 22% died from heart dis-
ease (38). The severity of cardiac injury is related to the radiation
dose absorbed by the heart, and mean heart dose is typically higher
when RT is to employed to treat left-sided breast cancer. The SEER
study found patients with left-sided cancers had a 44% increased
risk of cardiac mortality. Based on several randomized studies,
the relative risk for significant cardiac events ranges 1.2–3.5 after
RT (39). As RT is often combined with chemotherapy, cardiac
irradiation has been described repeatedly as an additional risk fac-
tor for AC-induced cardiotoxicity (40, 41). Though data are still
maturing on the cardiac risks of radiotherapy delivered concur-
rently with trastuzumab, an analysis of the NCCTG N9831 trial
showed no additional cardiotoxicity with RT (42). Advances in

radiation delivery technology, such as conformal radiation, which
limit the amount of radiation absorbed by the myocardium, have
proven useful in reducing the burden of radiation-induced cardiac
morbidity (38, 43, 44). Regardless, prior mediastinal irradiation
remains a significant cause of excessive mortality.

DETECTION OF CARDIAC DYSFUNCTION
Clinically detectable cardiotoxicity is generally preceded by an
interval of subclinical cardiac dysfunction. The ability to assess the
risk of potential cardiac impairment has three major implications.
Risk stratification provides an opportunity to modify ongoing
treatment, alter the frequency of subsequent surveillance, and to
provide direct interventions to reduce the risk of cardiotoxicity.
For these reasons, techniques for early and reliable detection of
clinically silent cardiotoxicity have been widely studied. Though
several methods been explored, the optimal approach and tim-
ing of monitoring cardiac function remains an area of active
investigation.

Serial endomyocardial biopsies, though considered the gold
standard are invasive and impractical for routine screening pur-
poses (45). The most prevalent screening method is based on
measuring LVEF before, during, and after chemotherapy with
conventional 2-D transthoracic echocardiography (TTE) (46).
Monitoring with multiple-gated acquisition (MUGA) radionu-
clide angiography has also been recommended on the basis of
improved accuracy (47). Because 2-D TTEs can be often limited by
operator skill, and inherently less reproducible, efforts have been
directed toward increasing its precision with refinements such as
3-D echocardiography, strain and strain rate measurements, and
cardiac magnetic resonance (48–51). LVEF measurements based
on cardiac imaging lack the sensitivity to detect early subclini-
cal cardiotoxicity, and as a corollary, the ability to predict future
declines in cardiac function (52, 53). Detectable changes in LVEF
usually coexist with significant functional impairment, at which
point the ability to regain normal cardiac function becomes lim-
ited. Thus, the traditional approach for detecting subclinical signs
of cardiotoxicity is suboptimal and there remains a need to effec-
tively identifying patients who are at risk of developing serious
cardiac complications after chemotherapy or RT.

Over the past 15 years, serum molecules, such as cardiac tro-
ponins and natriuretic peptides, have been evaluated for their role
as biomarkers of cardiac toxicity in the oncology setting. The abil-
ity of these biomarkers to identify patients with potential cardiac
morbidity has been investigated in adult and pediatric popula-
tions, after chemotherapy, radiation, and targeted therapies. Bio-
markers represent a non-invasive, resource-efficient, and robust
approach to risk-stratify patients who have undergone cardiotoxic
treatments.

CARDIAC TROPONINS
Cardiac troponin I (TnI) and cardiac troponin T (TnT) are two
highly sensitive and specific biomarkers of cardiac damage. They
are two tissue-specific isoforms of proteins that constitute the
contractile apparatus in cardiac muscle. Since 2000, the Euro-
pean Society of Cardiology and the American Cardiac College
of Cardiology have recognized cardiac troponins for their role in
the diagnosis of acute myocardial infarctions (54, 55). Cardiac

Frontiers in Oncology | Radiation Oncology October 2014 | Volume 4 | Article 277 | 2

http://www.frontiersin.org/Radiation_Oncology
http://www.frontiersin.org/Radiation_Oncology/archive


Tian et al. Serum biomarkers of cardiac toxicity

troponins have been useful in quantifying the extent of acute car-
diomyocyte injury in many other clinic settings, including heart
failure, pulmonary embolism, stroke, sepsis, and drug-induced
cardiotoxicity (56–58). Notably, because cardiac troponin con-
centrations have been linked to the severity of myocyte injury and
subsequent clinical outcomes, troponins have become a tool for
risk stratification.

