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A new problem has emerged with the ever-increasing number of breast cancer survivors.
While early screening and advances in treatment have allowed these patients to overcome
their cancer, these treatments often have adverse cardiovascular side effects that can
produce abnormal cardiovascular function. Chemotherapeutic and radiation therapy have
both been linked to cardiotoxicity; these therapeutics can cause a loss of cardiac muscle
and deterioration of vascular structure that can eventually lead to heart failure (HF). This
cardiomyocyte toxicity can leave the breast cancer survivor with a probable diagnosis of
dilated or restrictive cardiomyopathy (DCM or RCM). While current HF standard of care
can alleviate symptoms, other than heart transplantation, there is no therapy that replaces
cardiac myocytes that are killed during cancer therapies. There is a need to develop novel
therapeutics that can either prevent or reverse the cardiac injury caused by cancer thera-
peutics. These new therapeutics should promote the regeneration of lost or deteriorating
myocardium. Over the last several decades, the therapeutic potential of cell-based therapy
has been investigated for HF patients. In this review, we discuss the progress of pre-clinical
and clinical stem cell research for the diseased heart and discuss the possibility of utilizing
these novel therapies to combat cardiotoxicity observed in breast cancer survivors.
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INTRODUCTION
Advances in cancer treatments have led to a significant reduction in
the incidence of mortality amongst breast cancer patients; a major
accomplishment of today’s cancer therapies. The 5-year survival
rate for females in the United States is 89%, and 78% at 15 years
(1). Associated with increased breast cancer survival is an increase
in cardiovascular co-morbidities (2). The scope of this issue has
not been adequately studied and is not readily ascertained from
clinical trial data on emerging chemotherapeutic agents. Clini-
cal trials often consist of small cohorts of patients with under
representation of specific patient populations and exclude those
with co-morbidities. In addition, the incidence of adverse cardiac
events has usually not been evaluated. It is not surprising that
novel cancer therapeutics can cause adverse cardiac events given
the fact that cancer drugs influence cell survival (3–5). In concert
with these novel reagents, some cancer treatment plans incorpo-
rate classical chemotherapeutics (anthracyclines) that are known
to be more toxic to the cardiovascular system (6–8). Whether
the pathways (survival and growth) by which these agents inhibit
tumor progression overlap with those which preserve cardiovas-
cular cell physiology, remains largely unknown. In our view, there
is a need to investigate different therapeutics strategies to combat
any adverse cardiovascular event observed in cancer patients.

Cancer therapeutics cause cardiomyopathy in large part by
causing the death of cardiac myocytes and supportive tissue (4,
5, 9–14). Therefore, cell therapies that repair existing myocardium

or regenerate new myocardium to replace lost tissue could improve
cardiac function in cancer survivors. Researchers and physician-
scientist have been investigating cell-based therapy since the early
1980s (15). In striving to understand the basic biology of adult
stem cells, tremendous progress has been made in comprehending
their therapeutic potential against disease states like acute myocar-
dial infarction (AMI) and ischemic heart disease, culminating with
numerous clinical trials since early 2002 (16). While still somewhat
controversial, the scientific community is beginning to define the
mechanism(s) responsible for the beneficial effects of those stem
cell therapies tested to date. Regardless of the treatment strat-
egy used to prevent or reverse adverse cardiovascular events in
breast cancer patients, it will become increasingly important to
screen patients, optimize treatment strategies, and monitor cardiac
function prior to-, during-, and after cancer treatment.

BREAST CANCER AND THE ETIOLOGY OF CARDIOTOXICITY
In 2013, the projected number of new in situ and invasive breast
cancer cases was just shy of 300,000 (1). Breast cancer death rates
have been dropping since the early 1990s (1), due to better aware-
ness by women to have annual mammograms, which has led to
earlier detection and better success of treatment strategies. With
over 2.9 million women living in the United States with a medical
history indicating breast cancer (17), there has become a greater
need for an understanding of the therapeutics utilized to combat
breast cancer and their potential effects on other organ systems.
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Physicians have a variety of treatment options and strategies
to slow, inhibit, and/or eliminate breast cancer. Newer generation
chemotherapeutics have the capability of targeting specific path-
ways; usually interrupting cell survival (3, 8, 11, 18–20), growth
(21), and proliferation (3, 8, 11, 18, 22, 23). Selective targeting
therapeutics are a true testament to the amount a basic and clinical
research that has gone into comprehending cancer biology over the
last several decades. Ideal cancer therapeutics should affect cancer
cells without effects on normal tissues. Unfortunately even target
specific agents have “off target” effects on normal cells in the heart
and other tissues. Radiation therapy has also been improved as a
therapeutic against breast cancer. With advances in technology,
clinicians have the ability to more accurately direct the radia-
tion treatment while minimizing the dose need; but still there
are major side effects observed with both treatment options, and
the incidence of cardiotoxicity is on the rise (24).

