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Purpose: To introduce the concept of dose—-mass-based inverse optimization for radiother
apy applications.

Materials and Methods: Mathematical derivation of the dose-mass-based formalism is
presented. This mathematical representation is compared to the most commonly used
dose-volume-based formulation used in inverse optimization. A simple example on digitally
created phantom is presented. The phantom consists of three regions: a target surrounded
by high- and low-density regions. The target is irradiated with two beams through those
regions and inverse optimization with dose-volume and dose—mass-based objective func-
tions is performed. The basic properties of the two optimization types are demonstrated
on the phantom.

Results: It is demonstrated that dose—volume optimization is a special case of dose-mass
optimization. In a homogenous media, dose—-mass optimization turns into dose-volume
optimization. The dose calculations performed on the digital phantom show that in this very
simple case dose—mass optimization tends to penalize more the dose delivery through the
high-density region and therefore it results in delivering more dose through the low-density
region.

Conclusion: It was demonstrated that dose-mass-based optimization is mathematically
more general than dose—volume-based optimization. In the case of constant density media,

dose—mass optimization transforms into dose—volume optimization.
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INTRODUCTION

Modern radiotherapy treatment planning relies on the dose—
volume-histogram (DVH) paradigm, where doses to volumes of
anatomical structures are employed (1-4). The widespread use of
DVHs is rooted within the wealth of clinical information as well as
clinician’s experience with dose—volume metrics (5). DVHs were
introduced more than three decades ago, while intensity modu-
lated radiotherapy (IMRT) was developed a decade later (4, 6-10).
At those times, homogeneous dose calculations were the norm,
with heterogeneous dose calculations hardly even possible, and
therefore, not practical for a routine use. In recent years, how-
ever, it has been argued that the effects of delivered dose seem to
be more closely related to healthy tissue toxicity (and thereby to
clinical outcomes) when dose to mass, or dose—mass-histograms
(DMHs), are considered in treatment plan review and evaluation
(11-16).

Dose—mass-histograms were introduced for evaluation and
review of thoracic treatment plans (15, 16). Shortly, after their
introduction, a rationale for their application was outlined (11,
12). In those publications, it was argued that DVHs of the lungs are
breathing phase dependent, while DMHs are not (11). Investiga-
tion on the difference between DVHs and DMHs and their effects

on the treatment outcomes showed that the range of deviation
between them is very large (12). It was concluded that “the effec-
tiveness of the dose distribution delivered to the patients seems to be
more closely related to the radiation effects when using the DMH con-
cept” (12). Similar conclusions that “DMH may be more relevant
than DVH” were drawn in an investigation of DVH and DMH
effects on 4D lung treatment plans (14).

MATHEMATICAL FRAMEWORK OF DMH INVERSE IMRT
OPTIMIZATION

Consider DVH-based IMRT optimization, where plans are
designed through a number of dose—volume objectives (4, 17, 18).
The optimization algorithm divides each beam’s cross-sectional
plane into a 2D-array of finite size beamlets, which initially are
assigned equal weights. With the initiation of the optimization
those weights are varied (optimized), such that 2D intensity maps
of variable intensities are created, with the aim of maximizing
dose to targets, while at the same time minimizing doses to adja-
cent organs at risk (OARs). The doses to all volumes of interest
(VOIs), resulting from those intensity maps from all beams, give
rise to a set of optimization functions F, j=1,..., n, where j
runs over all the objectives specified for all VOIs, including targets
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and OARs. Those optimization functions are a mathematical
representation of

F=ZjN=1 F (1)

IMRT objectives. The inverse optimization algorithm aims in
minimizing a composite objective function given by Eq. 1. This
function is a sum of all individual optimization objectives.
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For each VOI there might be, none or more than one F' speci-
fied, depending on the aims of the radiotherapy plan. Equation
2 describes an example of a quadratic objective function (18). V
denotes the volume of the VOI for which F is evaluated, d; is
the dose in voxel (3D volume element) i, & is the desired dose
in each voxel, and v; is the normalized (with respect to the entire
VOI volume) voxel volume. The summation can be over the entire
(min/max dose objectives) or partial (DVH-objectives) volume V
of the VOI. The quadratic term in Eq. 2 makes the functions F/
always positive, thereby requiring the optimization to find only
a minimum, i.e., to minimize the differences between individual
voxel doses and the desired dose for the specified objective. The
normalization with respect to the desired dose  and to total organ
volume in the equation terms, respectively, scales all functions F
such that the contributions from targets and OARs in the global
optimization of F are of the same magnitude and a global com-
posite objective function (cf. Eq. 1) can be constructed. Note that,
if the voxels of the dose grid (cf. Eq. 2) are of equal volumes the
corresponding Av; for most of the voxels will be the same, and can
be moved in front of the summation. This makes the sum of Eq. 2
only partially dependent on volumes Av;. This partial dependence
is because of partial volume effects, where given VOI occupies only
a fraction of a given dose voxel i, and Av; for that dose voxel is
different from Av; for the dose voxels, which are fully contained
in the VOL.

