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Immunosuppressive cells have been reported to play an important role in tumor-progression
mainly because of their capability to promote immune-escape, angiogenesis, and metasta-
sis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified
as immature myeloid cells, induced by tumor-associated inflammation, able to impair both
innate and adaptive immunity.While murine MDSCs are usually identified by the expression
of CD11b and Gr1, human MDSCs represent a more heterogeneous population character-
ized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and
CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-
like MDSC subsets with different immunosuppressive properties. Recently, a substantial
increase of MDSCs has been found in peripheral blood and bone marrow (BM) of mul-
tiple myeloma (MM) patients with a role in disease progression and/or drug resistance.
Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment
(BMM) are major tools for the study of the interactions between MM cells and cells of the
BMM (including MDSCs) and for the development of new agents targeting MM-associated
immune-suppressive cells. This review will focus on current strategies for human MDSCs
generation and investigation of their immunosuppressive function in vitro and in vivo, taking
into account the relevant relationship occurring within the MM–BMM.We will then provide
trends in MDSC-associated research and suggest potential application for the treatment
of MM.
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INTRODUCTION
The immune system has the potential to selectively kill tumor
cells avoiding normal tissue and to generate long-lasting mem-
ory, which prevents cancer onset or recurrence. However, even
if some patients achieve long-lasting complete remissions, the
clinical efficacy of immunotherapy is still limited. One possible
explanation should be identified in the protective milieu provided
by tumor-associated inflammation and tumor-infiltrating myeloid
and lymphoid cells (1, 2). The critical role of inflammation in
cancer development and progression has been recognized over
150 years ago by Rudolf Virchow; however, only recently, chronic
inflammation has been found to induce immunosuppression and
has been associated with the development of cancer and other dis-
eases (3–5). In the inflammatory response, myeloid effectors are
the first cells attracted and recruited in the site of injury (6). Indeed,
in cancer, these cells are represented by neutrophils, macrophages,
dendritic cells (DCs), and the highly immunosuppressive myeloid-
derived suppressor cells (MDSCs) (7). MDSCs are a heterogeneous
population of immature myeloid cells generated in the bone mar-
row (BM) of healthy subjects that normally differentiate in mature
myeloid cells without inducing immunosuppression (7). However,
in pathologic conditions such as cancer, trauma, or other diseases

characterized by chronic inflammation, these cells undergo abnor-
mal expansion, are blocked in differentiation and accumulate in
different sites including BM, spleen, liver, and tumor site (8, 9),
sustaining (or even worsening) preexisting tumor-driven inflam-
mation and inducing tumor-progression, neovascularization, and
immune-escape (7, 10–12).

In the last decade, several studies have focused on the role
of MDSCs in the regulation of immune system in solid tumors
while little is reported on the role of MDSCs in hematologic
malignancies, including multiple myeloma (MM) (13). MM is
an incurable disease characterized by accumulation of malignant
plasma cells within the BM. The interplay between MM cells and
cells of the BM microenvironment (BMM) is tough to be the
cause, of two widely recognized hallmarks of MM: bone disease
and general immunosuppression (14–16). Recently, it has been
disclosed a major role for MDSCs in MM pathobiology. Indeed,
different authors demonstrated an increase of MDSCs in both
peripheral blood and BM of MM patients (9, 17, 18). More-
over, it was reported that in addition to their immunosuppressive
activity, MDSCs have the potential to differentiate in functional
osteoclasts thus contributing to the formation of osteolytic lesions
(19, 20).
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This review provides an overview on current pre-clinical
approaches used to study human MDSCs in vitro and in vivo,
with a particular focus on MM-associated MDSCs. We will
also summarize the mechanism and the molecular pathways
involved in MDSC-dependent immune-dysfunction and potential
translational applications of MDCSs for the therapy of MM.