While treatment may lead directly to cardiovascular dysfunc-
tion in some patients, in others it may hinder their ability to cope
with preexisting or newly acquired cardiovascular diseases such as
ischemic heart disease and hypertension. It is important to point
out that only a fraction of patients in chemotherapeutic clini-
cal trials have reported adverse cardiac events (25, 26); 4–7% of
patients in initial trials suffered from cardiotoxicity when treated
with monoclonal antibody chemotherapeutics, which manifested
itself as a decrease in left ventricular ejection fraction (LVEF) (27).
This percentage was drastically increased (27%) when patients
were treated concurrently with adjuvant chemotherapeutics, like
anthracyclines (14).

There are several hypotheses as to mechanism by which
chemotherapeutic treatment initiates and/or exacerbates car-
diotoxicity observed in breast cancer patients (4, 11, 12). The
more classical drugs, like anthracyclines, most notably Doxoru-
bicin, have been linked to greater increase in reactive oxygen
species (ROS) causing more stress at the cellular level (10, 28,
29). In cardiomyocytes, there is an abundance of mitochondria,
which produce free radicals from anthracyclines, which are taken-
up by the cell (30). This predisposes cardiac tissue to create high
levels of ROS. This suggests high levels of newly formed ROS
limits the amount of antioxidants that are found endogenously.
With depletion of these much needed antioxidants, homeostasis
is not maintained leading to an unfavorable cellular environment.
A single basic research study, by De Angelis et al., looked directly
at mechanisms by which chemotherapeutics are cardiotoxic and
their effects on endogenous cardiac stem cells (CSC’s) (31), which
are thought to be involved in endogenous cardiac repair. It was
shown that classic chemotherapeutics (anthracyclines) increased
ROS formation, caused DNA damage, induced p53 expression
and cell cycle arrest in the G2/M phase, while decreasing CSC
growth (31).

Cardiotoxicity due to radiation therapy predominantly leads to
pericardial and coronary vasculature damage. While early radio-
logical practices lead to constrictive pericarditis; new technology
and techniques to minimize the exposure of the heart to radi-
ation and the incidence of pericarditis is still largely unknown
due to limiting number of years post-technology development
(32). Cell types, which are part of the coronary vascular frame-
work have been shown to induce inflammation and lead to

cardiovascular events, which can cause ischemic heart disease (33).
In a study which compared the effects of left- or right-sided radia-
tion demonstrated an increase in coronary stenosis in patients who
received left-side treatment; specifically the left anterior descend-
ing coronary artery (9). Again, with new techniques and better
technology being utilized, this adverse event can be minimized.

More reviews have come forth over the last several years dis-
cussing chemotherapeutic cardiotoxicity (3, 4, 8, 19, 20, 34–38)
and there has been the formation of guidelines with clinical inter-
disciplinary cross talk between oncologists and cardiologists (11,
39–41) to more effectively treat the toxicity to organs such as the
heart. Again, whether the primary treatment strategy is pharma-
cological or radiological, physicians have come to a consensus that
adjuvant therapy increases the probability of initiating or exac-
erbating cardiotoxicity in breast cancer patients (4, 11, 12, 14).
New basic, translational, and clinical studies will be essential to
define the mechanisms of cardiotoxicity of chemotherapeutics
and radiation therapy. It will also be important to carefully fol-
low the increasing number of breast cancer survivors, to define
their long-term cardiovascular risk.

STEM CELL THERAPY
In this review, we suggest that stem cell therapy should be consid-
ered for cancer survivors who develop cardiomyopathy. Currently,
one of the most impressive aspects of stem cell therapy for the
heart is the wide variety of cell types that could be considered
as potential candidates through pre-clinical (Table 1) and clin-
ical research (Table 2). This reflects the true unmet need for a
therapeutic avenue to be developed in order to treat and pre-
vent the progression and manifestation of heart failure (HF) in
patients who suffer cardiac injuries, like myocardial infarction or
breast cancer therapy-induced cardiomyopathy. Here, we discuss
endogenous cardiac regeneration and some of the more popu-
lar cell types that are being looked at as potential candidates for
cell-based therapy.

CARDIAC REGENERATION
The heart has a limited capacity for repair after injury. This limited
repair capacity is the bases for cardiac dysfunction after ischemic
insult or damage from cancer chemotherapeutics. Why the heart
has such a limited ability to repair itself and how cell therapy might
enhance repair is an important topic in need of further study. Most
questions about cardiac regeneration are still not resolved. Inter-
estingly, fish and other less developed species have an ability to
regenerate lost portions of their hearts, primarily via proliferation
of surviving myocytes that reenter the cell cycle (66, 67) post insult.
This characteristic is also present in the fetal and early neonatal
mammalian heart, but is generally absent in adult mammalian
human heart tissue. Regardless of the robustness of endogenous
cardiac repair it is clear that the adult human heart cannot repair
itself after multiple forms of injury which can lead to HF.

Adult cardiac myocytes are largely withdrawn from the cell
cycle. Therefore the loss of myocytes with disease requires new
myocyte formation to prevent cardiac functional decline. New
myocytes could be derived from old myocytes that reenter the
cell cycle or from a stem cell population with cardiogenic capac-
ity. Some laboratories have demonstrated there is a small rate
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Table 1 | Overview of animal studies with stem cell therapy.