The implementation of tissue mass information and convert-
ing volume-based optimization into mass-based optimization can
be achieved through Eq. 3, where the last term represents the voxel
mass, normalized to the total VOI mass.

i\ 2
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If the mass term in Eq. 3 is expanded then the mass-based
objective function will be represented by Eq. 4, where p; is the
averaged density in voxel i. Usually, the dose voxels in
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radiotherapy treatment planning are much larger than the voxels
of the of the underlying computed tomography (CT) data. There-
fore, the density in the dose voxel is an averaged from the CT

density derived from the raw CT data through a CT-to-density
calibration tables.

It follows from Eq. 4 that in the situation where the density
in all dose voxels is constant (i.e., CT scan of a uniform den-
sity object), there should be no difference between DVH-based
and DMH-based optimizations, since Eq. 4 would be transformed
into Eq. 2. Constant density p = p; = px can be moved in front of
the summation in Eq. 4 and it will cancel out. Therefore, mass-
based optimization for heterogeneous media will naturally remove
a degree of degeneracy, inherent to volume-based optimization. It
must be stressed out that from mathematical and physical stand
points DMH-based optimization is a more general approach than
DVH-based optimization in radiotherapy applications. If the den-
sity across a VOI is variable, Am; in Eq. 4 will change from
voxel-to-voxel in addition to partial volume effects mentioned
above. This difference in the functional forms of the optimization
functions F/ will result in IMRT solutions for DMH optimiza-
tion, which may differ from the solutions achieved through DVH
optimization.

EXAMPLE

A simple example will be presented to illustrate the basic points of
the derived framework for mass-based optimization and to outline
the differences with dose—volume-based optimization. Consider
the experimental set-up presented on Figure 1. The figure depicts
a digital phantom in an axial view. The phantom consists of three
10cm x 10cm x 10 cm cubes with densities of 0.2 (yellow), 0.8
(red), and 1.0 (green) g/cm?, respectively. In the middle of the
green VOI, there is a cylindrical target with diameter and length
of 3 cm. The target was irradiated with an anterior—posterior (AP)
and a lateral (Lat) beam centered on the geometric center (isocen-
ter) of the target. In the first experiment, target was irradiated
with the AP and the Lat beams through 2 cm x 2 cm open aper-
tures with the goal to deliver 500 cGy to 95% of the volume. The
weights of the two beams were set equal. 833 monitor units (MUs)
were required for that target dose prescription to be achieved. 474
MUs were delivered through the high-density (red) region, while,
not surprisingly, only 359 MUs were delivered through the low
density (yellow). In other words, 57% of the dose came through
the high-density region and 43% was delivered through the low-
density region, since the absorption in the high-density region is
larger.

The same phantom is used in a different example where the
high (red) and low (yellow) density regions are combined to form
an “organ at risk” (OAR) to which the dose should be minimized
through an inverse optimization. The two beams — AP and Lat —
were allowed to have only one IMRT segment each. Two plans
were generated — one where the cost function for OAR dose opti-
mization was constructed according to Eq. 2, and another one
where the OAR dose optimization was based on Eq. 3. Those opti-
mizations were termed DVH and DMH, respectively. With each
optimization the dose to the OAR was iteratively decreased until
the standard deviation of the dose across the target reached 6% of
the prescription dose, i.e., no more than 30 cGy. The dose—volume
histograms (DVHs) of the two optimization approaches are pre-
sented on Figure 2. It is evident form the figure that while the
high-tail dose to the low-density region (yellow) is higher with
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FIGURE 1 | The experimental set-up used to demonstrate the dose-mass
concept. It is realized through a digitally constructed phantom, consisting of
three cubical volumes (VOIs) with dimensions 10cm x 10cm x 10cm. As

depicted on the figure, the three regions have different densities. In the
middle of the VOI with density of unity, there is a cylindrical target with height
and diameter of 3cm.
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FIGURE 2 | Dose-volume histograms, resulting from DVH and DMH
optimization applied to the phantom presented on Figure 1. The high-
and low-density VOIs have been combined in a single VOI with the aim that
500 cGy are delivered to the target, while the dose to that VOI is minimized
as much as possible.