IMMUNOPHENOTYPE OF MDSCs
Myeloid-derived suppressor cells were firstly identified in tumor-
bearing mice on the basis of their suppressive function. Indeed,
these cells lacked any surface marker specifically expressed by
myeloid mature cells such as monocytes, macrophages, or DCs
(21), even if morphologically they resembled granulocytes or
monocytes. Further works in mice, aimed to characterize their
immunophenotype, identified MDSCs as cells positive to granu-
locyte receptor (Gr1) and CD11b (22). The mAb used to identify
Gr1, however, is able to bind the same epitope of two different mol-
ecules belonging to the lymphocyte superfamily (Ly)-6, Ly-6C, and
Ly-6G, mainly expressed on monocytes and neutrophils, respec-
tively. This led to the identification of two sub-groups of murine
MDSCs, reflecting differences in term of both morphology and
immunosuppressive function: CD11b+ Ly-6C+ Ly-6G− mono-
cytic (Mo)-MDSCs, with a monocyte-like morphology, mainly
expressing the inducible form of nitric oxide synthase (iNOS); and
CD11b+ Ly-6C− Ly-6G+ granulocytic (G)-MDSCs [or polymor-
phonuclear (PMN)-MDSCs] with a granulocyte-like morphology
expressing high levels of arginase 1 (ARG1) (23, 24).

Unlike murine MDSCs, the human MDSCs are less defined,
lacking a Gr1 homologous. Commonly, MDSCs are defined as
CD11b+ CD33+ HLA-DRlow/− cells not expressing markers of
mature myeloid or lymphoid cells. As in mice, two main sub-
sets of MDSCs could be identified: CD15+ CD14− CD11b+

CD33+ HLA-DRlow/− G-MDSCs and CD15− CD14+ CD11b+

CD33+ HLA-DRlow/− Mo-MDSCs (7, 25, 26). Furthermore,
human MDSCs are extremely heterogeneous and recently different
tumors were reported to generate MDSCs identified by different
phenotypes (27). New markers are currently under investigation
in order to better clarify their phenotype, subsets, and function.
Among them, the expression of IL-4Ra and the VEGF receptors
1 and 2, on Mo-MDSCs in particular, have been associated with
immunosuppressive and angiogenetic potential, respectively (7,
22). As regard to morphology, human MDSCs resemble granu-
locytes or monocytes at different maturation stages (28) and in
cancer patients their number have been reported to directly corre-
late with neutrophil count (29). Taking into account the prognostic
and predictive role played by neutrophil count and chronic inflam-
mation in different malignancies (30–33), the key role of these cells
in cancer patients is an emerging issue.

In MM, few reports (9, 17, 18) identified MDSCs as CD11b+

CD33+ HLA-DRlow/− cells in both peripheral blood and BM.
G-MDSC resulted to be the most up-regulated and immunosup-
pressive subpopulation, while contrasting results were observed
regarding the Mo-MDSCs. This should be due to differences in
phenotypic profile, which identifies Mo-MDSCs. Indeed, while
most of authors recognized G-MDSCs as CD15+ CD14− CD11b+

CD33+ HLA-DRlow/− cells, Mo-MDSCs have been alternatively
identified as CD14+ CD11b+ HLA-DRlow/− (9, 18) or CD14+

CD11b+ CD33+ HLA-DRlow/− (17) or CD15− CD14− CD11b+

CD33+ cells (9). Of note, in a previous report (34), Mo-MDSCs
identified as CD14+ HLA-DRlow/− cells were found to be sig-
nificantly higher in patients with MM as compared to healthy
subjects.

On these bases, due to the lack of a unique surface markers
signature for the identification of MDSCs, functional suppressive
assays remain essential.

MDSCs FUNCTION AND ROLE IN TUMOR-PROGRESSION
Myeloid-derived suppressor cells inhibit the anti-tumor immune
response by multiple mechanisms, probably mostly triggered by
direct cell-to-cell contact and involving cell surface receptors and
short-lived mediators (Figure 1). Among others, the metabo-
lism of L-arginine was the first identified mechanism for MDSCs
immunosuppression (35, 36). Specifically, L-arginine serves as a
substrate for iNOs (generating NO and citrulline) and ARG1 (pro-
ducing urea and ornithine). The up-regulation of both enzymes
in MDSCs lead to a shortage of the non-essential amino acid in
tumor microenvironment, and consequently to the impairment
of T cell function. Indeed, T lymphocytes depend on arginine for
proliferation, CD3ζ expression, and development of memory (37,
38). Furthermore, the increased NO production leads to suppres-
sion of T cell function through the inhibition of IL-2 downstream
pathway (39, 40). An additional and related finding is that, MDSCs
could also mediate the depletion of cystine and cysteine from
tumor microenvironment, thus further limiting antigen-driven T
cell activation (41).