Study Host Etiology of dysfunction Route of administration Outcomes

BONE-MARROW MONONUCLEAR CELLS (BMMNCs)

Orlic et al. (42) Mice Ligation of LAD IM ↑ LV function

Trans-differentiation

Mathieu et al. (43) Dog Ligation of LAD IM ↑ LV function, ↓ Scar

↓ Brain natriuretic protein

Neovascularization

Bel et al. (44) Sheep Ligation of CX IM No ∆ LVEF or remodeling

Waksman et al. (45) Pig Permanent occlusion IM ↓ Scar

Trans-differentiation

Angiogenesis

BONE-MARROW-DERIVED HEMATOPOIETIC STEM CELLS (HSCs)

Balsam et al. (46) Mice Ligation of LAD IM No trans-differentiation

Kajstura et al. (47) Mice Ligation of LAD IM ↑ LV function, ↓ Scar

Trans-differentiation

MESENCHYMAL STEM CELLS (MSCs)

Hatzistergos et al. (48) Pig I/R IM ↑ LV function, ↓ Scar

Trans-differentiation

Homing of endogenous SCs

Cai et al. (49) Rat Ligation LAD IM ↑ LV function

↓ Remodeling

Quevedo et al. (50) Pig I/R IM ↑ LV function, ↓ Scar

Trans-differentiation

Angiogenesis

Schuleri et al. (51) Pig I/R IM ↑ LV function, ↓ Scar

Angiogenesis

CARDIAC STEM CELLS (CSCs)

Linke et al. (52) Dog Occlusion of LAD IM ↑ LV function

Trans-differentiation

Angiogenesis

Beltrami et al. (53) Rat Ligation of LAD IM ↑ LV function

↓ Remodeling

Trans-differentiation

Fischer et al. (54) Mice Ligation of LAD IM ↑ LV function

↓ Scar

Trans-differentiation

Angiogenesis

Li et al. (55) Mice I/R IC ↑ LV Function

↓ Remodeling

Trans-differentiation

↑, Increase; ↓, decrease; No ∆ indicates change; CX, circumflex coronary artery; LAD, left anterior descending coronary artery; I/R, ischemia-reperfusion; LV, left

ventricle; IM, intramyocardial; IC, intracoronary.

of turnover in myocytes in the adult heart (68–70) but not at
a sufficient rate to repair the heart back to basal functional lev-
els post injury. Other than cardiac transplantation, there is no
therapy, which ultimately addresses the issues caused by myocar-
dial injury and the progression of cardiac remodeling. With

chemotherapeutic agents and radiation therapy affecting survival,
growth, and proliferation pathways, while increasing oxidative
stress and DNA damage, frank loss of heart muscle, and deteriora-
tion of myocardial support structure mimics other types of cardiac
injury such as myocardial infarction. Whether this cardiotoxicity
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Table 2 | Overview of clinical trials with stem cell therapy.

Study No. patients Route of administration Primary end-point Outcomes

BONE-MARROW MONONUCLEAR CELLS (BMMNCs)

Perin et al. (56) Cell = 14 IM Echocardiography ↑ LV function

Control = 7 ↓ Remodeling

↓NYHA Class

Perin et al. (57) Cell = 11 IM Echocardiography No ∆ LV function

Control = 9 ↑ Exercise capacity

↑ Perfusion

Galinanes et al. (58) Cell = 14 IM (during CABG) Dobutamine stress ↑ LV function

No Control Echocardiography ↑ Wall motion

Hendrikx et al. (59) Cell = 10 IM (during CABG) MRI No ∆ LV function

Control = 10 ↓ Remodeling

↓ NYHA class

Fischer-Rasokat et al. (42) (TOPCARE-DCM) Cell = 33 IC MRI ↑ LV function

No Control LV angiography ↑ Wall Motion

BONE-MARROW-DERIVED HEMATOPOIETIC STEM CELLS (HSCs)

Vrtovec et al. (60) Cell = 28 IC Echocardiography ↑ LV function

Control = 27

Vrtovec et al. (56) Cell = 55 IC Echocardiography ↑ LV function

Control = 55

Patel et al. (61) Cell = 10 IM (during CABG) Echocardiography ↑ LV function

Control = 10

MESENCHYMAL STEM CELLS (MSCs)

Hare et al. (62) (POSEIDON) Cell = 31 IM Computed tomography No ∆ LV function

No Control ↓LVEDV

↑ Physical performance

Karantalis et al. (63) Cell = 6 IM (during CABG) MRI ↑ LV function, ↓ Scar

No control

CARDIAC STEM CELLS (CSCs)

Bolli et al. (64) (SCIPIO) Cell = 16 IC Echocardiography ↑ LV function, ↓Scar

Control = 7 MRI

Makkar et al. (65) (CADUCEUS) Cell = 17 IC MRI No ∆ LV function, ↓Scar

Control = 8

↑, increase; ↓, decrease; No ∆, no change; Cell, Cell-treated patients; CABG, coronary artery bypass graft surgery; LVEDV, left ventricular end-diastolic volume; NYHA,

New York Heart Failure Association; LV, left ventricle; IM, intramyocardial; IC, intracoronary.

occurs acutely or chronically in breast cancer patients is unclear
but the end result is most notably DCM or RCM (20, 31, 71–73).

