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The striking similarity displayed at the mechanistic level between tumorigenesis and the
generation of induced pluripotent stem cells and the fact that genes and pathways rele-
vant for embryonic development are reactivated during tumor progression highlights the
link between pluripotency and cancer. Based on these observations, we tested whether it
is possible to use a pluripotency-associated transcriptional reporter, whose activation is dri-
ven by the SRR2 enhancer from the Sox2 gene promoter (named S4+ reporter), to isolate
cancer stem cells (CSCs) from breast cancer cell lines.The S4+ pluripotency transcriptional
reporter allows the isolation of cells with enhanced tumorigenic potential and its activa-
tion was switched on and off in the cell lines studied, reflecting a plastic cellular process.
Microarray analysis comparing the populations in which the reporter construct is active
versus inactive showed that positive cells expressed higher mRNA levels of cytokines (IL-
8, IL-6, TNF) and genes (such as ATF3, SNAI2, and KLF6) previously related with the CSC
phenotype in breast cancer.
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INTRODUCTION
Cancer stem cells (CSCs) play a central role in tumor progression
and recurrence, but our knowledge of their biology and origin
is still limited. The lack of good CSC markers in solid tumors
could explain our limited understanding of its biology and ham-
pers the development of more efficient chemotherapy treatments.
In breast cancer, fluorescent substrates (like Aldefluor), DNA dyes
(such as Hoechst 33342 or Rhodamine 123 for the isolation of
the side population) or different combinations of surface markers
(CD24, CD44, CD133, CD49f, CD29, CD90, CD14) can be used
to isolate little overlapping cell populations displaying enhanced
tumor-initiating potential. To better understand the origin and
dynamics of breast CSCs and to be able to use this knowledge
to develop novel therapeutic approaches, new isolation methods
and/or more specific combinations of markers are needed.

Cancer and developmental biology scientists realized over a
century ago that genes and pathways relevant to cancer overlap
with fetal development as reflected in the reactivation of embry-
onic genes during tumor progression. Consequently, the question
was raised of whether tumors could arise from transformation of
tissue stem cells or “retro-differentiation” of more differentiated

cells (1). Nearly 40 years latter, these ideas and questions are still
hot spots in cancer research. The “retro-differentiation” concept
can be now translated as cellular plasticity, a process by which non-
stem differentiated cells can spontaneously acquire stem cell-like
characteristics (2). This phenomenon has important implications
for cancer therapy and a big impact on our current view of the
CSC hypothesis. The CSC model holds that tumors are organized
in a cellular hierarchy in which CSCs are the only cells with unlim-
ited proliferation potential and responsible for tumor growth and
propagation. Originally, the CSC hypothesis was a linear model
with the CSC on the top of the hierarchy and the more differenti-
ated cells on the bottom, but the concept of cellular plasticity and
experimental observations are challenging this model (3).

It is striking that the similarity observed at the mechanistic level
between tumorigenesis and the generation of induced pluripotent
stem (iPS) cells from fibroblasts as described by Takahashi and
Yamanaka (4). The production of these iPS cells required the over-
expression of four transcription factors, Oct4, Sox2, Klf4, and c-
Myc, although Klf4 and c-Myc can be replaced by Lin28 and Nanog
(5) and may even be dispensable. The efficiency of this repro-
graming process is extremely low and remains so far an in vitro
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phenomenon since there is no evidence that it can naturally occur
in vivo. The mechanisms underlying the reprogramming process
are not well understood yet; however, the three main transcrip-
tion factors Oct4, Sox2, and Nanog, called master regulators of
pluripotency, have proved responsible for maintaining the undif-
ferentiated state (6, 7). Recently, the processes of reprograming
and tumorigenesis have been linked as the p53 tumor suppressor,
one of the main regulators of oncogenic transformation, controls
the induction of pluripotency (8–10).