The validity of using cardiac troponins in detecting
chemotherapy-induced cardiotoxicity was demonstrated in an
early animal study that linked TnT elevations to histologic evi-
dence of cardiac damage (59). Using spontaneously hypertensive
rats treated with increased higher doses of doxorubicin, TnT
and Billingham cardiomyopathy scores (based on number of
myocytes showing myofibrillar loss and cytoplasmic vacuoliza-
tion) were both related to the cumulative dose of doxorubicin.
Cardiac troponins have consistently demonstrated clinical value in
predicting subsequent cardiotoxicity after high-dose chemother-
apy (HDC), irrespective of cancer type. This result is based
on four major experiences that enrolled approximately 200–700
patients each (Table 1) (60–63). Cardiac troponins are sensi-
tive and specific markers in predicting the development, and
severity of, subsequent ventricular dysfunction. The largest study,
involving 703 patients (46% breast cancer) with advanced can-
cers treated with HDC (62). TnI was assayed immediately and
1 month after chemotherapy, while cardiac function was measured
by LVEF at baseline, and 1, 2, 6, and 12 months after complet-
ing chemotherapy. Thirty percent (208) of patients demonstrated
immediate TnI elevations, and 30% of that subset showed ele-
vated TnI on repeat testing at 1 month. Maximal LVEF reduction
was predicted by both persistent (r = 0.92, p < 0.001), and early
(r = 0.78, p < 0.001) troponin elevations. Most importantly, TnI
proved to be a biomarker with clinical implications, and not sim-
ply a proxy for imaging-based measures. Forty-four percent of
patients with persistent TnI elevations developed symptomatic
heart failure, compared to 12% in the early positive group, and
0.2% in the TnI negative population. Troponin positivity over
0.08 ng/m2 predicted future cardiac events with a positive pre-
dictive value (PPV) of 84% and negative predictive value (NPV)
of 99%. TnI’s high NPV has been a recurrent theme seen in
many studies.

Left ventricular ejection fraction compromises with high-dose
chemo can be evident as early as the first month, and was typ-
ically followed by progressive deterioration over the next year
(61). In addition, smaller studies have found substantial rela-
tionships between troponin velocity during early follow-up and
decreased LVEF (83). Elevated troponins have been implicated
in predicting diastolic dysfunction via parameters such as E/A
ratio in particular patient subsets treated with AC (69). Con-
versely, the role for troponin in low and moderate chemother-
apy doses in unclear, as evaluated in a study with 100 patients
treated with AC (median cumulative dose 226.1 mg/m2) (71).
Even with TnT being assayed at five intervals from the first
dose of chemotherapy to 12 months after its completion, no
patient had recorded TnT values above the 0.1-ng/ml thresh-
old. Of those who showed TnT rises after treatment, the major-
ity reported normal LVEF and E/A ratio values just 1 year after
completing chemotherapy.

Notably, cardiac troponins have been key in facilitating the eval-
uation of cardioprotective agents in two prospective randomized
trials (68, 84). Both randomized children diagnosed with acute
lymphoblastic leukemia (ALL) to doxorubicin with or without
dexrazoxane, a free radical scavenger. In both studies, dexrazoxane
drastically reduced the incidence of above-threshold values TnT
during treatment. In the more recent experience, TnI levels dur-
ing the first 90 days of treatment predicted lower LV mass and LV
end-diastolic posterior wall thickness 4 years later (84).

Reports of troponin as a prognostic tool in asymptomatic sur-
vivors of childhood cancers have been largely disappointing. An
early study of children treated with doxorubicin found the mag-
nitude of TnT elevation after the first dose of chemotherapy pre-
dicted for the risk of subsequent echocardiographic abnormalities,
including LV dilation (r = 0.8, p= 0.003), and LV wall thinning
(r = 0.61, p= 0.04) 9 months later (65). The timing of injury
markers supported the hypothesis that AC-induced injury can
begin as early as the first dose, and is driven by continuous oxida-
tive stress rather than acute necrosis. However, numerous studies
discovered either no above-threshold troponin values, or lacked
substantial relation with late-onset cardiac toxicity in survivors of
childhood malignancies (67, 74, 87, 90).

In parallel with the growing usage of adjuvant trastuzumab
in patients with HER2 overexpressing or amplified breast cancer,
several large-scale studies have found a well-defined relation-
ship between either troponin value or its interval change and
tratuzumab-induced cardiac dysfunction. Cardinale et al. pro-
vided the earliest evidence cardiac troponin values can stratify
patients on risk of developing trastuzumab-induced cardiotoxi-
city, based on 251 breast cancer patients who were followed for
a median of 14 months after completion of trastuzumab treat-
ment (75). Thereafter, systolic function (LVEF) was evaluated via
echocardiography at baseline, every 3 months during trastuzumab
treatment and the first year of follow-up, and then every 6 months.
Forty-two (17%) patients developed cardiac review and evaluation
committee (CREC)-defined cardiac dysfunction; however, those
with above-threshold TnI concentrations were at significantly
higher risk for cardiotoxicity (62 vs. 5%, p < 0.001). Moreover, TnI
positivity was the strongest independent predictor of cardiotoxi-
city (HR= 17.6, p < 0.001) and persistent LVEF impairment (HR
2.33, p < 0.001). Troponin positivity predicted LVEF recovery with
a PPV of 65% and NPV of 100%. This suggested that negative TnI
measurements during treatment can be used to assign a lower risk
status to select patients who are less likely to benefit from cardiac
screening at routine intervals.