The fundamental principle that the human heart does not have
an adequate endogenous repair mechanism has led to the discov-
ery of isolating adult stem cells for use as a therapeutic for treating
and preventing HF, which has exploded in the scientific research
community and has given a new sense of hope to the idea of
cell-mediated repair of the heart.

BONE-MARROW-DERIVED STEM CELLS
The bone-marrow is a diverse tissue that houses many cell types,
including a variety of stem cells (56, 60, 74–76). Due to the ease
of acquisition, with already approved clinical methods and their

relatively high abundance, bone-marrow-derived stem cells have
been and continue to be investigated as a possible source of cells
that can be applied toward cardiac regeneration. This cell source is
one of the most widely examined in pre-clinical experimentation
and clinical trials to date. Here, we outline the major populations
and their potential as cell therapy.

Unfractionated bone-marrow mononuclear cells
Bone-marrow mononuclear cells are a heterogeneous mixture of
multiple cell types [hematopoietic stem cells (HSCs), mesenchy-
mal stem cells (MSCs), endothelial progenitors, and other more
committed cell population] (57–59, 74). Through a density gradi-
ent centrifugation, bone-marrow mononuclear cells (BMMNCs)
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are isolated easily from whole bone-marrow fraction. With the
easy of isolation and low maintenance in vitro, these cells have
been utilized as a source of cell therapy in many animal mod-
els. In the acute MI setting, BMMNCs have shown much promise
(42, 43). In contrast under chronic conditions of HF, the jury is
still out; conflicting results in large animal models (43–45) and
smaller scale preliminary clinical trials (77–79) still leave many
questions as to the true mechanism(s) of action and the efficacy
of this cell population. In a pig (45) model of HF, transplanta-
tion of BMMNCs provided no therapeutic benefit in terms of
left ventricular (LV) function, but the study described an increase
in angiogenesis and reduced infarct size. In another large animal
study post infarct (43), BMMNC therapy showed an improvement
in LV function, and reduced probrain natriuretic peptides (BNP)
levels in the plasma, will also sparking angiogenesis.

In the clinical arena, the results have been similar to the observa-
tions in the basic research community. The first clinical evaluation
of BMMNCs as a therapeutic was performed by Perin et al. (77);
21 patients were enrolled (14 cell-treated and 7 control). Func-
tional improvements were observed at 2–4 months; in patients
receiving cell therapy there was a 9% increase in LVEF as com-
pared to baseline and a reduction in the end-systolic volume (77).
Subsequent other trials confirmed these observations of improved
cardiac function with intramyocardial injection of BMMNCs (78).
In contrast, when cell were injected directly in the core of the dam-
age region in 20 patients all beneficial effects were negated, there
was no significant difference in LVEF or wall thickness by MRI
(80). These vastly different outcomes have many factors, which
may be playing a role in the results obtained, particularly the loca-
tion of the injected cells. The microenvironment plays a pivotal
role in the efficacy and any potential benefit cell therapy may have,
as observed in these contrasting clinical trials (one with injection
into the border zone of the infarct and the other into the core).
In studies, which investigated the role of BMMNC therapy for
non-ischemic cardiomyopathies there were promising results (81).
BMMNCs therapy increase the regional LV function and improved
microvascular function in Transplantation of Progenitor Cells and
Recovery of LV Function In Patients With Non-ischemic Dilative
Cardiomyopathy (TOPCARE-DCM), which enrolled 33 patients
to receive intracoronary administration of BMMNCs (81).

Studies of BMMNCs as a viable option for cell therapy have
yielded inconsistent results both at the bench and in small scaled
clinical trials, this is largely due to the heterogeneity of the cell
population and the yield of actual progenitors in each isolation
for therapeutic use. Larger scale trial’s must be run in order truly
understand what effect(s) this cell type may be having as an option
for cardiac regenerative therapy.

Hematopoietic stem cells
Hematopoietic stem cells reside within the bone-marrow and
commit to two different cell lineages, myeloid and lymphoid.
The major cell surface marker which is used to distinguish this
sub-population of cells from other progenitors which reside is in
the bone-marrow is cluster differentiation 34 (CD34) (82–84); a
transmembrane cell adhesion protein that has implicated in the
literature to denote stem cells, which has a hematopoietic or vas-
cular lineage. HSCs are mobilized from the bone-marrow into

the peripheral blood during ischemic events to begin the process,
which leads to revascularization (75). Researchers and clinicians
felt that by isolating this population of cells and reintroduc-
ing them in more concentrated numbers would promote greater
revascularization than observed by endogenous mechanisms post
cardiac injury (46, 47, 75).