A further hallmark of MDSC-dependent immunosuppression
relies on the production of reactive oxygen species (ROS). Indeed,
different studies report MDSCs from both tumor-bearing mice
and cancer patients to produce a huge amount of ROS (23, 42, 43)
that, in turn, reduce CD3ζ expression and antigen specific T cell
proliferation (44). ROS production by MDSC is sustained by the
inflammatory tumor microenvironment, enriched, among others,
in IL-10, IL-6, and TGF-beta, as well as by the cell-to-cell contact
with lymphocytes (37, 44).

The contemporary presence of NO and superoxide in tumor
microenvironment may lead to the production of peroxynitrite,
which in turn induces the nitration of different amino acids such
as tyrosine, tryptophan, cysteine, and methionine (45). Nitration
of T cell receptor (TCR) and CD8 molecules results in a physical
modification of the receptor that alters the binding to MHC, thus
impairing the capability of T cells to respond to antigen specific
stimuli (46).

Recently, some authors (47) reported a new mechanism by
which MDSCs inhibit the immune response against cancer. They
found that MDSCs are able to down-regulate L-selectine (CD62L)
levels on naïve T cells through their membrane expression of
ADAM17. This event, in turn, decreases the capability of T cells to
migrate to the tumor site where they would be activated.

A further mechanism of immune regulation by MDSCs relies
on their capability to induce regulatory T cells (T-regs). Indeed,
different studies report that MDSCs promote the clonal expan-
sion of antigen specific natural T-regs and induce the conversion
of naïve T helper cells into inducible T-regs, through a mecha-
nism dependent on CD40-CD40L interaction; on the secretion of
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FIGURE 1 |The different mechanisms by which myeloid-derived
suppressor cells (MDSC) inhibit immune system response and the
molecular pathways involved in this immunosuppressive function.
ADAM17, disintegrin and metalloproteinase domain-containing protein
17; ARG1, arginase 1; C/EBPβ, CCAAT/enhancer-binding protein-β;
COX, cyclooxygenase; EP4, prostaglandin receptor E4; iNOS, inducible

nitric oxide synthase; NK, natural killer cells; NO, nitric oxide; NOX,
NADPH oxidase; PGE2, prostaglandin E2; ROS, reactive oxygen species;
STAT, signal transducer and activator of transcription; TCR, T cell
receptor; TGFβ, transforming growth factor-β; T-regs, regulatory T cells;
VEGF, vascular endothelial growth factor; Xc−, cystine–glutamate
transporter.

cytokines such as IFN-gamma, IL-10, and TGF-beta; and on the
overexpression of ARG1 (37, 48–50).

More recently, MDSCs have been reported to promote Th17
differentiation and IL-17A production (51). Th17 development
was shown to be dependent on IL-1b/IL-6/IL-23 and NO produc-
tion by MDSCs in both tumor-bearing mice and cancer patients
(52–54). To better understand the paradoxical induction of “pro-
inflammatory” Th17 by “immunosuppressive” MDSCs, it should
be noted that Th17 cells play a role in both tumor-progression
and induction of immunosuppression. Indeed, these cells pro-
mote chronic inflammation, DNA damage, and tumor-associated
angiogenesis, and on the other hand promote the local recruit-
ment of other inflammatory cells (including MDSCs) and inhibit
immune response (51, 55, 56).

A further immunosuppressive mechanism relies on the cross-
talk between MDSCs and tumor-associated macrophages (TAMs)
(57, 58). This strict interplay leads to a microenvironment
enrichment in immune-regulatory cytokines such as IL-10, IL-
6, IL-1b, VEGF, and to an immunosuppressive M2 polarization
of macrophages. These cells also promote tumor-progression
through different non-immune mechanism and in MM, in

particular, are reported to induce cancer cell proliferation, drug
resistance, and angiogenesis (59, 60).

Finally, emerging evidence suggests that MDSCs may promote
immune-escape also by suppressing NK activity, overexpress-
ing programmed death ligands (PD-L1 and PD-L2) and releas-
ing IL-10 and indoleamine 2,3-dioxygenase (IDO) in the tumor
microenvironment (37, 61, 62).