Both processes, reprograming and transformation, need the
expression or activation of oncogenes, inactivation of tumor sup-
pressor genes, overriding the senescence and apoptotic barriers
and both processes also involve epigenetic changes and a meta-
bolic switch toward a glycolytic metabolism (11, 12). The work
from Illmensee and Mintz (13) in the mid 70s strengthens the
bonds between pluripotency and cancer. They demonstrated that
teratocarcinoma cells are developmentally pluripotent since single
teratocarcinoma cells injected into mouse blastocysts can differen-
tiate into many developmentally unrelated tissues. In recent years,
the work from Gill Smith’s group has shown that breast CSCs are at
least multipotent. Their work clearly shows that CSCs when placed
in the right microenvironment can behave as phenotypically nor-
mal and can contribute to all cell types within the mammary gland
epithelium (14, 15). Furthermore, it has been shown that breast
CSCs have the ability to differentiate not only in epithelial but also
in the endothelial lineage (16). This ability of CSCs to differentiate
into unrelated cell types is also supported by the fact that glioblas-
toma stem/progenitor cells can differentiate into endothelial cells
contributing to the vascularization of the tumor and hence to
tumor progression (17).

Sox2 is a good example of a gene involved in embryonic
development whose expression is reactivated during tumor gener-
ation, as Sox2 is critical to maintain the pluripotent phenotype in
embryonic stem cells (ESCs) (18) and its expression is reactivated
during tumor progression (19–22). Furthermore, Sox2 is part of
the original Yamanaka cocktail of transcription factors necessary
to reprogram somatic adult cells into iPS cells. These observa-
tions, together with the lack of reliable surface markers to isolate
breast CSCs, drove us to test whether a pluripotency transcrip-
tional GFP reporter based on the SRR2 enhancer from the Sox2
gene, developed to isolate IPS cells (23), can be used to isolate cells
with cancer stem-like properties from breast cancer cell lines (24,
25). Our results showed that the activation of this transcriptional
GFP reporter in breast cancer cell lines is dynamic and identi-
fies a subpopulation of cells with enhanced tumorigenic potential.
Furthermore, when cultures depleted of GFP-positive cells were
established and followed over time, some cells switched on the
reporter and after a while GFP-negative and GFP-positive popu-
lations reached a steady state. Interestingly, the cells in which the
reporter is active display higher mRNA levels of IL6, IL8, TNF,
ATF3, KLF6, or SNAI2, genes previously related with the CSC-like
phenotype and cellular plasticity in breast tumors.

MATERIALS AND METHODS
CELL LINES AND CULTURE CONDITIONS
MCF7 and MDA-MB-231 breast carcinoma cell lines were
obtained directly from ATCC (Manasses, VA, USA) and were

grown in DMEM (Gibco, Carlsbad, CA, USA) supplemented with
10% fetal bovine serum (Sigma, St. Louis, MO, USA) and 1%
Penicillin/Streptomycin (Sigma, St. Louis, MO, USA). MDA-MB-
436 cell line was a kind gift from T. Stein (University of Glas-
gow, UK, previously obtained from ATCC, Manassas, VA, USA)
and was grown in DMEM (Gibco, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum (Sigma, St. Louis, MO,
USA), 20 ng/ml Insulin (Sigma, St. Louis, MO, USA) and 1% peni-
cillin/streptomycin (Sigma, St. Louis, MO, USA). All the cell lines
were kept at 37°C in a 5% CO2 incubator.

MOUSE XENOGRAFT ASSAYS
Female 6-week-old athymic nude mice (Balb/c Nu/Nu) were
purchased from Charles River, and were housed in specifically
designed pathogen-free isolation animal facility. All animal pro-
cedures were performed in accordance with institutional animal
care and use guidelines and approved by the IRB. GFPHigh and
GFPLow MCF7 cells were resuspended in 200 µl of PBS with
matrigel and subcutaneously inoculated in left and right caudal
mammary fat pads. In all, 2.5× 106; 0.5× 106, and 0.25× 106

GFPHigh MCF7cells were inoculated in the right mammary fat
pad, with their respective GFPLow MCF7 controls in the left mam-
mary fat pad. Mice were weighed and the inoculation sites were
inspected by palpation at weekly intervals. When tumors become
detectable manually, the growth rates were determined by weekly
measurement of two diameters of the tumor with a Vernier caliper.
The tumor volume was estimated as the volume of an ellipse using
the following formula: V = 4/3× (a/2)× (b/2)2, where “a” and
“b” correspond to the longest and shortest diameter, respectively.
Animals were euthanized when their tumors were harvested.