Numerous clinical trials have been performed evaluating
CD34+ cells in patients with both ischemic (61) and non-ischemic
(56, 60) cardiomyopathy. Vrtovec et al. (56) looked to understand
the beneficial effects of this cell population against non-ischemic
cardiomyopathy by delivering the cells intracoronary to 55 of the
110 patients enrolled; this led to a ~5% increase in LVEF, improve-
ment in the 6-min walk test and decreased probrain natriuretic
peptide plasma levels. A 5-year follow-up study was able to demon-
strate that the transplantation of these cells had an effect over
a sustained period much longer than most trials (60). The true
mechanism by which this population of cells is having an effect
is still not understood, but the major consensus amongst those
in the field would be an increase in perfusion via revasculariza-
tion. Preliminary clinical work with CD34+ hematopoietic cells is
promising for both ischemic and non-ischemic cardiomyopathy,
as with most of the cell types discussed here, a major limitation
is the small sample sizes in these trials and lack of understand-
ing as to the mechanism of action, which is due to an inability to
apply standard methods utilized in basic research, toward human
patients (i.e., immunohistochemistry, fluorescent microscopy, and
molecular analysis).

An important issue concerning this cell population is the fact
that only autologous transplantations have been performed. For
the average patient who has been enrolled in such Clinical trials to
date, this resident population of cells can be easily harvested and
utilized for cell-based therapy. In terms of the subset of patients
discussed here, this may not be the case. For individuals who
have received or continue to undergo chemotherapy and radia-
tion treatment, the CD34+ HSC population may be exhausted or
non-existent all together (85, 86). This would subsequently elimi-
nate this population of progenitors as a viable option for cell-based
therapy to treat any cardiomyopathy induced by chemotherapeutic
treatment of breast cancer. If this population of stem cells were to
be beneficial against cardiotoxicity, it may be necessary for patients
to undergo isolation prior to cancer treatment, so that cells could
be isolated and expanded for future autologous cell-based therapy
if needed. Other populations within the bone-marrow do exist
and do not have to be autologous in nature for transplantation.

Mesenchymal stem cells
Bone-marrow-derived MSCs are a sub-population of cells charac-
terized by their adherence in culture (87). They also have begun
to characterize a host of cell surface marker, which identifies this
population within isolated bone-marrow. The majority of MSCs
express CD29, CD73, CD90, and CD105 while being negative for
hematopoietic lineage markers CD34 and CD45 (87, 88). Oth-
ers have demonstrated sub-populations within the MSCs, which
express these markers and a plethora of others (89, 90). The
multipotentiality of these cells to differentiate into osteoblast,
chondrocytes, adipocytes in vitro (91–94) is well documented and
cardiomyocytes in vivo (95–97), which is still controversial (98).
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Paracrine signaling is one of the major mechanisms thought to
elicit improvement by MSC therapy (48, 99) in the heart. This is
due to release of numerous growth- (48), anti-apoptotic- (100,
101), and/or angiogenic- (49, 102) factors helping protect the
myocardium and augment some of the adverse remodeling. Fur-
thermore, MSCs demonstrate a capacity to engraft in a large ani-
mal model of MI (50, 51, 103) and have shown an ability to evade
immune rejection (52, 104–106). In recent studies, results indicate
MSC contributed directly to inhibition of inflammatory responses
(107, 108), which may be the mechanism behind the observed
reduction in scar size in both animal models and clinical trials (51,
62, 63). While there is still skepticism, this characteristic could
allow MSCs to be used as an allogeneic source of cells, overcoming
the need for isolation and expansion of autologous cell sources.

With many clinical trials looking to understand the beneficial
effect of numerous different cell types in patient suffering from
cardiac related dysfunction, MSCs in recent years has become
more popular for translational applications in patients (62, 63).
Hare et al. (62) investigated MSC’s and their effect(s) on 15 of
the 30 patient enrolled in the clinical trial Percutaneous Stem Cell
Injection Delivery Effects on Neomyogenesis (POSEIDON). This
trial look to see if there was any dose dependent effect of MSC’s
in patients who were suffering from ischemic cardiomyopathy
(ICM). The data demonstrated,at all three doses, that MSC admin-
istration was favorable when measuring end-points of quality of
life, functional capacity and ventricular remodeling (62). Krantalis
et al. (63), in the Prospective Randomized Study of Mesenchy-
mal Stem Cells Therapy in Patients Undergoing Cardiac Surgery
(PROMETHEUS) trial, investigated the injection of MSC’s in six
patients receiving coronary artery bypass graft surgery (CABG).
Those regions of the myocardium, which received cell therapy
demonstrated a decrease in scar mass compared with baseline at
18 months follow-up (63). An overwhelming number of clinical
trials that are “recruiting” encompass MSC’s therapy exclusively
or as part of their treatment strategy (109). At this point, MSC’s
are becoming more promising for clinical applications and widely
investigated for the utility of cardiac regeneration in the clinical
setting.

CARDIAC STEM CELLS
Cardiac-derived stem cells have also been in the spot light of ani-
mal investigations and recently, clinical trials (53, 54, 65, 110–113).
The discovery that the heart is in fact an organ, which has the
ability to have cellular turnover and renewal (both of myocytes
and non-myocytes) refutes the long withstanding dogma that the
heart is a post-mitotic organ. This renewal is thought to be derived
from a population of stem cells, which reside as niches within the
myocardium (110). New methodology has been developed over
the last decade to isolate (53) and characterize these cells in vitro
(53, 111) and investigate their therapeutic potential. The isolation
of CSCs has given hope that these cells will be predisposed to an
increased probability of neomyogenesis as compared to other cell
types discussed previously.