MOLECULAR REGULATORS OF MDSCs DEVELOPMENT AND
FUNCTION
The tumor-associated microenvironment produces several factors
involved in myelopoiesis and impairs the myeloid differentia-
tion. Among them, granulocyte-macrophage colony-stimulating
factor (GM-CSF), G-CSF, M-CSF, stem cell factor, VEGF, and
IL-3 are the most recognized molecules involved in MDSC gen-
eration (27, 63). Furthermore, a huge amount of cytokines and
chemokines released by tumor cells or tumor-surrounding cells
including IL-1β, IL-4, IL-6, IL-10, IFN-gamma, TGF-beta, CCL2,
CCL5, S100A8, and S100A9, are reported to reprogram immature
myeloid cells to became immunosuppressive MDSCs and to attract
them in the tumor microenvironment (7, 64, 65). All these soluble
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mediators regulate MDSC function through the activation of dif-
ferent downstream signaling pathways, such as Jak/Stat, NF-κB,
cyclooxygenase 2 (COX-2), and PGE2 (27, 66). Furthermore,
recent evidence supports the hypothesis that a major role in
this regulatory network is played by non-coding RNAs including
micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs)
(67–69).

STAT FAMILY
The signal transducer and activator of transcription (Stat) 3 plays,
among other Stat family members, a major role in modulating
MDSC function. In myeloid cells, Stat3 promotes the expres-
sion of different anti-apoptotic and pro-proliferative factors, such
as Bcl-xL, c-myc, cyclin D1 and survivin, and prevent myeloid
cells differentiation and maturation (66, 70). Stat3 induces the
up-regulation of the calcium-binding pro-inflammatory proteins
S100A9 and S100A8. Some authors reported that Stat3-dependent
S100A9 up-regulation enhances MDSC generation in vitro and
that the immune system of mice lacking S100A9 have a greater
ability to reject the tumor implant (71). The mechanism is still
not fully understood, however, it is thought that the heterodimer
S100A8/S100A9 is involved in ROS generation through NAPDH
oxidase (Nox2) complex and that ROS, in turn, impairs myeloid
cells differentiation (71). Moreover, STAT3 up-regulates two com-
ponents of the Nox2 complex, p47phox, and gp91phox, thus directly
contributing to the increase in ROS production by MDSCs (72).
Stat3 is also reported to interact with C/EBPβ, a transcription
factor involved in myelopoiesis and control of differentiation and
proliferation of myeloid progenitors. The latter could be explained,
at least in part, by the capability of activated Stat3 to induce c-
myc expression due to the increased binding of C/EBPβ to Myc
promoter (65, 73).

Among the other members of the Stat family, Stat1 and Stat6
play a key role in MDSC activation and immunosuppressive func-
tion. Stat1 is activated by both IFN-γ and IL-1β and is involved
in the expression of ARG1 and iNOS. Indeed, MDSCs from
mice knock-down for STAT1 are unable to inhibit T lymphocyte
activation due to a lack in up-regulation of iNOS or ARG1 (74).

IL-4 or IL-13 binding to the CD124 leads to the activa-
tion of Stat6, which, in turn, induces the expression of arginase
and the production of TGFβ by MDSCs, thus contributing to
the instauration of an immune-permissive microenvironment
(75–77).

NF-κB
The NF-κB activity has been reported to be critical for the
immunosuppressive capability of MDSCs. Toll-like receptors
(TLR) via myeloid differentiation primary response gene (MyD)
88 and IL-1β are fundamental activators of NF-κB signaling and
lead to the production and secretion of Th2 cytokines, IL-10,
and ARG1 (66). Recently, it has been demonstrated (78) a Stat3-
dependent activation of the non-canonical NF-κB pathway that, in
turn, induces the transcription of IDO in MDSCs, thus elucidating
a new mechanism for T cell immunity inhibition.

PGE2 AND COX-2
Prostaglandin E2 is an eicosanoid that act as both pro-
inflammatory and immunosuppressive molecule. Its synthesis

is COX-2 dependent and its signaling relies on the receptor
E-prostanoid (EP) 4, which once activated induce ARG1 up-
regulation in MDSCs (79–81). EP2-knockout mice inoculated
with 4T1 mammary carcinoma presented a reduced number of
infiltrating MDSCs, suggesting an important role for PGE2 in
MDSC induction (66). Furthermore, others provided evidence
(82) that the COX-2 inhibition, which is induced with dietary
celecoxib in a mesothelioma murine model, prevents the expan-
sion of MDSCs. Together these results highlight the crucial role
played by the COX-2/PGE2 signaling in MDSCs function and
differentiation.

MICRO-RNAS
Micro-RNAs are small non-coding RNAs able to regulate gene
expression at the post-transcriptional level (83). Due to their crit-
ical role in tumor biology (84–86) and cancer–microenvironment
interaction (87–90), these molecules have gained particular atten-
tion even as possible immune modulators (91, 92). Indeed, dif-
ferent studies identified several miRNAs involved in the complex
network that regulate MDSCs development and function (67, 68).