With regard to the timing of troponin rises with trastuzumab
treatment, Morris et al. found peak TnI elevations peaked occurred
approximately 2 months and four after dose-dense AC-based
chemotherapy (79). Importantly, it preceded maximum LVEF
decline by 4 months. Two studies by Sawaya et al. supported these
results. Both examined TnI in patients who were treated with AC
and trastuzumab sequentially. They first found that elevated high-
sensitivity (hs)TnT measurements 3 months after chemotherapy
was an independent predictor of cardiac toxicity at 6 months
(81). The follow-up study combined circulating biomarkers with
echocardiographic measures to refine their predictive model.
Using an ultrasensitive troponin assay that established 30 pg/ml
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Table 1 | Role of cardiac troponins in the evaluation of chemotherapy and radiation-induced cardiotoxicity.

Reference Population N Treatment Tn type Cutoff Troponin evaluations Results and conclusions

Hugh-Davies

et al. (64)

Breast cancer 50 ACs and RT T 0.1 ng/ml Pre- and post-treatment No change in TnT after

45–46 Gy delivered to the

whole breast

Lipshultz et al.

(65)

ALL 15 ACs T 0.03 ng/ml Baseline, and 1–3 days after

each cycle

Correlation between TnT and

LV end-diastolic dimension

and wall thickness

Herman et al.

(59)

Animal study 37 ACs T Before, and 1 week after

chemotherapy

TnT and histological

myocardial changes in both

related to cumulative

doxorubicin dose

Cardinale et al.

(60)

Various 204 HDC I 0.5 ng/ml Before, and 0, 12, 24, 36, and

72 h after every cycle

Elevated TnI during treatment

predicted for LVEF decline

Cardinale et al.

(61)

Breast cancer 211 HDC and

RT

I 0.5 ng/ml Before, and 0, 12, 24, 36, and

72 h after every cycle

Correlation between max TnI,

number of TnI positive assays,

and max LVEF reduction

Auner et al.

(66)

Hematologic

malignancies

78 ACs T 0.03 ng/ml Within 48 h of treatment start,

then every 48 h during

treatment

Correlation between TnT

increase and median LVEF

decline

Sandri et al.

(63)

Various 179 HDC I 0.08 ng/ml Before, and 0, 12, 24, 36, and

72 h after every cycle

TnI increase predicted

subsequent LVEF decline

Cardinale et al.

(62)

Various 703 HDC I 0.08 ng/ml Before, and 0, 12, 24, 36, and

72 h after every cycle, and

1 month after treatment

Persistent TnI positivity

predicted for subsequent

LVEF decline

Kismet et al.

(67)

Pediatric solid

cancers

24 ACs T 0.01 ng/ml With imaging, >1 month after

chemo

No relationship between TnT

and echocardiographic

abnormalities

Lipshultz et al.

(68)

ALL 76 ACs T 0.01 ng/ml Throughout chemotherapy TnT persistently increased

during treatment, and

predicted for cardioprotective

response

Kilickap et al.

(69)

Various 41 ACs T 0.01 ng/ml Baseline, after first and last

cycle

Correlation between TnT

increase and diastolic

dysfunction (E/A ratio)

Perik et al. (70) Breast cancer 17 ACs and T I 0.1 g/l Before, and throughout T

therapy

No TnI elevations in 15/16

patients

Dodos et al.

(71)

Various 100 ACs T 0.1 ng/ml After first dose, last dose, and

1, 6, 12 months after last dose

No TnT elevations detected

Kozak et al.

(72)

Lung and

esophageal CA

30 ChemoRT T Baseline, 2 weeks after start

of treatment and after

TnT undetectable in 29/30

patients

Cil et al. (73) Breast cancer 33 ACs I Before and after

chemotherapy

No correlation between TnI

and LVEF decline

Mavinkurve-

Groothuis

et al. (74)

Various

pediatric

122 ACs T 0.01 ng/ml Once, with imaging No patients with elevated TnT

levels

(Continued)
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Table 1 | Continued

Reference Population N Treatment Tn type Cutoff Troponin evaluations Results and conclusions

Cardinale et al.

(75)

Breast cancer 251 ACs and T I 0.08 ng/ml Before T, every 3 months

during treatment, 1 year after

start, every 6 months

Elevated TnI values are an

independent predictor of

cardiotoxicity, and LVEF

recovery

Nellessen

et al. (76)

Lung and

breast CA

23 RT I 0.03 ng/ml Before RT, every week during

RT for 4–6 weeks

Log-transformed TnI

increased during treatment

Fallah-Rad

et al. (51)

Breast cancer 42 ACs and T T Before chemotherapy, before

T, and 3, 6, 9, and 12 months

after start of T

No change in TnT values over

time

Feola et al. (77) Breast cancer 53 ACs I 0.03 ng/ml Baseline, after 1 month, 1,

and 2 years

TnI concentrations elevated at

1 month, then returned to

normal

Goel et al. (78) Breast cancer 36 ACs and T I 0.20 ng/ml Baseline, before and 24 h

after T

No elevated TnI values

throughout

Morris et al.

(79)

Breast cancer 95 ACs and T I 0.04–

0.06 ng/ml

Every 2 weeks during

treatment, then at 6, 9, and

18 months

Elevated TnI values preceded

maximal LVEF decline, but no

relationship with max LVEF

decline

Romano et al.