C-kit (+)/hematopoietic lineage (−) CSCs
This cell population was first described in 2003 by Beltrami et al.,
cells were isolated from a rodent heart (53). The manuscript

describes a cell population isolated from cardiac tissue that
expressed a tyrosine kinase receptor c-kit, now a known marker
of stemness (53). This population not only fit the classical defini-
tion of a “stem cell” (self-renewing, clonogenic, and multipotent)
but also differentiated into cardiomyocytes, smooth muscle cells,
and endothelial cells in vitro and in vivo (53, 110, 111). Human
cardiac c-kit+ positive cells were isolated some 4 years later (111).
Since then, injection of isolated c-kit+ CSCs and studying the
beneficial effects has been overwhelming; multiple laboratories
and basic research studies have demonstrated that post injection
an alleviation of LV dysfunction and adverse remodeling, while
showing the elicit response of regeneration due to injection (54,
55, 114). With such positive outcomes in rodent models (54, 55,
115), this cell type was soon moved to a pre-clinical large animal
model. Bolli et al. (64) investigate the role on intracoronary infu-
sion of CSCs 3 months post-MI and found a significant difference
in LVEF as compared to vehicle treated animals, while demonstrat-
ing increased wall thickness and beneficial changes in the maximal
developed pressure, as well as, a lower diastolic pressure. With that,
this work in the large animal model laid the ground work for a
human clinical trial investigating the efficacy and safety of CSC’s
in patients. The Stem Cell Infusion in Patients with CardiOmy-
opathy (SCIPIO) clinical trial update discussed the infusion into
the coronary circulation, 1 million c-kit+/lineage – CSC’s into 16
patients with LV dysfunction (113). The authors concluded that
these cells produced better LV systolic function through reduc-
tion of scare size in patients with MI, and further clinical trials
should be performed (113). With promising results in the phase
I trial, CSCs are bidding to become the superior choice in choos-
ing a cell type for cardiac cell therapy. While clinical trials are
ongoing, there has only been one small animal study investigating
the therapeutic potential of CSC therapy post chemotherapeu-
tic cardiotoxicity, this study as discussed above (cardiotoxicity
section) looked to solidify the mechanism by which the cardiotox-
icity occurs and utilized c-kit+ CSCs as a therapeutic intervention
to combat the adverse effects observed (31). De Angelis et al. (31)
concluded that cell-based therapy promoted regenerative capac-
ity of the myocardium, improved cardiac pump function, and
decreased mortality.

Collectively, with all the successes of pre-clinical and clinical
trials to date, there is much more work that is needed to fully
understand the therapeutic potential of cell-based therapy for all
types of cardiac disease states regardless of the etiology.

CELL THERAPY POTENTIAL FOR
CHEMOTHERAPEUTIC/RADIATION-INDUCED
CARDIOTOXICITY IN BREAST CANCER PATIENTS
With the plethora of basic science and clinical research performed
on isolating and characterizing a number of adult stem cells to
be utilized for cardiac cell therapy in the past two decades, we as
a field still do not know which cell type, and/or combination of
cells will be most beneficial. The work has yielded some rewards
despite most questions still not having answers; we now under-
stand that multiple tissues have population of stem cells that have
the capacity to be beneficial toward heart function post injury
and inhibit adverse remodeling, while improving quality of life
in patients suffering from many different cardiac disease states
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FIGURE 1 | Proposed mechanisms of stem cell-mediated repair.
Transplantation of stem cells into the heart initiates repair of damaged tissue.
The hypothesized repair mechanisms are both direct and indirect,
trans-differentiation of stem cells into new cardiomyocytes and vascular cells,
inhibition of apoptosis, mobilization of endogenous cell populations,

alterations in ECM remodeling, and neovascularization. Collectively, these
processes reduce adverse cardiac remodeling, increase the possibility of
perfusion, repair/regenerate damaged tissues, and ultimately improve left
ventricular cardiac pump function & patients clinical end-points. Illustration
credit: Thomas E. Sharp III.

(15, 16, 42, 50, 51, 56, 62, 64, 69, 83, 100, 102, 113). Despite
not fully understanding the mechanism of action, the field has
a general consensus on ways in which stem cell therapy is work-
ing to improve cardiac function (Figure 1); animal studies have
shown beneficial effects of stem cell therapy through paracrine
factor secretion (48, 99, 100), trans-differentiation into multiple
cell types, which help to improve cardiac function (92, 116) and
through homing of endogenous stem cells to the site of injury
(48, 76). The cell types discussed above do not all work with the
same mechanism of action; it has been demonstrated that MSCs
most likely work through paracrine factor production and secre-
tion (48, 51, 74, 117–119), while BMMNCs and CSCs have the
ability to form new blood vessels for better perfusion (46, 47, 53–
55, 59, 75–77, 79, 85, 86, 89, 96, 110, 120, 121) and create new
myocyte from transplanted cells (53, 55, 64, 111–115, 122, 123).
Below, we discuss the major mechanisms and how they may be
beneficial toward patients suffering from cancer treatment-related
cardiotoxicity.