FLOW CYTOMETRY AND MICROSCOPY
Cells were harvested by trypsinization, trypsin was inactivated
with regular medium, and DNAse I was added at a final concen-
tration of 0.2 mg/ml, cell suspensions were incubated at 37°C for
another 10 min and spun down, and finally cell pellets were resus-
pended in a suitable volume of sorting buffer (PBS w/o Ca and
Mg, 1% BSA, 5 mM EDTA). TO-PRO-3 (Molecular Probes, Life
Technologies) was added as dead cell indicator and BD FACSAria
or BD FACSCanto machines were used for sorting and analysis
experiments following the gating strategy depicted on the Figure
S2 in Supplementary Material. When tracking the changes in the
percentage of GFPHigh cells over time the FACSCanto was cali-
brated prior to the analysis using the Spherotech Rainbow beads
(Spherotech Inc., Lake Forest, IL, USA) to ensure consistent signals
over the course of the experiment and verify proper function of
the machine.

MICROARRAY ANALYSIS
Total RNA from freshly sorted MCF7S4+ GFPHigh and GFPLow

cells was prepared using TRIzol (Life Technologies) and whole
genome gene expression analysis was performed using the
HumanHT-12 v4 Expression BeadChip platform (Illumina) con-
taining 47323 probes per chip. Data were standardized using
background correction and quantile normalization (26). Differ-
ential gene expression was carried out using the limma (27)
package from Biocondui (http://www.bioconductor.org/). We per-
formed a statistical test for each probe according to Benjamini and
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Hochberg (28) methodology. Gene set analysis was carried out
for the Gene Ontology terms using FatiScan (29) in Babelomics
(30) (http://babelomics.bioinfo.cipf.es/). This is a web-based pro-
gram for the functional interpretation of large-scale experiments.
The test aims to directly test the behavior of blocks of function-
ally related genes, instead of focusing on single genes. This tool
detects significantly up- or downregulated blocks of functionally
related genes in lists of genes ordered by differential expression.
FatiScan returns adjusted p-values based on false discovery rate
(FDR) method (28, 31). Significant GO terms were represented by
directed acyclic graphs from Blast2GO (32). GO annotation for
the genes in the microarray where taken from Ensembl 56 release
(http://www.ensembl.org).

LENTIVIRAL GENE TRANSFER
Lentiviral particles encoding the pluripotency transcriptional
reporter pL-SIN-EOS-S(4+) EGFP (23) were produced in-house
at the Viral Vectors Core Unit. Cell lines were plated the day before
the infection in six-well plates at a cell density of 0.25× 106 cells
per well and exposed to the lentiviral particles at a MOI 2.5 in
serum free medium for 6 h, cells were washed twice with serum
free medium and kept in regular medium thereafter.