(80)

Breast cancer 92 ACs I 5 or

0.08 ng/ml

(age ≤50 or

>50)

Every 2 weeks during

treatment, then at 3, 6, and

12 months

No correlation between TnI

change and subsequent LV

impairment

Sawaya et al.

(81)

Breast cancer 43 ACs and T I 0.015 ng/ml Baseline, 3 and 6 months

after chemotherapy

Elevated TnI at 3 months

predicted for cardiotoxicity

within 6 months

D’Errico et al.

(82)

Breast cancer 60 ChemoRT I 0.07 ng/ml Before, and after RT No elevated TnI

concentrations

Garrone et al.

(83)

Breast cancer 50 ACs I 0.03 ng/ml Baseline, 5, 16, and

28 months after

TnI kinetics correlated with

LVEF decline

Lipshultz et al.

(84)

ALL 156 ACs T 0.01 ng/ml Before, and daily during

induction, and after treatment

Lower incidence of

detectable TnT during

treatment with dexrazoxane

Onitilo et al.

(85)

Breast cancer 54 Taxanes

and T

I 0.1 ng/ml Baseline, and every 3 weeks

during treatment

TnI undetectable throughout

Sawaya et al.

(86)

Breast cancer 81 ACs and T I 30 pg/ml Before, every 3 months

during, and after T treatment

Elevated TnI values at end of

treatment predictive of

subsequent cardiotoxicity

Sherief et al.

(87)

Acute

leukemias

50 ACs T 0.01 ng/ml Once, with imaging No elevated TnT values

Erven et al.

(88)

Breast cancer 72 RT I 0.13 ng/ml Before and after RT Higher TnI values in L-sided

breast patients

Ky et al. (89) Breast cancer 78 ACs and T I 121.8 ng/ml Baseline, 3 and 6 months

after start of chemotherapy

Interval change in TnI

predicted cardiotoxicity

Tn, troponin; AC, anthracycline; RT, radiation therapy; HDC, high-dose chemotherapy; T, trastuzumab; LVEF, left ventricular ejection fraction; ALL, acute lymphoblastic

leukemia.
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as the cutoff concentration, they found TnI alone predicted sub-
sequent cardiotoxicity with PPV of 44% and NPV of 77% (86).
Adding peak systolic longitudinal strain of <19% improved the
specificity of the model, yielding a PPV of 67% and NPV of 77%.
Interestingly, baseline LVEF at the time of AC completion did not
predict for future cardiotoxicity. Though the majority of stud-
ies evaluating troponins in trastuzumab-induced cardiac damage
have demonstrated its usefulness, several experiences have been
negative (51, 77–79).

Despite abundant literature on radiation-induced cardiac
injury, troponins have yet to demonstrate any clinical utility. Stud-
ies in which considerable numbers of patients were treated with
RT as a single modality are relatively scarce. Of those that try to iso-
late the effect of radiotherapy, none have been able draw clinically
valuable conclusions regarding the value of troponin in predict-
ing radiation-induced cardiotoxicity (64, 72, 82). In fact, of four
studies that included patients with breast, lung, and esophageal
cancer, only one saw significantly elevated TnI concentrations
after RT (88).

NATRIURETIC PEPTIDES
Natriuretic peptides, such atrial natriuretic peptide (ANP), brain
natriuretic peptide (BNP), and its amino-terminal component
(NT-proBNP) have been widely investigated and used in acute
and chronic heart failure for diagnosis and prognosis. In response
to increased wall stress, BNP is synthesized by ventricular car-
diomyocytes as a 134-amino acid (aa) pre-pro peptide, which is
then cleaved into a 108-aa precursor molecule (proBNP). Upon
release, proBNP is cleaved into an inactive N-terminal compo-
nent (NT-proBNP) and the 32-residue active hormone BNP. To
counteract volume overload, biological actions of BNP include
natriuresis, vasodilation, and suppression of sympathetic activ-
ity (91). Chronic elevations in BNP reflect increased LV wall
stress diastolic pressure, and volume overload (92, 93). More-
over, NT-proBNP concentrations have been related to LVEF
values and the severity of hearth failure (94). Thus, using
natriuretic peptides to risk-stratify patients with potential car-
diotoxicity would intuitively be an attractive strategy, as they
represent hemodynamic aberrancy and ventricular remodeling,
and can appear prior to symptomatic heart failure and LVEF
decline (95).

A large number of studies have described significant
BNP and NT-proBNP elevations with doxorubicin, epirubicin,
trastuzumab, and thoracic irradiation, either alone in combi-
nation therapy, though substantially fewer have found clinical
relevant relationships (Table 2). One early study that established
the predictive value of NT-proBNP examined its role in patients
with various advanced malignancies treated with high-dose AC-
based chemotherapy (63). Sandri et al. measured NT-proBNP at
baseline, and then at five time points within 72 h of completing
each treatment cycle. Persistent NT-proBNP measurements pre-
dicted for the development of cardiac dysfunction at 12 months
when quantified by three LV diastolic indices. The predictive
value of early NT-proBNP rises was also seen with a cohort of
breast cancer patients with doxorubicin to a cumulative dose
of 300 mg/m2 (80). Post-chemotherapy NT-proBNP increases
were related to subsequent LVEF decline (r = 0.7, p≤ 0.001).