TRANS-DIFFERENTIATION OF TRANSPLANTED CELLS
The logical explanation for using stem cell therapy to repair
the heart is the idea in which transplanted cells will form new
myocardium replacing lost or damage tissue. As obvious as this
may seem, data acquired thus far in the field of cardiac regen-
eration would suggest that little trans-differentiation is actually
occurring, and that this is probably the least likely mechanism of
action for the observed improvements post therapy. Much of the
debate still goes on as to the amount or proportion of beneficial
effects that should be attributed toward trans-differentiation. Still
highly controversial is the notion that cell populations derived
from the bone-marrow (HSC’s, MSC’s, and CD34+ SC’s) form
new cardiac myocytes; numerous laboratories have evidence sup-
porting such notions (124, 125), while others contest these con-
clusions (46, 126). Alternatively, some suggest that the mecha-
nism of action is fusion of the injected cells with endogenous
surviving myocytes (127, 128). Discussed in more detail below,
most would agree that the major mechanism of action may be
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paracrine factor production and secretion (100, 101). While in
the acute MI disease model, there is strong evidence for trans-
differentiation (53, 110, 129–131); in the post-MI HF large ani-
mal model the data would suggest that the amount of trans-
differentiation observed is insufficient to explain the significant
increase in cardiac function post injury and after therapeutic inter-
vention (64). In recent years, the debate has turned more toward
understanding the proportion of new myocyte formation in the
different cell types (discussed above) and how the quantification
of this trans-differentiation is proportionate or disproportion-
ate to the improved cardiac function. In patients suffering cancer
therapy cardiotoxicity, trans-differentiation of transplanted stem
cells may allow for the replacement of cells that may otherwise
have died from necrosis (132) or other proposed mechanisms
(3, 6, 14, 18–20, 31, 36, 38, 133) due to chemotherapeutic treat-
ment and in turn limit the amount of fibrosis which develops.
In limiting the fibrosis, in patients suffering from chemothera-
peutic/radiation cardiotoxicity, we would anticipate less adverse
remodeling and subsequently better outcomes over time. As dis-
cussed above, this mechanism is likely unable to account for any
or all the benefit which may occur in these patients post-stem cell
treatment.

NEOVASCULARIZATION
The creation of new blood vessels de novo may be of great benefit to
patients who suffer from chronic or persistent coronary occlusion,
which develops into ICM. This may occur in cancer patients due
to the anti-angiogenic nature of classical chemotherapeutics (3, 5,
40) and frank loss of vascular structure from radiation therapy. On
the contrary, those who suffer from non-ischemic cardiomyopa-
thy, it is difficult to see the beneficial aspects of utilizing cells which
have demonstrated in experimental models to create new vascula-
ture. What may be the most important mechanism or alternative
action, which has allowed for the most benefit, is paracrine factor
production/secretion and signaling.

PARACRINE SIGNALING
In reality, the inability (up to now) to solidify the mechanism of
action by which stem cells act on the heart has led to great emphasis
on the paracrine hypothesis (100). This concept hypothesizes that
transplanted cells modulate the myocardial milieu in the injury site
by secreting factor that signal to the surrounding cells and tissue(s).
Paracrine signal may in fact promote a multitude of reparative and
regenerative processes, like: promoting cell survival, the inhibition
of cell apoptosis, promoting a new blood vessel formation, favor-
able changes to the extracellular matrix (ECM), modulation of
the inflammatory response which occurs upon injury, and acti-
vation/homing of endogenous stem cell populations to the site of
injury. This signaling can also play a key role in the ability for trans-
planted stem cells to thrive in a harsh environment by autocrine
signaling and positive feedback loops. In concert, these actions
promote better LV function and slower progression of remodeling
and development of HF.

Cell survival and inhibition of apoptosis
Numerous basic research studies have suggested the production
and secretion of paracrine factors [like, insulin like growth factor-
1 (IGF1) and secreted frizzled-related protein-2 (SFRP2)] inhibit

cardiomyocyte apoptosis (101, 134). Another parameter, which
may assist in the pro-survival hypothesis is the modulatory affect
of the stem cells toward the immune response (101, 108, 135). In
augmenting the immune response one could hypostulate less acti-
vation of the positive feedback loop within the innate and adaptive
immune responses to cardiac injury. This in turn, would limit
cell death and deposition of ECM proteins, which could potential
preserve the myocardium and LV function.