DMH optimization, the overall DVH for the higher density region
is lower than in the case of DVH optimization. In the DVH opti-
mization, 26.86% of the MUs were delivered through the higher
density region, while the rest 73.14% were delivered through the
lower density region. For the DMH optimization those percent-
ages were 20.62 and 79.38, respectively. Therefore, optimization
based on masses of the VOIs will penalize more the beams con-
tributing dose through the high-density region (AP beam) rather
than through the low density (Lat beam), given that the objec-
tive for the optimization is to minimize the dose delivered to both
high- and low-density VOIs simultaneously. Effectively, for cer-
tain target coverage, more radiation would be delivered through
the low-density region and less through the high-density VOI.

CONCLUSION

A new framework for dose—mass optimization paradigm in inverse
radiotherapy treatment planning was presented. It was shown
through a mathematical derivation that dose—volume-based opti-
mization is a special case of its more general representation realized
through dose—mass optimization. In other words, dose—mass opti-
mization transforms in dose-volume optimization in the case
of constant density media. Simple computational example was
presented to explain the basic properties of the two optimization

types.

www.frontiersin.org

November 2014 | Volume 4 | Article 331 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Radiation_Oncology/archive

Mihaylov and Moros

DMH-based inverse optimization

ACKNOWLEDGMENTS
This work is supported by NIH grant R0O1 CA163370.

REFERENCES

1.

S8

w

'S

w

(=2}

~

el

N

10.

1

—

Allen AM, Henning GT, Ten Haken RK, Hayman JA, Martel MK. Do dose-
volume metrics predict pulmonary function changes in lung irradiation? Int J
Radiat Oncol Biol Phys (2003) 55:921-9. doi:10.1016/S0360-3016(02)04288-8

. Asakura H, Hashimoto T, Zenda S, Harada H, Hirakawa K, Mizumoto M, et al.

Analysis of dose-volume histogram parameters for radiation pneumonitis after
definitive concurrent chemoradiotherapy for esophageal cancer. Radiother Oncol
(2010) 95:240-4. doi:10.1016/j.radonc.2010.02.006

. Marks LB, Ma J. Challenges in the clinical application of advanced technologies

to reduce radiation-associated normal tissue injury. Int ] Radiat Oncol Biol Phys
(2007) 69:4-12. doi:10.1016/j.ijrobp.2007.05.010

. Shipley WU, Tepper JE, Prout GR Jr, Verhey LJ, Mendiondo OA, Goitein M,

et al. Proton radiation as boost therapy for localized prostatic carcinoma. JAMA
(1979) 241:1912-5. doi:10.1001/jama.1979.03290440034024

. Das SK. A role for biological optimization within the current treatment planning

paradigm. Med Phys (2009) 36:4672-82. doi:10.1118/1.3220211

. Burman C, Chui CS, Kutcher G, Leibel S, Zelefsky M, LoSasso T, et al. Plan-

ning, delivery, and quality assurance of intensity-modulated radiotherapy using
dynamic multileaf collimator: a strategy for large-scale implementation for the
treatment of carcinoma of the prostate. Int ] Radiat Oncol Biol Phys (1997)
39:863-73. doi:10.1016/S0360-3016(97)00458-6

. Chin LM, Kijewski P, Svensson GK, Chaffey JT, Levene MB, Bjarngard BE. A

computer-controlled radiation therapy machine for pelvic and para-aortic nodal
areas. Int | Radiat Oncol Biol Phys (1981) 7:61-70. doi:10.1016/0360-3016(81)
90061-4

. Ling CC, Burman C, Chui CS, Kutcher GJ, Leibel SA, LoSasso T, et al. Confor-

mal radiation treatment of prostate cancer using inversely-planned intensity-
modulated photon beams produced with dynamic multileaf collimation. Int J
Radiat Oncol Biol Phys (1996) 35:721-30. doi:10.1016/0360-3016(96)00174-5

. Low DA, Chao KS, Mutic S, Gerber RL, Perez CA, Purdy JA. Quality assurance

of serial tomotherapy for head and neck patient treatments. Int ] Radiat Oncol
Biol Phys (1998) 42:681-92. doi:10.1016/S0360-3016(98)00273-9