An ROC analysis using a cutoff of >36% NT-proBNP increase
from baseline to peak predicted LV impairment at 12 months
after therapy with 79.2% sensitivity and specificity. Similar cor-
relations between NT-proBNP elevations and LVEF values in the
setting of breast cancer treated with moderate dose epirubicin
and non-Hodgkin lymphoma patients after six cycles of CHOP
chemotherapy (96, 97).

Though early BNP increases have been the focus of many stud-
ies for its predictive capabilities, BNP levels can remain elevated up
to 2 years after AC-based treatment. This suggests that persistent
neurohormonal activation, independent of acute tissue toxicity, is
one underlying mechanism of late-onset AC-induced cardiotox-
icity (77). BNP monitoring during chemotherapy has also been
linked to significant diastolic dysfunction with CHOP. A study
by Nousiainen et al. revealed associations between BNP, fractional
shortening (FS) (p= 0.04), E/A ratio (p= 0.006), and trend to sig-
nificance with LA diameter (p= 0.062) (99). Studies involving AC
in the adult population have also seen substantial increases in NT-
proBNP with no significant interactions with echocardiographic
or clinical outcomes (71, 73, 98, 100).

While there has been great interest in validating natriuretic
peptides as predictors of cardiotoxicity in the pediatric popula-
tion, studies in this setting have seen mixed results. NT-proBNP
has been shown to be an effect indicator of cardioprotective
interventions (84). Specifically, children with ALL were random-
ized to receive doxorubicin with or without dexrazoxane, an
effective free radical scavenger. Lipshultz et al. discovered drasti-
cally reduced NT-proBNP concentrations after dexrazoxane treat-
ment (47 vs. 20%, p= 0.07). Increased NT-proBNP in the first
90 days of treatment also predicted abnormal LV thickness-to-
dimension ratios, suggestive of late-onset LV remodeling. Ger-
manakis et al. evaluated BNP nearly 4 years after AC treatment
to find an association between NT-proBNP with LV mass reduc-
tions (p= 0.003) in asymptomatic survivors (103). Lastly, NT-
proBNP concentrations have been consistently identified as a
proxy for cumulative AC dose in survivors of childhood cancers
(74, 105, 108).

The experience with natriuretic peptides corroborates large-
scale studies that have shown the clinic onset of RT-induced car-
diotoxicity can occur years after therapy. Significant NT-proBNP
elevations have been detected as early as 9 months, and as late as
6.7 years after radiation to the thorax for breast and esophageal
cancer (82, 101, 106). In 64 patients with esophageal cancer
treated to median dose of 60 Gy, increased NT-proBNP concen-
trations were found beginning at 9 months (when compared to
baseline), and persisted at 24 months after radiotherapy. Addition-
ally, NT-proBNP may be an early indicator of radiation-induced
myocardial damage. Substantially, higher natriuretic peptide con-
centrations were found in subjects with high F-fluorodeoxyglucose
(FDG) accumulation on positron emission tomography (PET)
corresponding to the irradiated fields (106). Similarly, NT-proBNP
has also been linked to cardiac doses in left-sided breast cancer.
D’Errico et al. found significant associations between NT-proBNP
and V3Gy (volume receiving at least 3 Gy), and two ratios for the
heart: D15cm3/Dmean and D15cm3/D50% (where Dmean is the mean
dose, D50% is the median dose, and D15cm3 is the minimum isodose
received by 15 cm3) (82).
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Table 2 | Role of natriuretic peptides in the evaluation of chemotherapy and radiation-induced cardiotoxicity.

Reference Population N Treatment BNP type Cutoff BNP evaluations Results and conclusions

Meinardi

et al. (98)

Breast

cancer

39 ACs and

RT

BNP 10 pmol/l Baseline, 1 month,

and 1 year after

chemotherapy

BNP increased as early as 1 month after

chemo; no correlation with LVEF decline

Nousiainen

et al. (99)

Non-

Hodgkin

lymphoma

28 CHOP BNP 227 pmol/l Baseline, after every

cycle, and 4 weeks

after last cycle

Correlation between BNP increases and

parameters of diastolic function (FS and

PFR)

Daugaard

et al. (100)

Various 107 ACs BNP Before, and at

various points during

treatment

BNP correlation with decreased LVEF,

but baseline and BNP change could not

predict LVEF decline

Perik et al.

(101)

Breast

cancer

54 ACs and

RT

NT-

proBNP

10 pmol/l Median 2.7 and

6.5 years after

chemotherapy

BNP increased with time and was

related to dose; cardiotoxic effects

develop over years

Sandri et al.

(102)

Various 52 HDC NT-

proBNP

153 ng/l (M

≤50), 227 ng/l

(M >50),

88 ng/l (F ≤50),

334 ng/l (F

>50)

Baseline, and 0, 12,

24, 36, and 72 h after

each cycle

Persistent NT-proBNP elevation at 72 h

predicts later systolic and diastolic

dysfunction

Germanakis

et al. (103)

Pediatric

cancers

19 ACs NT-

proBNP

0.2 pmol/ml Mean 3.9 years after

chemotherapy

Correlation between NT-proBNP and LV

mass decrease

Perik et al.