RESULTS
THE S4+ TRANSCRIPTIONAL REPORTER IS ACTIVE IN BREAST CANCER
CELL LINES
The pL-SIN-EOS-S(4+) EGFP pluripotency transcriptional
reporter (from now on S4+ reporter) was described by Hotta
et al. (23) as a tool to isolate human iPS cells. The backbone of this
reporter is based on the EOS lentiviral system and the synthetic
promoter controlling the expression of the EGFP reporter is made
of a minimal promoter sequence derived from the LTR promoter
from an early transposon (ETn) and four tandem repeats of the
SRR2 enhancer sequence from the Sox2 gene (Figure S1 in Supple-
mentary Material). To test whether this pluripotency reporter is
active in breast cancer cell lines, cell lines MCF-7S4+ (representing
the most common luminal breast cancer type), MDA-MB-231S4+
(as example of mesenchymal-like breast carcinoma), and MDA-
MB-436S4+ (representing BRCA1 deficient breast cancer) were
generated from parental cell lines through lentiviral gene trans-
fer of the pL-SIN-EOS-S(4+) EGFP transcriptional reporter. The
activation of the transcriptional reporter was analyzed by fluo-
rescence microscopy to detect GFP expression. The three S4+
derivative cell lines expressed different levels of GFP in individual
cells as shown in Figure 1. To quantify the number of cells express-
ing GFP and its expression levels, FACS analysis was performed.
As shown in Figure 1, most of the GFP-positive cells expressed low
levels of GFP with just a few cells expressing high levels of GFP in
the three cell lines.

CELLS IN WHICH S4+ REPORTER IS ACTIVE ARE MORE TUMORIGENIC
One of the first questions we made after we found out that the
S4+ reporter is active in a small population of cells was if there
is any difference in tumorigenic potential between the GFP+ and
GFP− cells. Before we could address this question, we performed
a calibration experiment to find out the minimum GFP levels
detected on the FACS machine that can be detected by the naked

eye on the microscope to help us decide which populations to
select for the assay. MCF7S4+ cells were used to establish regions
of fluorescence intensity (termed P2-P11) so cells falling in gates
P10, P11, and P3 were GFP fluorescent when examined under the
fluorescent microscope, as shown in Figure S2 in Supplementary
Material, thus we decided to use cells in gate P3 as GFPHigh for
further studies. We decided to select the gate P4 as GFPLow and
not one of the gates on its right because in the latter ones there is a
potential mixture of cells in which the reporter is inactive and cells
lacking any viral integration. As control, expression of Sox2 was
checked through RT-PCR, showing increased expression of Sox2
in GFPHigh cells compared to GFPLow cells, as expected.

On the basis of these results, we tested if there is any difference
in tumorigenic potential between GFPHigh and GFPLow cells in the
MCF7S4+ cell line. GFPHigh and GFPLow populations were then
FACS sorted, injected subcutaneously in each flank of nude female
mice, and tumor growth was monitored for 8 weeks. As shown in
Figure 2, tumors coming from GFPHigh cells grew out first and
faster than tumors initiated by GFPLow cells, and this difference is
more evident when higher numbers of cells are injected. We used
MCF7S4+ cells as model for tumorigenesis in xenograft experi-
ments instead of a mesenchymal-like model of breast cancer (such
as MDA-MB-231S4+) because mesenchymal-like breast carci-
noma cells are very invasive and spread rapidly when xenografted
to immunocompromised mice, making this model unfeasible to
compare direct tumorigenicity.

THE S4+ TRANSCRIPTIONAL REPORTER IS DYNAMIC IN BREAST
CANCER CELL LINES
Hotta et al. have shown that the S4+ reporter is dynamic; it is off in
non-pluripotent cells, such as fibroblasts, turns on in iPS cells, and
turns off again when the iPS cells are induced to differentiate into
any lineage. To test whether the reporter is also dynamic in breast
cancer cell lines, GFPHigh and GFPLow populations where sorted,
placed in culture and changes in fluorescence where monitored by
FACS analysis at each passage. When GFPLow cells are placed in
culture, the heterogeneity of the parental cell line is restored after
just few days in culture (Figure 3), the same is true for the GFPHigh

population. The S4+ transcriptional reporter is also dynamic in
MDA-MB-231 and MDA-MB-436 breast carcinoma cell lines, as
shown in Figure S3 in Supplementary Material.