MiR-223 was the first miRNAs associated to MDSCs (93). It
has been discovered that increased PGE2 in the tumor microen-
vironment leads to miR-223 down-regulation in MDSCs and
subsequent up-regulation of its target myeloid enhancer fac-
tor 2 (Mef2c), which promote MDSC survival and accumula-
tion in tumor site (93). MiR-223 is involved also in myeloid
cell differentiation by targeting nuclear factor I (NFI)-A and
inducing differentiation of immature myeloid cells into mature
granulocytes (94).

MiR-494 has been shown to be up-regulated in MDSCs by
tumor-derived factors (especially from TGF-β). This miRNA
revealed to sustain MDSC survival through down-regulation of
PTEN and to promote tumor invasion and metastasis by regulating
metalloproteinase (MMP) expression (95).

Contrasting observations were reported for miR-17-5p and
miR-20a by two different studies. Specifically, some authors
reported (96) that both miRNAs target AML1, leading to a down-
regulation of M-CSF receptor and, consequently, to an impairment
of monocyte differentiation. On the contrary,others demonstrated
(97) that the tumor microenvironment led to both miRNAs down-
regulation and that, according to their capability to target Stat3,
their reduction leads to the up-regulation of Stat3 itself and the
activation of the Stat3-dependent immunosuppressive cascade.

Using miRNA microarray, miR-21 and miR-155 have been
identified as the two most up-regulated miRNAs during the
induction of MDSC differentiation from BM cells (98). This up-
regulation was further confirmed in tumor-bearing mice with
a mechanism dependent on the presence of TGFβ in tumor
microenvironment. By targeting SHIP-1 and PTEN, respectively,
these miRNAs lead to Stat3 activation and MDSC proliferation
and activation. Conversely, melanoma and Lewis lung carcinoma
grew faster in miR-155 knockout mice and these tumors showed
an increased MDSC infiltration (99). This event appears depen-
dent on the up-regulation of HIF-1α (a direct target of miR-
155) in miR-155−/− mice that leads to the enhanced expres-
sion of different chemokines and cytokines promoting MDSC
recruitment, immunosuppression, and neovascularization. These
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apparent conflicting results may be dependent on the great het-
erogeneity of MDSCs and on the capability of different tumors
to induce predominantly one rather than another MDSC sub-
set. Further studies will better elucidate the role of miRNAs in
MDSC-mediated cancer-associated immunosuppression.

IN VITRO AND IN VIVO APPROACHES FOR HUMAN MDSCs
STUDY IN MULTIPLE MYELOMA
It is becoming clear that the long-term success of cancer
immunotherapy depends on the reprograming of the tumor-
associated immune-permissive microenvironment. The great
immunosuppressive potential of MDSC coupled with their capa-
bility to accumulate in tumor tissue, makes them attractive targets
for the development of specific anticancer therapy. However, this
relevant challenge requires the development of a stable model for
the study of human MDSC response to different experimental
conditions. In vitro, generation of murine MDSCs is a relatively
easy process that uses embryonic, splenic, or BM myeloid progen-
itor cultured in a medium enriched with a combination of growth
factor such as GM-CSF+G-CSF, GM-CSF+ IL-6, or IL-13 (100,
101). However, this model is hampered by the interspecies differ-
ences in both surface marker and biology of immune cells (102);
additionally, the possibilities to reproduce this model with human
cells are low due to the poor availability of myeloid progenitors
from healthy donors.

Recently, to overcome these issues, some authors developed a
method to generate MDSCs from healthy donors’peripheral blood
mononuclear cells (PBMCs) (103, 104). As a first step of devel-
opment of their model, authors evaluated the capability of 100
tumor cell lines to induce MDSC generation from healthy donor
PBMCs during a 7-day co-culture. MDSCs so generated were phe-
notypically characterized and the CD33+ CD11+ HLA-DR−/low

population was sorted and assayed for the capability to suppress
autologous T cell proliferation in response to stimuli (104). A
cytokine study was simultaneously performed to identify the main
factors responsible for MDSCs’ generation (103). The authors
observed that a 7-day culture with the combination GM-CSF+ IL-
6 was sufficient to generate a potent immunosuppressive CD33+

MDSC population. Of note, MDSCs were also generated, even
if to a lesser extent, by combining GM-CSF with cytokines such
as IL-1β, VEGF, TNFα, and PGE2, providing thus evidence that
the presence of an inflammatory microenvironment is mandatory
for MDSC generation. Furthermore, cytokine-induced MDSCs,
as their tumor-induced counterpart, cause immunosuppression
through the up-regulation of ARG1, iNOS, VEGF, and TGFβ

(103).
In subsequent years, this model has been used to demonstrate

the capability of different MM cell lines to induce, in vitro, the
generation of functional MDSCs from healthy donor PBMCs and
from BM aspirates (18).