(70)

Breast

cancer

17 ACs

and T

NT-

proBNP

125 ng/l Baseline and

throughout T

treatment

Higher pre-treatment NT-proBNP values

in those who developed HF during

treatment

Aggarwal

et al. (104)

Pediatric

cancers

63 ACs BNP Once, >1 year after

treatment

completion

Higher BNP in patients with late cardiac

dysfunction by ECHO

Ekstein

et al. (105)

Pediatric

cancers

23 ACs NT-

proBNP

350 pg/ml Before and after

each AC dose

Dose-related increase in BNP from

baseline seen after first AC dose

Jingu et al.

(106)

Esophageal

cancer

197 RT BNP Before, <1 month,

1–2, 3–8, 9–24, and

>24 months after RT

Increased BNP over time and in those

with abnormal FDG accumulation

Kouloubinis

et al. (97)

Breast

cancer

40 ACs NT-

proBNP

Before and after

chemotherapy

Correlation between NT-proBNP

increase and LVEF decline

Dodos et al.

(71)

Various 100 ACs NT-

proBNP

153 or 227 ng/l

for M ≤50 or

>50; 88 or

334 ng/l for F

≤50 or >50

After first dose, last

dose, and 1, 6, and

12 months after last

dose

No significant increase in NT-proBNP

with treatment; cannot replace serial

ECHO for monitoring of AC-induced

cardiotoxicity

Kozak et al.

(72)

Lung and

esophageal

CA

30 ChemoRT NT-

proBNP

Baseline, after

2 weeks of RT, and

after RT end

No change in NT-proBNP during

treatment

Cil et al.

(73)

Breast

cancer

33 ACs NT-

proBNP

110 pg/ml Before and after

chemotherapy

Despite association, pre-chemo

NT-proBNP did not predict for later LVEF

ElGhandour

et al. (96)

Non-

Hodgkin

lymphoma

40 CHOP BNP Before first cycle and

after sixth cycle of

chemotherapy

Correlation between BNP values after

chemotherapy and LVEF

(Continued)
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Table 2 | Continued

Reference Population N Treatment BNP type Cutoff BNP evaluations Results and conclusions

Mavinkurve-

Groothuis

et al. (74)

Pediatric

cancers

122 ACs NT-

proBNP

10 pmol/l (M),

18 pmol/l (F),

age-adjusted

in children

(107)

Once, with imaging NT-proBNP levels related to cumulative

AC dose

Nellessen

et al. (76)

Lung and

breast CA

23 RT NT-

proBNP

100 pg/ml Before RT, every

week during RT for

4–6 weeks

Log-transformed NT-proBNP increased

during treatment

Fallah-Rad

et al. (51)

Breast

cancer

42 ACs

and T

NT-

proBNP

Before

chemotherapy,

before T, and 3, 6, 9,

and 12 months after

start of T

No change in NT-proBNP values over

time

Feola et al.

(77)

Breast

cancer

53 ACs NT-

proBNP

5 pg/ml Baseline, after

1 month, 1, and

2 years

NT-proBNP increased acutely with

treatment, and in patients with systolic

dysfunction

Goel et al.

(78)

Breast

cancer

36 ACs

and T

NT-

proBNP

110 pg/ml (age

<75),

589 pg/ml (age

>75)

Baseline, before and

24 h after T

No change in NT-proBNP with

trastuzumab

Romano

et al. (80)

Breast

cancer

92 ACs NT-

proBNP

153 pg/ml (age

≤50),

222 pg/ml (age

>50)

Every 2 weeks

during treatment,

then at 3, 6, and

12 months

Interval change in NT-proBNP predicated

for LV impairment at 3, 6, and 12 months

Sawaya

et al. (81)

Breast

cancer

43 ACs

and T

NT-

proBNP

125 pg/ml Baseline, 3 and

6 months after

chemotherapy

No relation between NT-proBNP levels

before and after treatment and LVEF

change

D’Errico

et al. (82)

Breast

cancer

60 ChemoRT NT-

proBNP

125 pg/ml Before, and after RT Correlation between NT-proBNP, V3Gy for

the heart, D15cm2 /Dmean and

D15cm3 /D50%

Lipshultz

et al. (84)

ALL 156 ACs NT-

proBNP

150 pg/ml (age

<1), 100 pg/ml

(age ≥1)

Before, and daily

during induction, and

after treatment

Correlation between NT-proBNP and

change in LV thickness-to-dimension

ratio 4 years later

Mladosievicova

et al. (108)

Childhood

leukemias

69 ACs NT-

proBNP

105 pg/ml (F),

75 pg/ml (M)

Median 11 years

after treatment

Increased NT-proBNP with exposure to

ACs

Onitilo et al.