To confirm that the transcriptional reporters are dynamic and
the restoration of the heterogeneity observed in the original cell
line is not due to contamination during the sorting process, a
clonogenic assay was set up using the MCF7 S4+ cell line. To carry
on this assay, individual GFPHigh or GFPLow cells were FACS sorted
into each well of a 96-well plate, each well was checked for the
presence of an individual cell at the microscope, and after 3 weeks,
the colonies were scored for the presence of mixed-colonies with
GFP+ or GFP− cells by fluorescence microscopy (experimental
outline depicted in Figure S4 in Supplementary Material). This
assay shows that the frequency of firing is much lower than the fre-
quency of extinction of GFP as it would be expected if GFP labels
CSCs and the dynamic activity of the transcriptional reporter
reflects cellular plasticity (Table 1).

In these series of experiments, we observed that when
MCF7S4+ GFPLow cells are placed in culture they switch on
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FIGURE 1 | S4+ pluripotency transcriptional reporter is active in breast
cancer cell lines. (A) On the left, fluorescence images of MDA-MB-231,
MDA-MB-436, and MCF7 cell lines infected with the S4+ reporter to detect
GFP expression. On the right are shown the fluorescence image (in green)
merge with the bright-field image. (B) FACS plots of the wild-type cell lines

MDA-MB-231, MDA-MB-436, and MCF7 and the S4+ derivatives infected
with the S4+ reporter. On the bigger plot, GFP fluorescence is displayed on
the X -axis and the fluorescence collected through the 695/40 filter on the
Y -axis. On the inset, GFP fluorescence is displayed on the X -axis and the
forward scattering on the Y -axis.

the S4+ reporter, and after a few passages, the culture reached a
steady state in which the percentage of GFPHigh cells stays around
0.1–0.3%.

IDENTIFICATION OF GENES DIFFERENTIALLY EXPRESSED AMONG
GFPHIGH AND GFPLOW POPULATIONS
GFPHigh and GFPLow populations from the MCF7S4+ cell line
were isolated by FACS and total RNA was prepared to perform
microarray analysis on the Illumina HumanHT-12_V4 BeadChip
platform. Results were normalized and analyzed using Biocon-
ductor and Babelomics, showing that 42 genes were found dif-
ferentially expressed between the two populations with an adj.
p-value < 0.1, with 40 of those genes showing higher expression

in the GFPHigh population (Figure 4). Among the genes upreg-
ulated in GFPHigh cells are cytokines (IL-6, IL-8, or TNF) and
transcription factors (KLF6, ATF3, SNAI2) that have been pre-
viously related with cancer stemness, cellular plasticity, or both.
GO analysis showed enrichment in genes related to anti-apoptosis
(GO:0006916) and positive regulation of nitric oxide biosyn-
thetic process (GO:0045429) among others (Figure 4). Inter-
estingly, increased nitric oxide synthase expression in estrogen
receptor-negative breast cancer patients predicts poor survival (33)
and the enrichment in anti-apoptotic genes can contribute the
intrinsic chemoresistance characteristic of BCSCs (34). Further
experimentation will be needed to validate the links between these
processes, specially inflammation, and CSC induction.
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FIGURE 2 | Cells in which the S4+ reporter is active show higher
tumorigenic potential in NOD/SCID mice. The outline of the experiment is
shown on the left (A) and the outcome on the right (B). (A) MCF7 cells were
infected with the lentiviral reporter vector, 7 days later GFPHigh and GFPLow

populations were sorted, GFP expression verified by fluorescent microscopy

and SOX2 mRNA differential expression assessed by qPCR. (B) The GFPHigh

and GFPLow cells were culture for 2 days and subcutaneously injected into the
left (GFPLow) or right (GFPHigh) fat pads of 6-week-old female nude mice and
tumor growth was monitored weekly. In these experiments, three animals per
condition were used and the standard deviation is plotted for each time point.
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FIGURE 3 |The S4+ reporter is dynamic in MCF7 cells. (A) FACS
plots of the parental MCF7S4+ cell line, the GFPHigh and GFPLow

populations just after sorting, and after 3, 12, and 33 days in culture.
(B) Typical micrographs of cell cultures at indicated time points. The

GFPHigh and GFPLow populations were cultured on its own and changes
in fluorescence were monitored by FACS at the indicated time points.
Population doublings after sorting are also indicated for each time
point.