Angiogenesis
In a recent study of a rodent model of MI, Duran et al. (136) was
able to demonstrate the production of specific paracrine factors by
stem cells, which promote angiogenesis and incorporation of stem
cells into newly formed vasculature in vivo. Multiple cell popula-
tions have been described as producing angiogenic factor such as:
fibroblast growth factor-2 and -7 (FGF) (137), platelet-derived
growth factor (PDGF) (138), and vascular endothelial growth
factor (VEGF) (100, 137). With chemotherapeutics being highly
toxic and anti-angiogenic (3, 5, 40), utilizing stem cell therapy
to maintain/repair vasculature and promote the neovasculariza-
tion of areas, which may be lacking blood supply is an important
idea. While some may caution the notion of promoting neovas-
cularization and angiogenesis in patient suffering from cancer in
fear of potentially promoting vascularization of present tumors
and causing metastasis, one should withhold their reservations,
as techniques, which are used to deliver the stem cells are usually
performed locally within the organ [intracoronary delivery (55,
64, 65, 102, 121, 139, 140) and intramyocardial injection (77, 119,
141–143)]. Aside from this minor concern, this therapeutic ben-
efit from stem cell administration is one of the more promising
for patients who have been administered chemotherapeutics or
undergone radiation treatment, which are hailed for the ability to
inhibit vasculature formation.

ECM remodeling
Under the paracrine hypothesis, stem cells have been ascribed
the ability to augment deleterious alterations in the ECM (138,
144–146). Post stem cell therapy has shown in rodent models of
MI to reduction in scar size, reduced fibrosis, and subsequently
inhibition of LV remodeling (74, 118, 137, 140, 146–148). While
there is no significant scar formation in patients who suffer direct
cardiotoxicity from chemotherapy, the reduction in fibrosis may
play an important role in these patients. In having the capacity
to change the cell niche with which myocardial cells reside is an
important factor, as most chemotherapeutic cardiotoxicity is not
due to ischemia, rather a change in the abundance of fibrosis in
the cellular milieu (3, 5, 13, 20, 40) and cell death.

Homing of endogenous progenitor populations
With a wide variety of paracrine factors being produced by stem
cells, specific factors have been implicated in mobilizing and hom-
ing endogenous stem cells pools to the site of injury or sites of
transplantation of exogenous cells (48, 140). Such factor include:
stem cell-derived factor (SDF) (138), hepatocyte growth fac-
tor (HGF), and IGF (100, 101). These factor collectively permit
endogenous stem cell homing, proliferation, and differentiation
into myocardial cell types (myocytes and vascular cells), concur-
rently with some of the other beneficial effects observed with such
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factors as IGF [which has demonstrated to be pro-survival (101)].
In patients who have undergone chemotherapy, this mechanism
of mobilizing native stem cells is probably not likely, as with most
of the basic research studies performed thus far have concluded
that chemotherapeutics are deleterious to endogenous stem cell
population (23, 31, 132, 149).

Autocrine signaling
While the paracrine signaling hypothesis discusses the therapeu-
tic nature of growth factor signaling on endogenous tissue(s),
the hypothesis has also given rise to scientific investigation of
this signaling on the cells, which produces them. Many laborato-
ries have demonstrated that autocrine signaling of growth factors
and factors of stemness are necessary for self-renewal, mainte-
nance, survival, and growth. FGF (150–152) has been shown to
drive self-renewal, inhibit cellular senescences, and inhibit apop-
tosis. While others have demonstrated that SDF plays a critical
role in survival and maintenance of the stem cell(s) (153). This
paracrine/autocrine signaling may help enhance the other effects
that transplanted cells may have on endogenous tissue by allowing
the transplanted cells to be retained and produce more of these fac-
tors, while also enhancing the possibility of trans-differentiation,
due to longer retention.

While these major mechanisms of action are being vetted in
animal models, one thing has become certain; the therapeutic
benefit of stem cells is not exclusively made up of a single mecha-
nism but more likely multi-factorial and in different proportions
depending on the stem cell population chosen for therapeutic
intervention. While most studies have not looked at stem cells
therapy for chemotherapeutic/radiation cardiotoxicity, some basic
research publications have indicated improvement with stem cell
administration (31).

CHALLENGES FACING CELL-BASED THERAPY
With any novel therapeutic in the R & D phase there are many
unknowns and obstacles, which must be investigated. Clinical
trials of stem cells therapy for patients suffering from cardiac
pathologies similar to those observed in patients with chemother-
apeutic/radiation cardiotoxicity have shown promise (56, 62, 65,
77, 78, 113, 121, 154, 155), but there is more work needed to
be done in order to truly understand the mechanisms behind
the improved cardiac function. Once recognizing and establish-
ing more concrete comprehension of the therapeutic benefit of
such an intervention, the medical community will be able to make
a more informed decision as to whether or not stem cells are a
viable option for treatment of chemotherapeutic cardiotoxicity.
There are many questions, which are still unresolved, for exam-
ple: (1) understanding what stem cell populations are optimal
for regeneration, (2) is there a dose dependent effect, and (3)
what time points should cell therapy be administered and how
frequent. These issues can only be answered with more careful
planned pre-clinical and clinical trials, not only for more broad
cardiac disease states (like acute MI and congestive HF), but also in
concentrating on understanding the negative effects of chemother-
apeutic/radiation cardiotoxicity and the potential of cell-based
therapy in this context. With this, we believe that stem cell-based
therapy is one of the frontiers still left in medicine today. There

is an enormous amount of potential for regenerative medicine in
context of the heart and will probably be a viable option for the
treatment of chemotherapeutic/radiation-induced cardiotoxicity.
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