(85)

Breast

cancer

54 Taxanes

and T

BNP 200 pg/ml Baseline, and every

3 weeks during

treatment

No correlation between elevated BNP

values and cardiotoxicity

Pongprot

et al. (90)

Pediatric

cancers

30 ACs NT-

proBNP

Age-adjusted

(109)

Once, with imaging Correlation between NT-pro BNP values

and FS and LVEF

Sawaya

et al. (86)

Breast

cancer

81 ACs

and T

NT-

proBNP

125 pg/ml Before, every

3 months during, and

after T treatment

NT-proBNP did not change with

treatment

Sherief

et al. (87)

Acute

leukemias

50 ACs NT-

proBNP

Age-adjusted

(107)

Once, with imaging NT-proBNP linked to AC dose and

abnormal tissue Doppler imaging

parameters

(Continued)
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Table 2 | Continued

Reference Population N Treatment BNP type Cutoff BNP evaluations Results and conclusions

Kittiwarawut

et al. (110)

Breast

cancer

52 ACs NT-

proBNP

45 pg/ml Baseline, and end of

fourth cycle

Correlation between NT-proBNP and FS

Ky et al.

(89)

Breast

cancer

78 ACs

and T

NT-

proBNP

Baseline, 3 and

6 months after start

of chemotherapy

No relationship between NT-proBNP

values and cardiotoxicity

BNP, brain natriuretic peptide; NT, N-terminal; AC, anthracycline; RT, radiation therapy; HDC, high-dose chemotherapy; T, trastuzumab; LVEF, left ventricular ejection

fraction; HF, heart failure; ALL, acute lymphoblastic leukemia; FS, fractional shortening; PFR, peak filling rate.

The role of NT-proBNP in predicting trastuzumab-induced
cardiac dysfunction has been evaluated in five recent stud-
ies. Higher pre-treatment (immediately post-chemotherapy) NT-
proBNP concentrations were found in patients with metastatic
breast cancer who developed symptomatic heart failure during
treatment (p= 0.009) (70). The other four failed to find any
meaningful relationship between BNP or its interval changes
with measures of cardiac function; often no significant changes
were found between pre- and post-treatment NT-proBNP con-
centrations (51, 78, 81, 89). Concerns regarding sufficient follow-
up and superimposed AC-induce cardiotoxicity make it unclear
whether NT-proBNP has any clinical usefulness in predicting
trastuzumab-induced cardiac dysfunction.

OTHER PROPOSED MARKERS
Heart-type fatty acid-binding protein and glycogen phosphory-
lase isoenzyme BB have been evaluated jointly as potential bio-
markers of cardiac toxicity in several studies. Both GPBB and
H-FABP are considered markers of early cardiac injury. GPBB
is a cardiac-specific enzyme of glycogenolysis, which provides
glucose to cardiac muscle. Because GPBB is released into cir-
culation 2–4 h after myocardial injury, it may be a sensitive,
and early marker of acute coronary syndromes. Moreover, GPBB
has been found useful for the risk stratification in acute coro-
nary syndromes, as it is an independent predictor of mortal-
ity (111). Similarly, H-FABP is a low molecular weight protein
normally found in the cytoplasm, but can be detected within
2–3 h after significant myocardial injury (112, 113). In three
studies that evaluated GPBB in patients with leukemias and
lymphomas, Horacek et al. found approximately 17–21.7% of
patients with elevated GPBB concentrations after either AC-
based chemotherapy or a preparative regimen for hematopoietic
stem cell transplantation (114–116). Based on threshold val-
ues of 7.30 µg/l for GPBB and 4.50 µg/l for H-FABP, no study
reported significant elevations in H-FABP, and only one found
a correlation between GPBB elevation and LV diastolic dys-
function via impaired relaxation (114). However, in a cohort
of non-Hodgkin lymphoma subjects treated with doxorubicin-
based chemotherapy, H-FABP measured 23 h after the first cycle
of CHOP was correlated with LVEF assessed after six cycles
(r =−0.836, p < 0.001) (96). Though numerous studies have
found elevated GPBB after chemotherapy, and one has related
H-FABP with subsequent systolic dysfunction, none have yet
linked biomarker elevations with clinical outcomes in larger

populations, which leaves the clinical relevance of these two
ischemic markers unclear.

C-reactive protein is an acute phase protein that is synthe-
sized during an inflammatory response. Its expression is regulated
by cytokines such interleukin (IL)-1, IL-6, and tissue necrosis
factor-α (TNF-α). In the context of stable coronary artery dis-
ease, myocardial infarction, and congestive heart failure, elevated
CRP is predictive of decreased LVEF and diastolic dysfunction
(117–119). Using a high-sensitivity (hs) assay in breast cancer
patients, hsCRP concentrations≥3 mg/l predicted impaired LVEF
with 92.9% sensitivity and 45.7% specificity (PPV, 40.6%; NPV,
94.1%). As maximum hsCRP elevations were seen on average
78 days before echocardiographic detection, hsCRP may prove to
be effective in identifying patients who are less likely to benefit
from more stringent follow-up. While Lipshultz et al. found higher
CRP values in survivors of various childhood cancers, regardless of
exposure to cardiotoxic treatment with modest correlation with LV
mass, wall thickness, and dimension (120), multiple studies have
found no clinical value in CRP measurements (79, 84, 89).