Table 1 | Frequency of reporter activation and inactivation through

single cell plating.

Number of positions GFPlow GFPhigh

Day 1 Analyzed 288 288

Containing 1 cell 212 256

After 3 weeks With colonies 98 (46.2%) 144 (56.2%)

With colonies made of

GFP+ and GFP− cells

9 (9.1%) 76 (52.7%)

DISCUSSION
Different combinations of surface markers have been described to
isolate CSCs, but it is striking that little overlap has been found

between CSC markers reported in different tumor types (35).
Prominin (CD133) is a good marker for brain and colon CSCs,
but has never been successfully used for isolating breast CSCs.
Even within breast tumors, the accepted combination of surface
markers CD44/CD24 shows differences among different subtypes,
being the CD44+/CD24− phenotype common in the basal sub-
type, specially in BRCA1 hereditary tumors, but surprisingly scarce
in HER2-positive tumors (36). In this work, we utilize transcrip-
tion programs unique in stem cells as a new method to report the
activity of CSCs.

The work from Illmensee and Mintz (13) linked teratocarci-
noma cells to pluripotency. Regulatory networks orchestrated by
key transcription factors like SOX2, OCT4, and NANOG have
been proposed to play an important role maintaining ESC identity
(6, 7). Interestingly, mRNA profiling studies suggest that ESC and

Frontiers in Oncology | Molecular and Cellular Oncology November 2014 | Volume 4 | Article 308 | 6

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iglesias et al. Sox2 reporter tracks dynamic BCSCs

FIGURE 4 | Microarray profiling of GFPHigh versus GFPLow MCF7 cells. (A) GO terms enriched in the GFPHigh population identified by FatiScan enrichment
analysis. (B) Genes (columns) differentially expressed between GFPHigh and GFPLow cells (rows). Red color denotes high expression, blue low expression.

CSCs share common transcriptional programs (37). Furthermore,
transcriptional reporters containing regulatory regions derived
from those genes had previously been successfully used to iso-
late CSCs (38–40). These observations and the striking similarity
observed at the mechanistic level between tumorigenesis and the
generation of iPS cells prompted us to test whether a pluripo-
tency transcriptional reporter developed to isolate human iPS
cells could be also used in the isolation of CSCs. The pluripo-
tency transcriptional reporter selected to test our hypothesis was
the pL-SIN-EOS-S(4+) EGFP (in short, S4+ reporter) (23). The
synthetic promoter driving the expression of GFP is made of four
tandem repeats of the SRR2 enhancer from the Sox2 gene plus
the LTR from the mouse ETn. These transposons are only active
during early mouse embryogenesis in ESCs and embryonic car-
cinoma (EC) cells. This configuration using a minimal promoter
only active in ESCs and ECs and an enhancer sequence derived
from the regulatory region of one of the key transcription factor
for the maintenance of the ESC identity may provide a more spe-
cific way of isolating CSCs and may allow the isolation of CSCs
from different tumor sources. Previous work from our laboratory

(19) and others (41, 42) had shown that Sox2 gene is activated in
the early phases of breast tumor development and necessary for
tumorigenicity of MCF7 cells; therefore, a reporter based on Sox2
promoter elements seemed appropriate.

After breast cancer cell lines are infected with the S4+
lentiviral transcriptional reporter, only a small fraction of cells
switched on the expression of the GFP repoter, when inspected
under the fluorescence microscope (GFPHigh). Interestingly, the
GFPHigh cells showed enhanced tumorigenicity when injected into
immunocompromised female mice.