Xing L, Curran B, Hill R, Holmes T, Ma L, Forster KM, et al. Dosimetric verifica-
tion of a commercial inverse treatment planning system. Phys Med Biol (1999)
44:463-78. doi:10.1088/0031-9155/44/2/013

. Nioutsikou E, Webb S, Panakis N, Bortfeld T, Oelfke U. Reconsidering the

definition of a dose-volume histogram. Phys Med Biol (2005) 50:L17-9.
doi:10.1088/0031-9155/50/11/L01

12. Mavroidis P, Plataniotis GA, Gorka MA, Lind BK. Comments on ‘Recon-
sidering the definition of a dose-volume histogram” — dose-mass histogram
(DMH) versus dose-volume histogram (DVH) for predicting radiation-induced
pneumonitis. Phys Med Biol (2006) 51:143-50. doi:10.1088/0031-9155/51/24/
Lo1

13. Mihaylov IB, Fatyga M, Moros EG, Penagaricano J, Lerma FA. Lung dose for
minimally moving thoracic lesions treated with respiration gating. Int J Radiat
Oncol Biol Phys (2010) 77:285-91. doi:10.1016/j.ijrobp.2009.08.021

14. Wei X, Liu H, Jang S, Jauregui M, Dong L, Liao Z, et al. Dose mass histogram
and its application for 4D treatment planning. Med Phys (2005) 32:2038-2038.
doi:10.1118/1.1998109

15. Butler LE, Forster KM, Stevens CW, Bloch C, Liu HH, Tucker SL, et al. Dosi-
metric benefits of respiratory gating: a preliminary study. J Appl Clin Med Phys
(2004) 5:16-24. doi:10.1120/jacmp.26.146

16. Forster KM, Starkschall G, Butler LE, Keall P, Liu H, Travis EL, et al. The dose-
mass histogram: a tool for evaluating thoracic treatment plans. Med Phys (2001)
28:1228-9.

17. Wu Q, Mohan R. Algorithms and functionality of an intensity modulated
radiotherapy optimization system. Med Phys (2000) 27:701-11. doi:10.1118/
1.598932

18. Fredriksson A. Automated improvement of radiation therapy treatment plans
by optimization under reference dose constraints. Phys Med Biol (2012)
57:7799-811. doi:10.1088/0031-9155/57/23/7799

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 02 October 2014; accepted: 31 October 2014; published online: 17 November
2014.

Citation: Mihaylov IB and Moros EG (2014) Mathematical formulation of DMH-
based inverse optimization. Front. Oncol. 4:331. doi: 10.3389/fonc.2014.00331

This article was submitted to Radiation Oncology, a section of the journal Frontiers in
Oncology.

Copyright © 2014 Mihaylov and Moros. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Oncology | Radiation Oncology

November 2014 | Volume 4 | Article 331 | 4


http://dx.doi.org/10.1016/S0360-3016(02)04288-8
http://dx.doi.org/10.1016/j.radonc.2010.02.006
http://dx.doi.org/10.1016/j.ijrobp.2007.05.010
http://dx.doi.org/10.1001/jama.1979.03290440034024
http://dx.doi.org/10.1118/1.3220211
http://dx.doi.org/10.1016/S0360-3016(97)00458-6
http://dx.doi.org/10.1016/0360-3016(81)90061-4
http://dx.doi.org/10.1016/0360-3016(81)90061-4
http://dx.doi.org/10.1016/0360-3016(96)00174-5
http://dx.doi.org/10.1016/S0360-3016(98)00273-9
http://dx.doi.org/10.1088/0031-9155/44/2/013
http://dx.doi.org/10.1088/0031-9155/50/11/L01
http://dx.doi.org/10.1088/0031-9155/51/24/L01
http://dx.doi.org/10.1088/0031-9155/51/24/L01
http://dx.doi.org/10.1016/j.ijrobp.2009.08.021
http://dx.doi.org/10.1118/1.1998109
http://dx.doi.org/10.1120/jacmp.26.146
http://dx.doi.org/10.1118/1.598932
http://dx.doi.org/10.1118/1.598932
http://dx.doi.org/10.1088/0031-9155/57/23/7799
http://dx.doi.org/10.3389/fonc.2014.00331
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Radiation_Oncology
http://www.frontiersin.org/Radiation_Oncology/archive

	Mathematical formulation of DMH-based inverse optimization
	Introduction
	Mathematical framework of DMH inverse IMRT optimization
	Example
	Conclusion
	Acknowledgments
	References