Unlike in vitro studies, all models currently available for in vivo
study of MDSCs are murine models. Furthermore, only two dif-
ferent mouse models have been used to investigate the role of
MDSCs in MM. One of them is the syngeneic 5TMM mouse
model inoculated with either the 5T2MM or the 5T33MM cell
lines (105). These cells home in the BM and recapitulate very
closely the human disease (including BM–MM cells interactions

and osteolytic lesions) (105). This was the first demonstration of
MDSC presence and activity in MM.

The second model was obtained inoculating mice with syn-
geneic murine BCM, DP 42, and ATLN MM cell lines (9). Cells
in this model home to BM, and allow investigation of MDSCs
in the BM milieu. By using these models, the authors discovered
that MDSC infiltration of BM occurs early after tumor inocula-
tion while, in the subsequent weeks, the percentage of infiltrating
MDSC slowly decreases due to the increase of malignant PCs. Fur-
thermore, by using S100A9 knockout transgenic mice, which have
an impaired MDSC response to cancer, it has been observed a sig-
nificant delay in tumor growth, which was reverted by adoptive
administration of MDSCs, thus evidencing the key role played by
MDSCs in tumor escape from immune system. However, the lack
of models that recapitulate the complex human MM milieu limits
the study of human MDSC interaction with MM cells and other
component of BM milieu, thus limiting, in a translational view, the
study of agents that may target specifically human MM-associated
BM cells (106).

The SCID-hu model has been realized in an attempt to over-
come these limitations (107–110). In this model, a human fetal
bone chip is implanted in SCID mice and subsequently, primary
patient malignant cells or BMSC-dependent human plasma cell
line INA-6 are injected directly into the human bone implant. This
model demonstrated to be suitable and reliable system to evalu-
ate the anti-tumor activity of different drugs including different
anti-inflammatory agents (108–116). This model appears to be a
good candidate for the study of MDSCs, even if some immuno-
logical pitfalls should be taken into account: the allogeneic nature
of BM cells respect to both primary cells or MM cell lines and
the bone chips heterogeneity due to different gestational age at
which they are collected (106). Both these caveats have been over-
come by the use of the SCID-synth-hu model (117). This model
is based on the implantation of a tridimensional bone-like poly-
meric scaffold into a SCID mouse and on the subsequent injection
of the whole unselected cell population from BM aspirates into the
implanted scaffold. This model has been successful used for pre-
clinical evaluation of a variety of investigational agents (83–85,
106, 117). The recapitulation of an autologous BMM potentially
offers the best model to investigate the MM-associated immuno-
suppressive niche and the strict interplay between MM cells and
immature myeloid progenitors, including MDSCs, thus repre-
senting a unique tool for the development and evaluation of
immune-modulating agents in MM.

TRANSLATIONAL OPPORTUNITIES IN MM
Recently, MDSCs have been associated with immune-dysfunction
in MM patients. Few reports (9, 17, 18) demonstrated the great
complexity of the microenvironment in which pro-inflammatory
factors co-exist with immune-suppressive mediators, in a finely
tuned balance that influences patients’ outcome (118–120). Addi-
tionally, different pro-inflammatory cytokines including IL-1β, IL-
6, IL-17, TNFα, and IL-23 as well as anti-inflammatory cytokines
such as IL-10, TGFβ, or VEGF have been reported to be up-
regulated in MM patients in both peripheral blood and BM
(1, 121–123). This peculiar BMM, on one hand potently impairs
the capability of resident myeloid progenitors to differentiate into
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DCs, macrophages, or granulocytes, and on the other reprograms
mature myeloid cells to assume an immune-permissive phenotype
(tolerogenic DCs, M2, N2) (7). Obviously, these events lead to a
vicious circle in which MM cells drive inflammation and immuno-
suppression while both sustain and promote tumor growth (2,
124). To interrupt this sequence of events,different drugs are under
investigation or already available in MM and other malignancies
that may potentially interfere with MDSC activity and different
steps (Table 1).