The S4+ pluripotency transcriptional reporter is active in iPS
and ES cells, but it is turned off when iPS cells are induced to dif-
ferentiate (23). Here, we show for the first time that this reporter is
also dynamic in breast cancer cell lines, as cell cultures depleted of
GFPHigh cells show spontaneous conversion of GFPLow cells (these
are the cells GFP-negative at the microscope, but with background
GFP expression – measured through flow cytometry, demonstrat-
ing effective viral integration but not transcriptional activation
of the reporter) into GFPHigh and after a few passages the cul-
ture reached a steady state, similar to the parental culture. This
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phenomenon is reminiscent of cellular plasticity as described by
Chaffer et al. (2), as the spontaneous conversion to a stem-like
state of non-stem cells. The reverse is also true, when S4+ cell
lines were depleted of GFPLow cells, some GFPHigh cells switched
off the expression of the reporter becoming GFPLow, this might
be equivalent to a differentiation process. In the breast cancer cell
lines tested, the percentage of cells in which the reporter is active,
ranges between 0.4 and 8% after transduction, this percentage fell
below 1% when GFPLow cultures were established and allowed
to reach its steady state. These discrepancies in the percentage of
fluorescent cells may be due to differences in the transduction effi-
ciency and non-specific activation of the reporter due to positional
effects after the lentiviral integration in the genome. Working with
steady-state cultures derived from GFPLow cells reduces the unspe-
cific activation of the reporter due to positional effects. We used
cell lines representing the main subtypes of breast cancer to pre-
vent cell line bias: MCF7 as luminal ER-dependent breast cancer,
MDA-MB-231 as mesenchymal-like basal breast carcinoma, and
MDA-MB-436 as a model of hereditary BRCA1-deficient breast
cancer. Similar results were obtained from all cell lines. Expres-
sion of the reporter gene did not alter phenotypic features of
the cell lines used, such as ER expression in MCF7 cells (data
not shown). Moreover, we recently published (43) a link between
E2/ERa signaling in breast cancer and pluripotency-like repor-
gramming, pointing to a mechanism where SOX2 can promote
non-genomic E2 signaling that leads to nuclear phospho-Ser118-
ERa, which exacerbates genomic ER signaling in response to E2.
Since E2 stimulation has been recently shown to enhance breast
tumor-initiating cell survival (through downregulation of miR-
140), which targets SOX2, this suggests a bidirectional cross-talk
interaction to regulate breast cancer activity.

In order to understand the mechanisms governing the inter-
conversion of reporter positive and negative cells, transcrip-
tional profiling was carried out. Comparison of GFPHigh versus
GFPLow populations showed many genes previously related with
CSC homeostasis upregulated in the GFPHigh population, where
the reporter is active. The cytokines IL-6 and IL-8 are among
the upregulated genes in GFPHigh cells. IL-6 secretion has been
reported to modulate the inducible formation of breast CSCs
and their dynamic equilibrium with non-stem cancer cells (44)
and recombinant IL-8 increased mammosphere formation and
the ALDEFLUOR-positive population in breast cancer cell lines
(25). The transcription factor ATF3 acts as an oncogene in mouse
mammary gland (45) and enhances TGFβ signaling and CSC fea-
tures in breast cancer cell lines (46). We found also genes related
with epithelial-to-mesenchymal transition (EMT) upregulated in
the GFPHigh population, such as SLUG or NEDD9. Recent studies
suggest a link between EMT and acquisition of stem cell properties
(47, 48) where Slug co-operates with a Sox family member (Sox9)
in the reprogramming of differentiated luminal epithelial cells to
a stem-like state in the mouse mammary gland and co-expression
of both transcription factors in breast cancer is associated with
patient survival (49). NEDD9 acts as a positive regulator of EMT
in breast cancer cell lines (50), and it is also involved in mammary
gland tumorigenesis (51, 52).

These data are compatible with a model of inducible formation
of CSCs and their dynamic equilibrium with non-stem cancer

cells. Further experimentation is needed to fully understand the
molecular determinants controlling this process, which may have
significant impact in our understanding of tumor generation and
progression, and therefore opening new possibilities for thera-
peutic intervention. In this work, we demonstrate the use of a
pluripotency related promoter as a tool to track CSC pheno-
type acquisition in breast cancer, suitable for novel drug discovery
targeting the CSC compartment.
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