Myeloperoxidase is a proinflammatory enzyme that expressed
by polymorphonuclear neutrophils that is indicative of oxidative
stress, and involved in lipid peroxidation. It has also been iden-
tified for its prognostic value in predicting future cardiovascular
events in acute coronary syndromes and adverse outcomes in heart
failure (121, 122). MPO was identified as one of two predictors of
cardiotoxicity in breast cancer patients treated with ACs and Her-
ceptin, from a panel of potential biomarkers including CRP, NT-
proBNP, growth differentiation factor (GDF)-15, placenta growth
factor (PlGF), soluble fms-like tyrosine kinase receptor (sFlt)-1,
and galectin (gal)-3 (89). Ky et al. found that for patients with
90th percentile MPO interval change from baseline (422.6 pmol/l
increase), the probability of CREC cardiotoxicity at 15 months was
34.2%, and the risk of future cardiac toxicity was amplified with
each standard deviation increase in MPO concentration (HR 1.34,
p= 0.048). When considered jointly with 90th percentile interval
TnI elevations, the risk of cardiotoxicity by 15 months was 46.5%.

Nitric oxide is a small molecule generated by NO synthase
from l-arginine in numerous cell types, including endothelial
cells, platelets, neutrophils, and macrophage (123). NO is a key
regulator of cardiomyocyte contractility, and inducible NO syn-
thase has been implicated in the pathophysiology of heart failure
and cardiomyopathy (124, 125). Dysregulated NO synthesis has
been found to be one mechanism involved in doxorubicin-induced
cardiotoxicity, as studies in bovine endothelial cells have linked

www.frontiersin.org October 2014 | Volume 4 | Article 277 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Radiation_Oncology/archive


Tian et al. Serum biomarkers of cardiac toxicity

redox activation of doxorubicin with endothelial NO synthesis in
doxorubicin-induced apoptosis (126, 127). NO has been described
as a potential marker of subclinical cardiac dysfunction in the pedi-
atric setting. Guler et al. found significantly higher nitrite values in
children treated with doxorubicin compared to healthy controls,
and in those with abnormal/borderline LVEF and FS values (92.35
vs. 59.26 µmol/l, p= 0.038) (128).

CONCLUSION AND FUTURE DIRECTIONS
Cardiac toxicity associated with cancer treatment is a growing
source of significant morbidity and mortality. Current screening
practices are suboptimal as they provided limited opportunity to
intervene and change the course of disease progression. Serum bio-
markers, and especially cardiac troponins in patients treated with
HDC, represent an effective method for monitoring cardiac status,
and identifying patients who may benefit from early medical inter-
vention. There is also growing evidence for a combined approach
in which biomarkers and echocardiograms are co-interpreted.

A discussion of any screening test’s validity would be incom-
plete without considering Wilson and Junger’s classic screening
criteria (129). Of the 10 criteria, some are evident, such as“the con-
dition sought should be an important health problem.”And of the
10, the two that deserve additional mention here are “there should
be an accepted treatment for patients with recognized disease,”and
“there should be an agreed policy on whom to treat as patients.”
Both of these questions were addressed by a large randomized
study that evaluated the cardioprotective effects of enalapril, an
angiotensin-converting-enzyme inhibitor routinely used for con-
gestive heart failure (130). Of 413 patients treated with high-dose
ACs in the study, 114 patients developed early increases in TnI and
were randomized to receive either enalapril (n= 56) or placebo
(n= 58). In the intervention arm, enalapril was given for 1 year,
starting 1 month after chemotherapy. The placebo arm suffered
from a significant and progressive decline in LVEF (62.4 vs. 48.3%
at 12 months, p < 0.001), as well as increases in end-diastolic
and end-systolic volume. Moreover, the treatment group bene-
fited from a lower incidence of adverse cardiac events (2 vs. 52%,
p < 0.001). Other investigators have evaluated the beta-blockers
nebivolol and carvedilol in the randomized setting, finding treat-
ment during AC chemotherapy offered significant protection of
LVEF in both interventions (131, 132). Though investigations are
still ongoing, the results accumulated so far suggests cardiotoxicity,
if detected early enough, and treated appropriately, is a potentially
treatable condition. Additionally, the study populations and crite-
ria used for treatment have provided a foundation for management
decisions that can further refined.

As data on the treatment of chemotherapy-induced cardiotox-
icity continue to accumulate, the objective of validating and refin-
ing biomarker-based screening strategies becomes more and more
clear. Because, clinically apparent signs of cardiac injury often
occur years after initial therapy, there are few studies that have
been able to link early rises in biomarker concentrations with clin-
ical endpoints. Thus, there is a need longer for long-term data
to either confirm or refute any meaningful relationship between
early biomarker status and long-term cardiac morbidity. Addi-
tionally, because the optimal schedule of biomarker assessments
remains unclear, the integration of biomarker evaluations into

large prospective clinical trials is critical. As the burden of anti-
neoplastic therapy-induced cardiac morbidity increases, so does
the need to find effective strategies for risk stratification and
management of therapy-induced cardiotoxicity.
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