Histone-deacetylase inhibitors are a novel class of drugs
involved in the epigenetic modulation of gene expression, which
revealed to have great anti-tumor activity in MM (125, 126).
Additionally, these agents revealed different anti-inflammatory
properties related to their capability to impair, among others,
the IL-6/Jak/Stat and the NF-κB signaling (127). Some authors
recently reported that the histone-deacetylase inhibitor (HDAC-i)
valproic acid reduces the capability of M-MDSC to transdifferenti-
ate into G-MDSC in cancer microenvironment and induces their
differentiation into macrophages or DCs, thus demonstrating a
novel opportunity for the selective targeting of these immunosup-
pressive cells (128). Along the same line, different authors (129,
130) reported on the capability of all-trans retinoic acid (ATRA),
a natural metabolite of vitamin A, to promote MDSCs differenti-
ation into mature myeloid cells with a mechanism dependent on
ERK activation and ROS reduction. This effect was also reported
in cancer patients, where ATRA administration in combination
with a DC based improved the immune response to vaccination
by reducing the level of MDSCs in peripheral blood (131).

Blocking the cytokines involved in the immunosuppressive
microenvironment may contribute to the impairment of MDSCs
activity and led to benefit for cancer patients. Treatment with the
IL-1β inhibitors anakinra induced serum IL-6 decrease together
with a substantial increase of PFS in high-risk smoldering or
indolent MM patients (132).

Myeloid-derived suppressor cells are associated with high lev-
els of circulating VEGF (133), however, treatment with anti-VEGF
drugs such as bevacizumab did not demonstrate to affect MDSC
levels in peripheral blood while increased the levels of mature
DCs (134, 135). Furthermore, it is conceivable that the presence
of MDSCs may represent a resistance factors to the activity of this
class of drugs (30, 136, 137).

As previously described, MDSC survival and differentiation
is strictly dependent on STAT3 activation, thus targeting the IL-
6/Jak/Stat pathway could represent an effective strategy to block
them (2). Furthermore, this pathway has a clear relevance in MM
pathobiology (111, 138) and the possibility to target at the same
time both MM cells and their associated immunosuppressive cells
is very attractive. Different agents, including monoclonal anti-
bodies against IL-6 or IL-6 receptor, Jak inhibitors, and STAT3
inhibitors are presently under investigation (139), and other inno-
vative approaches, such as miRNA therapy (88), are coming out
from pre-clinical research.

A different approach aims to stimulate MDSC differentiation
into mature cells and to limit their expansion. As shown before
G/M/GM-CSF are among the most important soluble factors
involved in both processes. Different authors reported a decrease
of MDSCs in vivo after inhibition of these molecules, associated
with a relevant tumor shrinkage (140–142). However, G- and GM-
CSF are widely used in different anti-cancer treatments and in
MM patients: G-CSF is used to mobilize hematopoietic stem cells,
while GM-CSF is often used to improve the efficacy of cancer
vaccines (143, 144). Indeed, some authors reported (17) a signif-
icant increase in MDSC number in peripheral blood stem cells
after G-CSF administration and hypothesized a detrimental effect
on patients undergoing transplant. GM-CSF, instead, seems to be
active both as an immune-adjuvant and as a MDSC inducer in a
dose-dependent manner (145, 146). In our hands, however, GM-
CSF resulted to be mandatory for an efficient anti-tumor response
both in vitro and cancer patients (31, 147, 148), while the patient
prognosis seemed to be related to systemic inflammation at base-
line. Indeed, we hypothesized that GM-CSF administration could
be detrimental in patients with a high neutrophil or monocyte
count (and indirectly to MDSCs) at baseline, an event that could
be related to the presence of a tumor (or its associated microen-
vironment) able to produce this kind of cytokines by itself and
from which it depends for survival and progression. Further stud-
ies are still awaited to better clarify this apparent dualistic role of
hematopoietic growth factors.

As a further attempt to reduce the immunosuppressive function
of MDSCs different authors tried to down-regulate the expression
of COX-2, ARG1, and iNOS and to reduce ROS formation. Cele-
coxib, a COX-2 selective non-steroidal anti-inflammatory drug

Table 1 | Pre-clinical and clinical agents targeting MDSCs.

Differentiation and expansion Intracellular modulators Function Depletion

ATRA IL-6R blockers ARG1 and iNOS inhibitors Chemotherapeutic agents

HDAC inhibitors JAK inhibitors PDE-5 inhibitors (tadalafil, sildenafil) Capecitabine

Blocking cytokines STAT3 inhibitors COX-2 inhibitors Gemcitabine

IL-1β (anakinra) miRNAs Celecoxib Doxorubicin

IL-6 ROS inhibitors IL-4Rα aptamer

VEGF (bevacizumab) Nitroaspirin Peptibodies

Blocking hematopoietic growth factor N-Acetyl cysteine

G-CSF Bisphosphonates

M-CSF Zoledronate

GM-CSF

Frontiers in Oncology | Hematology Oncology December 2014 | Volume 4 | Article 348 | 6

http://www.frontiersin.org/Hematology_Oncology
http://www.frontiersin.org/Hematology_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Botta et al. Myeloid-derived suppressor cells in multiple myeloma

(NSAID), has been reported to improve the efficacy of a DC-
based immunotherapy and to reduce the tumor infiltration by
MDSCs (82).

After demonstrating the capability of the phosphodiesterase-5
(PDE-5) tadalafil, to down-regulate in vitro and in vivo MDSC-
dependent iNOS and Arg-1 (36), the same authors recently
reported a case-report of a lenalidomide-resistant MM patients
who achieved a reduction in MDSCs, and a 18-month lasting
response with evident clinical benefits (149).

Bisphosphonates, such as zoledronic acid (ZOL), have been
demonstrated to exert several effects and still represent interesting
drugs in terms of anti-tumor and immune-stimulatory activity
(150–157). Indeed, these agents revealed to impairs MDSCs at dif-
ferent levels and some authors (20) observed a decrease in the
expansion of MM-induced MDSCs and a reduced capability to
form osteoclasts after zoledronate treatment in mice. The mech-
anism responsible for this activity is thought to be dependent on
the capability of zoledronate to decrease the activity of MMP9,
thus reducing the bioavailability of VEGF and impairing the c-kit
intracellular signaling (158–160).

A further strategy to improve cancer-associated immunosup-
pression consists in the selective depletion of MDSCs. Beyond
the already known immunomodulatory capability of chemothera-
peutic agents capecitabine and gemcitabine (124), and the recently
discovered potential of doxorubicin, a drug that still play an impor-
tant role in MM treatment, in selectively reducing MDSCs (161),
some authors developed an RNA aptamer (162) able to block both
murine or human IL-4 receptor α (IL-4Rα), critical for MDSC
suppression function. The binding of the aptamer to its spe-
cific receptor led to MDSC depletion and tumor arrest of growth
in vivo. Furthermore, others (163) recently developed an innova-
tive method to selectively target MDSCs. By using a competitive
peptide phage platform they identified peptides enriched in both
M- and G-MDSCs. Subsequently, they fused the sequence of the
selected peptides with the Fc portion of a murine IgG2b anti-
body to generate a peptibody. When used in vivo, these molecules,
completely depleted circulating, intra-tumoral and intra-splenic
MDSCs and induced a better tumor response compared to anti-
Gr1 antibody. The main targets identified with this approach were
found to be proteins bearing to the S100 family.

Finally, due to their major role in cancer-associated microen-
vironment (164, 165), miRNAs may represent a new frontier in
the field of immunotherapeutic drugs (166). Unlike monoclonal
antibodies or small inhibitor molecules already available, miR-
NAs have the great advantage to target pathways and network at
multiple steps thus representing a powerful tool to target tumor-
induced immune-dysfunction. As shown before,different miRNAs
have already been reported to be involved in MDSC generation and
function and other are currently under investigation (167). Sev-
eral studies are presently ongoing to better define the future role
of both miRNA replacement and inhibition in cancer therapy and
immunotherapy making them a promise and a challenge for novel
translational treatment strategies.

CONCLUDING REMARKS
During the last decade, a growing effort has been devoted to
understanding the role of MM-driven immunosuppression in

reducing or preventing the efficacy of immunotherapy. Among
others, MDSCs revealed to play a critical role in the generation of
such immune dysfunctional microenvironment in different ani-
mal models and cancer patients. On these bases it is possible to
speculate that the identification of molecular pathways involved
in MDSC function will lead to the development of new tailored
agents able to disrupt the tumor–host immunosuppressive inter-
actions, thus improving the efficacy of both humoral and cellular
immunotherapy. We now predict a new era for immunotherapy
in MM, which will provide breakthrough improvements in the
treatment of this important still incurable disease.
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